
J Autom Reasoning (2010) 45:415–435
DOI 10.1007/s10817-009-9132-y

Reusing a JML Specification Dedicated to Verification
for Testing, and Vice-Versa: Case Studies

Lydie du Bousquet · Yves Ledru · Olivier Maury ·
Catherine Oriat · Jean-Louis Lanet

Received: 5 October 2008 / Accepted: 6 May 2009 / Published online: 2 June 2009
© Springer Science + Business Media B.V. 2009

Abstract Testing and verification are two activities which have the same objective:
to ensure software dependability. In the Java context, the Java Modelling Language
(JML) has been proposed as specification language. It can be used both for verifi-
cation and test. Usually, the JML specification is designed with a specific purpose:
test or verification. This article addresses the question of reusability of a JML
specification provided for one activity (resp. verification or test) in the other context
(resp. test or verification). Two different case studies are considered.

Keywords Software dependability · Java · JML · Verification · Testing

1 Introduction

Testing and verification are two classical approaches used in order to achieve soft-
ware dependability. As it has been noticed in the Test And Proof conference series
(TAP 2007, 2008, and 2009), verification and testing have been pursued by distinct
communities using rather different techniques and tools. During the last decade, an
increasing number of efforts were carried out to combine both approaches.

In this article, we focus on the validation and verification of Java programs. The
Java Modelling Language (JML) has been proposed as specification language for
those applications. It can be used both for verification and test activities, and a large
amount of tools have been proposed to support both of them.

L. du Bousquet (B) · Y. Ledru · O. Maury · C. Oriat
Laboratoire d’Informatique de Grenoble (LIG Labs),
Universités de Grenoble, BP 72, 38402 Saint Martin d’Hères cedex, France
e-mail: lydie.du-bousquet@imag.fr
URL: http://www.liglab.fr/

J.-L. Lanet
Laboratoire XLIM, Université de Limoges, 123,
avenue Albert Thomas, 87060 LIMOGES CEDEX, France

416 L. du Bousquet et al.

One would think that using the same language for test and verification would ease
the combination of both activities. In reality, it still seems not to be so common. In-
deed testing and verification have two different objectives, and a (JML) specification
designed with a specific purpose (test or verification), may not be appropriate for the
other activity. Verification aims at assessing the correctness of some properties for
all inputs in all “situations”. On the other hand, testing is an incomplete validation
approach. It aims at detecting faults but it cannot guarantee that all faults are discov-
ered. Since verification is difficult, it requires a good knowledge of the application
code, and is limited by the power of the tools (for instance, it is very difficult to
verify some properties on floats). Hence, properties written for verification may
specify a subset of the application, and this is not appropriate to detect faults on the
unspecified parts of the application. Since testing is easier to carry out (it requires
less knowledge of the code and is less restricted by the power of tools), testers may
pay less attention to the way the specification is written, making it less usable for
verification.

This article addresses the question of reusability of a JML specification provided
for one activity (resp. verification or test) in the other context (resp. test or ver-
ification). Two different case studies are considered. The first one is a Banking
application, which has first been verified then tested. The second one is a Home
Network Services application, which has been tested and then verified. In both cases,
evolution of the JML specification had to be undertaken in order to ease the second
step of the validation (resp. test or verification).

In the following, Section 2 presents JML. Section 3 details the work done to test
the Banking application after the verification. Section 4 describes the work done to
verify the Home Network Services application after it was tested. Section 5 concludes
with the lessons learnt during both experiments.

2 JML: Language and Tools

This section briefly presents JML and some associated tools.

2.1 The JML Language

Java Modelling Language (JML) is designed to specify Java programs by expressing
formal properties and requirements on classes and their methods. The Java syntax
of JML makes it easier for Java programmers to read and write specifications. The
language is based on Java, with some additional keywords and logical constructions.
Examples of JML assertions are given in Figs. 2 and 6. For more details, see [14, 16].

The JML specification appears as special purpose Java comments: between
/*@ and @*/ or starting with //@. The specification of each method precedes its
interface declaration. This follows the usual convention of Java tools, such as
JavaDoc, which put such descriptive information in front of the method.

JML annotations adopt a “design by contract” style of specifications, which relies
on three types of assertions: class invariants, preconditions and postconditions.

– Invariants are properties that have to hold in all visible states. A visible state
roughly corresponds to the initial and final states of any method invocation [16].

Reusing Specification for Verification and Test 417

– Preconditions in the requires clause give the assertions that must hold before this
method can be called. If that is not true, then the method is under no obligation
to fulfil the rest of the specified behaviour.

– Postconditions are expressed in the ensures clauses. They express the results
and the properties expected to hold just after the method execution. The
exsures clause is a special kind of postcondition (signal clause) for exception
specification.

JML extends the Java syntax with several keywords.

– \result is the value returned by the method. It can only be used in ensures
clauses of a non-void method.

– \old. An expression of the form \old(Expr) refers to the value that the expres-
sion Expr had in the initial state of a method.

– \forall and \exists are universal and existential quantifiers.

JML can also be used to define annotation statements that may be interspersed
with Java statements in the body of a method. For instance, a loop statement can be
annotated with loop invariants or variant functions, that are written above the loop
itself. Both are used to help verification of the partial correctness and the termination
of a loop statement. Moreover, various assertions can be used to specify abstract data
types. For example, the initially clause allows one to define properties that must be
established by constructor methods of a class.

JML is more expressive than the Java assertion mechanism. The assertion
mechanism was introduced in version 1.4 of the Java language. An assertion is a
boolean condition that can be evaluated at run-time. In Java, options to the compiler
allow turning the evaluation of assertions on and off. Java assertions are a simpler
mechanism than JML:

– Java assertions are pure Java expressions and do not benefit from the additional
constructs of JML (e.g. \old, \result, \forall and \exists).

– While JML features various kinds of assertions (invariants, pre- and postcondi-
tions), Java assertions are of a single kind. With JML, an invariant is written once
and checked after each method invocation. To obtain a similar result with Java
assertions, the invariant must be copied at all places where it must be checked.

– The only tool supporting Java assertions is the Java compiler, while JML is
associated with several verification and testing tools.

2.2 JML for Testing: Principles and Tools

The JML release consists of several tools to check the syntax and typing of specifi-
cations [5]. It also includes the jmlrac tool (JML runtime assertion checker), which
uses the JML annotations to add runtime assertions to the compiled Java code [8].

The assertions are executed before, during and after the execution of a given
method or constructor call. When a method (or constructor) is executed, three cases
may happen.

All checks succeed: the behaviour of the method conforms to the specification for
these input values and initial state. The test delivers a Pass verdict.

418 L. du Bousquet et al.

An intermediate or final check fails: this reveals an inconsistency between the
behaviour of the method and its specification. The implementation does not conform
to the specification and the test delivers a Fail verdict.

An initial check fails: in this case, performing the test will not bring useful
information because it is performed outside of the specified behaviour. This test
delivers an Inconclusive verdict. For example,

√
x has a precondition that requires x

being positive. Therefore, a test of a square root method with a negative value leads
to an Inconclusive verdict. But, if the square root method is called with a negative
value inside a method under test, then a Fail verdict is delivered.

The code generated by jmlc can be used in combination with JUnit [15] in
a testing process. The JML-JUnittool [9] is a combinatorial testing tool which
generates simple test cases consisting of a call to one of the constructors of the given
class, followed by a single call to one of the methods of the object under test. The tool
generates combinations of selected values of the constructor and method parameters
to result in a large set of test cases. The tool then exploits JUnit to run the tests and
jmlc to provide an executable oracle.

For the testing experiment in Section 3 of this article, we have mainly used two
tools: Jartege and Tobias. Both use JML as test oracle.

Jartege allows random generation of unit tests for Java classes specified in JML
[24]. As in the JML-JUnit tool, JML assertions are used as a test oracle. Jartege
randomly generates test cases, which consist of a sequence of constructor and method
calls for the classes under test. The random aspect of the tool can be parameterized
by associating weights to classes and operations, and by controlling the number of
instances which are created.

Tobias is a tool for combinatorial testing. Unlike JML-JUnit that generates test
cases which consist of a single call to a class constructor, followed by a single call to
one of the methods (see [8]), Tobias supports combination of calls to the methods
[18, 21]. Tobias is available as an Eclipse plug-in [17].

2.3 JML and Verification

Several tools are available for formal verification of Java programs specified in
JML [4, 5]. The ESC/Java tool aims at identifying (and correcting) errors early
in the development (static validation) [7, 13]. It does not aim to provide a formal
verification of the code. JACK [2, 6], Why/Krakatoa [12, 20] and KeY [1, 3] are three
available environments for verification of Java programs specified in JML.

2.3.1 ESC/Java

ESC/Java1 is an Extended Static Checking tool. The verification is static since the code
is verified without being executed in a Java Virtual Machine. It is extended since the
tool detects more errors than can be detected with traditional static analysis.

ESC/Java uses the Simplify prover to reason about the program semantics. It
raises warnings in case of classical runtime errors, such as null dereferences, array
bound errors, type cast errors, etc. It also warns about synchronization errors

1ESC/Java can be downloaded at http://kind.ucd.ie/products/opensource/ESCJava2/download.html

http://kind.ucd.ie/products/opensource/ESCJava2/download.html

Reusing Specification for Verification and Test 419

in concurrent programs (race conditions and deadlocks). Finally, ESC/Java issues
warnings if the source code violates the JML assertions.

2.3.2 JACK

JACK2 (Java Applet Correctness Kit) is a tool for the validation of Java applications
annotated in JML [2]. JACK implements a weakest precondition calculus to auto-
matically generate proof obligations for each path of the control flow. They can both
be discharged to automatic and interactive theorem provers such as Coq or Simplify.
Proof obligations are first expressed in an intermediate representation, and are then
translated into the adequate language for the chosen prover. The tool is integrated
into Eclipse.

2.3.3 Why/Krakatoa

“Why”3 is a generic platform for deductive program verification [12]. The core
of the platform (“Why” tool) produces verification conditions and sends them to
existing provers. Several provers can be used: proof assistants such as Coq, PVS,
Isabelle/HOL, HOL 4, HOL Light, Mizar and decision procedures such as Simplify,
Alt-Ergo, Yices, Z3, CVC3, etc. Krakatoa is dedicated to the translation of Java
programs annotated in JML, into the input language of “Why” (similar to ML) [20].

2.3.4 KeY

The KeY4 System is a formal software development tool that aims to integrate de-
sign, implementation, formal specification, and formal verification of object-oriented
software as seamlessly as possible. At the core of the system is a theorem prover for
a first-order Dynamic Logic for Java. The tool has an easy-to-use graphical interface
and seamlessly integrates automated and interactive verification [1, 3]. KeY also uses
Simplify.

3 From Verification to Testing

This section focuses on the work done to reuse a specification dedicated to verifica-
tion for testing activities. Section 3.1 deals with the presentation of the case study, a
banking application. Section 3.2 briefly describes the JML specification produced for
verification. Section 3.3 details the work done for test, and especially focuses on the
errors found. Section 3.4 proposes a partial conclusion.

3.1 The Banking Application Case Study

The banking application case study, proposed by Gemplus, deals with money trans-
fers [10]. The application administrator (the bank officer) can create accounts. The

2The current version can be downloaded at http://www-sop.inria.fr/everest/soft/Jack/jack.html under
Cecill C licence.
3“Why” can be downloaded at http://why.lri.fr/
4KeY can be downloaded at http://www.key-project.org/download/

http://www-sop.inria.fr/everest/soft/Jack/jack.html
http://why.lri.fr/
http://www.key-project.org/download/

420 L. du Bousquet et al.

Currency_src

EUR_RATE=real

getBalance()

valid=false

Balance_src

amountToDisplay()
getCurrency()
inputToAmount()
setCurrency()
<<create>>

Currency_src()

CurCurrency=integer
EUR=integr
FRF=integer
USD=integer

FR_RATE=real
USD_RATE=real

Spending

1

Transfers

1

Transfers

1..20

1..20
ActivateSaving

ActivateSpending

Customer

Currency

AccountMan

TransferRequest

Util

1

GetReference
1

Transfers

Transfers

Balance

*

*

*GetBalance

1

1

1

Saving

0..10 0..20

RuleAccount

RuleTransfer

Timer Rule

0..30
timer

GetRule

0..20

1

0..10

Manage

Rule

AccountMan

AccountMan

BankOfficer

BankOfficer AccountMan

1 ManageTheAccount

Account

Balance_src()

destroyed : boolean
check()
destroy
<<create>>
Rule()
getidRule()

AccountMan_src

bkValide[3] : string
nbEl : integer
UniqueNum : integer
newaccount : Account
id : integer
i : integer

AccountMan_src()

isValidBank()
<<create>>

IsValid()
Consult()

IsValAcc()
BOcreate()
BOdelete()
getRef()

Rule

getBalanceamount()
getAccountnum()

getCustumerid()
getBankname()
credit()
debit()
<<create>>
Account()

bankname:string
accountnum : integer
balanceamount : real
customerid : integer

Account
account: integer
registrationDate : string
period : integer
threshold : real
saving_account : integer
nbrules:integer
idrule : integer

getVect

exit : boolean
ref : Account

registerSpendingRule()
getRuleSize()
<<create>>
Transfers_src()
transfer()
getRule()

myrule : Rule
Valid : boolea

Transfers_src

Customer

Customer

Customer

BalanceAccountMan

GetInformation1 1

getAccountVecor()
<<create>>

registerSavingRule()
<<create>>
SpendingRule()
check()

SpendingRule

SavingRule

check()
<<create>>
SavingRule() count : integer

i : integer

Fig. 1 Class diagram of the banking application

application user (i.e. the customer) can consult his accounts and make some money
transfers from one account to another. The user can also record some “transfer
rules”, in order to schedule periodical transfers. These transfer rules can be either
saving or spending rules. Moreover, the application includes some features to convert
money from one currency to another.

The case study is a simplified version of an application already used in the real
world. This application is running on a central server, which is linked to several smart
card terminals. For the simplified case study, the smart card terminals have been
withdrawn.

The banking application code is composed of eight classes (Fig. 1), among which:
the Account class, the AccountMan_src class to create and delete accounts, the
Transfers_src class to define spending and saving rules to transfer money from
an account to another according to different thresholds, the Balance_src class that
allows the customer to have access to his accounts, and the Currency_src class to
convert currencies. The three remaining classes are dedicated to the definition of the
transfer rule principles.

3.2 The Banking Application JML Specification for Verification

For this application, the JML annotations were originally designed to support a
verification process. Both the Java application and the JML code were written by
engineers at Gemplus. The application was first informally specified and modelled in
UML. The Java code was then produced. Finally, the JML assertions were added to

Reusing Specification for Verification and Test 421

Fig. 2 JML annotation for the
method register spending rule

the code. The JML specification was originally designed to evaluate Jack, Gemplus’s
prover for JML [2, 6].

The application was not totally verified at this stage: some proof obligations were
not satisfied and some parts of the code were not annotated. The JML assertions, the
informal requirements and the code were then directly used for the testing phase. An
example of those annotations is given Fig. 2.

This was the first use of JML for verification purposes by the Gemplus Research
team. Some metrics of this application are given in Table 1. The fact that the number
of JML annotation lines is larger than the Java code length is mainly due to the
verification process: annotation statements were inserted to guide the prover.

In the banking example, 362 of the 615 lines of JML assertions are distributed
as shown in Table 2. Postconditions (the ensures clause) represent most of the JML
assertions, especially in classes Balance_src and AccountMan_src where they

Table 1 Some metrics of the
banking application

Classes Java lines JML lines

Transfer_src 116 150
AccountMan_src 105 236
Currency_src 93 28
Balance_src 64 58
Spending_rule 40 42
Saving_rule 40 42
Rule 40 23
Account 30 36
Total 518 615

422 L. du Bousquet et al.

Table 2 JML assertion distribution in the banking example

Classes Number of Number of lines of
methods Invariant Requires Ensures Exsures

Transfer_src 7 5 6 108 6
AccountMan-src 8 17 8 9 7
Currency_src 7 7 7 6 7
Balance_src 3 1 2 37 2
Spending_rule 2 20 13 6 1
Saving_rule 2 20 13 4 1
Rule 5 3 6 6 2
Account 7 5 8 9 7
Total 41 81 63 185 33

are dedicated to the specification of error codes. The remaining 253 lines of JML
correspond to loop invariants, to additional keywords such as the modifies clauses,
or to comments.

3.3 Testing the Banking Application

Two testing campaigns were performed by two different teams in the Laboratoire
d’Informatique de Grenoble (LIG). The code and annotations were re-used without
modification by the LIG testing team. During this work, we tried to answer the
following questions:

1. Can the banking application JML specification dedicated to verification be used
for testing?

2. Is the JML specification detailed enough to allow accurate validation by test?

Both teams worked separately during a bounded time period (3 days). For
both teams, the testing work consisted in producing some test data sequences and
executing them.

The first team made a critical code review and then used random testing (with
Jartege). The code review phase took one person-day. It allowed the detection of
four errors (see Fig. 3). Those were corrected before the random testing phase.
Information from the code review was used to target random tests to suspicious parts
of the code. This testing phase revealed five new errors or suspicious situations in one
day.

The second team applied a combinatorial testing approach based on the informal
requirements: the requirements document was used as a basis for the design of test
inputs. First, seven general properties from the requirements were identified. Then,
some “abstract scenarios” were expressed to define sets of similar test cases. The
Tobias tool was used to instantiate the abstract scenarios into executable JUnit test
cases. Seventeen abstract scenarios were produced, which were unfolded into 1,241
test cases. Those represented 40,000 Java code lines (for JUnit).

In parallel with the test execution, the second team performed a critical analysis
of the execution results. This helped us to find some cases where the code and
the JML specification were consistent, but were different from the requirements or
contrary to common sense. It took 6 person-days to analyze the specification, produce

Reusing Specification for Verification and Test 423

X

X

X

limit

limit

limit

limit

postcondition

postcondition

postcondition

floating-point

floating-point

floating-point

floating-point

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

design

human oracle

human oraclecounter-intuitive

several*

code review

code review

JML oracle

Method of
detectionType of error

*precondition mistake, under specification, or design mistake

team 1 team 2

code rev + JML or.

code rev + Java ex.

Java exception

design

design

counter-intuitive

floating-point

Err.

human oracle

human oracle

human oracle

human oracle

JML oracle

JML oracle

JML oracle

human oracle

JML oracle

JML oracle

X

10

11

12

13

14

15

16

17

18

testing

X

X

X

X

X

9

Code
review

Random With
Tobias

1

2

3

5

4

6

7

8

Fig. 3 Errors detected

the abstract scenarios, execute the tests and analyze the traces. Sixteen errors or
suspicious situations were discovered by the execution of these tests.

The testing efforts of both teams aimed at discovering inconsistencies between
informal requirements, JML specification and code. Three cases were identified: JML
specification and code are inconsistent (1); JML specification and code are consistent
and both are inconsistent with informal requirements (2); JML specification, code
and informal requirements are consistent but overlook common sense requirements
(3).

At the end of both processes, 18 different errors or suspicious situations were
identified (Fig. 3). We say that there is an error when the JML assertion checker
raises an exception. Java exceptions also often reveal errors in the code5 (case 1).

5Or reveal a missing exsures clause.

424 L. du Bousquet et al.

We call suspicious situations the cases where the formal specification and the code
have the same behaviour, but do not correspond to the informal requirements or to
common sense (cases 2 and 3).

Each error was carefully analysed in order to classify them. Figure 3 lists all errors,
with their types and the way they were discovered. Errors 3, 10, 13 and 14 were fixed
between code review and random testing, in order to facilitate the random testing
process.

– Floating-point approximations
There are five cases related to floating-point approximations (errors 3, 4, 5, 6, 18).
The float type is used to represent the account balance. The errors are revealed
when the postcondition and the code compute the same “value” in different
ways. For example, (x + y) − z is not always equal to x + (y − z) when x, y, z
are float numbers. With float numbers, + and - operations are not commutative
due to their limited precision6 (case 1: JML specification and code inconsistent).

– Erroneous JML specification
Three cases are in the postconditions, typically several \old arguments were
forgotten (err. 7, 8, and 14). For instance, error 14 is due to an assertion indicating
that the new value of an attribute is equal to itself (a == a). The correct assertion
should have been (a == \old(a)), expressing that the value of the attribute has
not been changed.7 This specification error is a typical example of error that can
not be discovered with a black-box testing approach, since the assertion is always
true. It was actually detected by code review (JML specification and code both
inconsistent with informal requirements).

– Limit
There are four cases that are dealing with “limits” (err. 1, 2, 11 and 12), i.e.
boundary values. Let us detail two examples.
A transfer rule can be registered with a time period of 0, which is forbidden in the
informal requirements, but not in the code and in the JML specification. (JML
specification and code both inconsistent with informal requirements).
One informal requirement says that there is no limit amount for a credit.
So testers tried to credit one account with the Java pre-defined constant
POSITIVE_INFINITY. The fact that this operation is accepted was considered
as a suspicious situation. This is a typical example where the success of a test
actually reveals a problem. (JML specification, code and informal requirements
inconsistent with common sense).

– Design mistake
Errors 9, 10, and 13 have been classified as design mistakes. One critical attribute
is public instead of being private (err. 10). It is possible to assign the same
identifier to two different accounts if two account managers are created (err.
9)(JML specification and code inconsistent). The banking application deals with
threads, but there is no protection (i.e. critical section) to prevent a concurrent

6During the verification process, the approximation problem was not addressed.
7These properties could have been expressed with the JML keyword \not_modify.

Reusing Specification for Verification and Test 425

access an account (err 13). These errors were revealed either by the tests or by
code review.

– Counter-intuitive behaviour
Errors 16 and 17 denote counter-intuitive behaviours. In fact, it is possible to
delete an account on which there are some active saving or spending transfer
rules. This case is neither specified informally nor formally. So, it is not possible
to conclude whether the application behaviour is correct or not. Intuitively, one
can imagine that the removal of an account, which is a transfer destination
may create some access conflict if the rule is not deactivated before. (JML
specification, code and informal requirements inconsistent with common sense).

– Several classifications
Error 15 falls into several categories. The method inputToAmount of the
Currency_src class needs a parameter to be a string representing a float.

/*@ requires true;
@ ensures input == null ==> \result == 0;
@ exsures (Exception e) false; @*/

public float inputToAmount(String input) {
...
if (input == null) {... return 0; }

else { amount = new Float(input); ... } }

If this method is called with an incorrect string (for instance inputTo-
Amount("aaa")), it will raise an exception when calling new Float(input).
This can therefore be considered as an error in the specification: the exsures
clause should be modified to allow this exception or the precondition should be
stronger in order to exclude illegal input values. (JML specification and code
inconsistent)
The fact that the input should be a string is not indicated in the informal require-
ments. This error can thus be considered as a design mistake (the parameter
should have been typed as float).

Expressiveness of JML Using JML, seven out of 18 errors were detected. Many
other errors correspond to properties which could have been expressed formally
using JML. The case study has thus revealed the incompleteness of the available spec-
ification. Table 3 shows which kind of properties were actually detected using JML
and which ones could have been detected if the specification was more complete.

Table 3 Potential to detect
more errors with JML
assertions

Error type Detected by Detectable by
JML assertions JML assertions

Limit No Yes
Floating point Yes
Postcondition Yes
Design No One of the three errors
Counter-intuitive No Yes

426 L. du Bousquet et al.

3.4 Partial Conclusion

At the beginning of this section, two questions were asked. This section will now try
to answer them, and add some lessons about the choice of a testing strategy.

– Can the banking application JML specification dedicated to verification be used
for testing?
It is very attractive to reuse the same specification with several tools. Here the
specification was first created for verification purposes then reused for testing
purposes. Before the verification process, one writes the specification focusing on
the main parts, i.e. what has to be verified (invariants, pre and post-conditions).
Then, during the verification process, some new assertions are added (mainly
annotation statements), to help the verification tool.
For the testing process, tools take advantage of the fact that a large subset of
JML assertions are executable. Non-executable assertions are expressions that
can not be translated to Java due to various factors. For example, \forall or
\exists have to be iterated over a finite range of integers or a JML set to be
executable. Since verification tools do not need JML assertions to be executable,
only a subset of the specification can be reused.
About the executable part of the specification, one should notice that the
annotation statements are often too close to the Java code to help find errors. But
although they do not contribute to the test oracle, they do not harm the testing
process. These elements of the specification can even be useful for regression
testing, provided they are sufficiently abstract to express the functionalities and
not how they are implemented. The only negative influence of these specification
statements is that they increase the size of the specification and tend to give some
misleading confidence that the specification is complete.
In summary, only the executable part of the JML specification can be reused for
testing. This may include annotation statements which are too close to the code
to reveal errors.

– Is the JML specification detailed enough to allow accurate validation by testing?
JML has a good expressiveness to cover most of the requirements of the
banking application. Unfortunately, like most formal languages it faces the risk
of incomplete specifications: while writing specification for verification purposes,
the type of properties and the way they are written are implicitly influenced by
the ability of the verification tools. For example, for the Banking application,
engineers deliberately chose not to describe properties about the float values,
since they knew that JACK could not handle them. Thus, only seven of the
18 errors were found because they violated JML assertions. But 80% to 90%
of the errors could have been detected if adequate JML assertions had been
available (see Table 3). This reveals the incomplete character of the provided
specifications which reduces the testability of the application.
We divided the errors into three categories. Category 1 corresponds to the
seven errors we discovered where code and specification were inconsistent. Five
of them are related to floating point errors and could not be detected by the
verification process because JACK does not support float variables. The two
other errors (nine and 13) could have been detected by a verification process.
The remaining errors (categories 2 and 3) could not be revealed by the specifi-
cation. Category 2 corresponds to the incompleteness of the specification with

Reusing Specification for Verification and Test 427

respect to the requirements. Here, we believe that the systematic use of trace-
ability techniques can help reduce this incompleteness by clearly marking the
requirements not covered by the specification. Finally, category 3 corresponds
to the incompleteness of the requirements documents. This problem should
be addressed with adequate requirements engineering techniques but definitely
remains a difficult issue. It must be noted that the use of more sophisticated
specification-based testing techniques or the use of verification techniques would
not have improved our capability to detect these errors since such techniques
only find errors covered by the specification.

– About the choice of a testing strategy
The two testing approaches have not revealed exactly the same errors. The
first approach, combining code review (human validation) and random testing
(automated data selection and oracle), allows one to detect two errors unfound
by the second approach. On the other hand, the second approach based on the
study of the informal requirements and on combinatorial testing (manual data
selection, human and automated oracle) detects nine errors unfound by the first
approach. It is important to notice that nine of these 11 errors were detected
thanks to human analysis and correspond to categories 2 and 3. This makes us
think that the ability to find faults automatically (revealed by runtime errors or
JML assertion violation) does not depend on the testing approach but on the
accuracy of the JML specification.

4 From Testing to Verification

This section focuses on the work done to reuse a JML specification dedicated to
testing, for verification activities. Section 4.1 deals with the presentation of the case
study, a Home Network Services application. Section 4.2 briefly describes the testing
work. Section 4.3 details the work done for verification, and especially focuses on
the refactoring of the code and the specification. Section 4.4 proposes a partial
conclusion.

4.1 The HNS Case Study

The second case study deals with Home Network Services (HNS). HNS consist of
one or more networked appliances connected to a LAN at home. One of the major
HNS applications is the integrated services of networked home appliances (called
integrated service in the following). An integrated service orchestrates several home
appliances via a network in order to provide more comfortable and convenient living
for the users. For instance, the DVD Theater Service turns on a DVD player, switches
off the lights, selects 5.1ch speakers and adjusts the volume automatically (Fig. 4).

Nakamura et al. have proposed a framework that adapts the legacy appliances
with conventional infrared remote controllers [22, 23]. The key ideas are (1) to use a
programmable infrared remote controller to control the different appliances, and (2)
to rely on a service-oriented architecture (SOA) (see [19, 25]).

For each appliance, a self-contained component is implemented in Java and
deployed as web service (using Apache AXIS) (Fig. 5). Methods like On() and
Off() are open interfaces for accessing basic features of the appliance. They use a

428 L. du Bousquet et al.

Fig. 4 Class diagram of the HNS application, restricted to appliances and integrated services (in
grey)

set of APIs by which the PC can send infrared signals to the appliances (Ir-APIs).
Ir-APIs have been implemented by wrapping the programmable infrared remote
controller with a Java Native Interface (JNI Wrapper).

Integrated services can be implemented in this framework as client applications.
An integrated service invokes the methods of the appliance components. The
application was mainly developed in Nara and Kobe universities. The core of the

Fig. 5 HNS

Reusing Specification for Verification and Test 429

application, consisting of appliance and integrated services, has been developed
under several versions. The one which is studied here was developed by a Master
student at the LIG labs. The Java code and the JML assertions were written in
parallel by this student.

The initial version was composed of 25 classes among which 14 were appli-
ance components and seven, integrated services (Fig. 4). One level of inheri-
tance was introduced for the appliances and the integrated services. A specific
class (HomeEnvironment.java) describes the sensor values (temperature, light
level,...). The version has 2,000 lines of code. In this code, 209 JML annotations were
inserted (17 preconditions, 150 postconditions, and 42 invariants).

4.2 Testing the HNS Services

To test the appliance and integrated services, we adopted a combinatorial approach
based on the informal requirements as for the Banking application. More than 30
test schemas were described and unfolded by Tobias [11]. Each schema has between
500 and 5,000 test cases. Tests cases were then translated in the JUnit format and
executed within the Eclipse environment. 10 errors were found (at the appliance and
service levels). These errors reveal mainly inconsistencies between code and JML
specifications.

4.3 Verifying the HNS Services

Two types of works were done to verify the HNS classes: one with ESC/Java and
the other with deductive verification tools (JACK, KeY, Why/Krakatoa). The code
and annotations were modified during the verification process, in order to correct the
errors or to detail incomplete parts, and to continue the verification process. During
the work, we tried to answer the following questions:

1. Can the HNS specification dedicated to test be used for verification?
2. If no, how should the testing specification be modified to support verification?

4.3.1 Using ESC/Java

ESC/Java was the first tool to be used during the verification process. The verification
was carried out on the code that was tested and corrected. The verification of the
Java classes was long and uneasy. The JML assertions were not sufficient to allow an
automatic verification, even if they allowed to perform testing.

The first ESC warnings were obtained for Appliance.java. They were related
to the use of set methods of HomeEnvironment.java. The use of these methods
in Appliance.java could lead to a violation of HomeEnvironment assertions.
In order to solve the problem, Appliance.java class had to be refactored. This
operation has impacted all subclasses of Appliance.java.

Then, to remove several warnings, several JML assertions had to be inserted. In-
deed, several postconditions were added to specify the returned result. For instance,
for the method public String getPower(), the following postcondition was
added //@ ensures \result.equals(powerState);.

Several warnings were related to the problem of null values. Some assertions were
added in order to specify that the variables or the attributes (of type String) were not

430 L. du Bousquet et al.

Fig. 6 JML annotations for the appliance java class

null. Moreover, all constructors of appliances were modified in order to initialize all
attributes explicitly.

After code refactoring, the code size represents 2,400 lines of code. The new JML
assertions represent more than 600 lines of code (see the code of Appliance Fig. 6).
At the end of the process, all appliance and service properties seem to be validated:

Reusing Specification for Verification and Test 431

there was no remaining warning. However, one has to be careful. ESC/Java is neither
complete nor sound. Some errors may not be reported and false alarms may be
issued.

From a general point of view, the verification of the code with ESC/Java required
more work than expected. Indeed, the effort spent to complete the specification to
help the tool was underestimated for two reasons. First, the code of the appliance
API and integrated services is quite simple (no loop for instance). Second, the testing
phase did not reveal inconsistencies between the assertions and the code. So it was
expected that verification would be easy. Actually the verification process did not
detect additional errors.

4.3.2 Using JACK, Why/Krakatoa and KeY

JACK, Why/Krakatoa and KeY were successively used in order to perform the
verification. The process was difficult, and the result was not as good as expected
(for the three tools).

A difficulty was that the JML version used for the project was no longer com-
patible with JACK. Moreover, Krakatoa (in the version used) did not accept the
whole syntax of JML. For instance, assertions such that non_null or pure were
not accepted. Several files had to be modified.

Regarding the use of KeY, the verification could be carried out only for file
HomeEnvironment.java. The main reason was that the JML assertions deal with
strings, which are currently not supported by KeY.

After the use of ESC/Java, the class HomeEnvironment.java has 27 methods
(1 constructor, 11 get methods, 15 set methods) and three invariants. Each get
method has been declared “pure”. Half of the set methods were associated with
a precondition. None of them has a postcondition. KeY produced between 3 and
5 proof obligations for each method. All of them were verified. Most of them
were verified automatically with Simplify or Yices provers. For three methods, the
“elementary arithmetic strategy” had to be used. For one method, we had to increase
the number of computing steps (1,100 instead of 1,000 by default).

A new refactoring of the code was carried out. The attributes of type String were
in fact used to implement an enumerated type. The code and the JML assertions
were modified so that integers were used to implement those enumerated types.

KeY was then used again on a small part of the application. It was possible to
verify automatically more than one half of the proof obligations related to appliances
and integrated services, with the help of Simplify and Yices provers. However, some
proof obligations are still pending. No additional error was found.

4.4 Partial Conclusion

At the beginning of this section, two questions were asked. We may now try to answer
them.

– Can the HNS specification dedicated to testing be used for verification?
Properties which were stated for the test process were properties we wanted to
be verified. In that sense, the JML specification can be reused. However, some
elements must be taken into account.

432 L. du Bousquet et al.

First, the verification process is limited by the power of the tools: some parts
of the JML language that is supported by the testing tools are not currently
supported by the verification tools. In fact, the same properties written during
the verification process would probably have been designed differently, in order
to help the verification tools. For instance, some properties about the initial
states of the appliances or services could have been specified using the initially
clause (which is not executable). So, some parts of the testing specification are
not usable.
Moreover, the testing specification is possibly incomplete. Properties were writ-
ten with the objective to be used for testing. So, the tester implicitly chose to
write properties with respect to an appropriate (executable) subset of JML.
With a larger subset, other properties could have been specified. In the HNS
specification for instance, quantifiers and the initially clause are never used.

– If no, how should the testing specification be modified to support validation by
verification?
It must be noticed that in this experiment, a large effort was required to adapt
the code and the JML specification to the verification process. Improvements
only restructured the code and increased the redundancy of the specification.
We were not aware that it corrected any bug in the code or in the specification,
since no failure was exhibited.
We can distinguish two types of works to support verification process. First, one
has to provide code and specification compatible with the tool abilities. During
our experiment, we had to refactor both the code and the JML specification
in order to carry out the verification. A first refactoring was carried out for
ESC/Java. It mainly consisted of (1) a simplification of the coupling of the
methods and classes, and (2) a multiplication by four of the size of the JML
specification. A second refactoring was needed by the deductive provers, in order
to translate enumerated type (from String to Integer).
Second, one may have to add specific assertions to help the tools. For this
application, the assertions to be inserted were mainly related to null values.
It also concerned some indications of the value of the returned results. In this
application, there were no loops, so no loop assertions were required. However,
it is quite usual to add those types of assertions to help the verification process.

5 Conclusion and Lessons Learnt

This article reports on two case studies implemented in Java and specified in JML
(Java Modelling Language). We specially address the problem of reusing a JML
specification produced for one activity (resp. verification or test) for the other (resp.
test or verification). These two case studies bring about interesting lessons on the use
of JML in a Java validation process.

Writing a Specification (in JML) In the HNS case study, the JML assertions were
written during coding, for testing purposes. A part of the assertions were devoted
to express the internal consistency of the classes. For instance, we expressed the
expected value of one attribute with respect to the values of the other attributes.
Those assertions were really useful during the whole development process, as a way
to maintain consistency among the classes during the different evolutions.

Reusing Specification for Verification and Test 433

In the banking application case study, since the code was taken from an existing
application, JML assertions have been added after the coding phase. As a result,
some postconditions may have been influenced by the code. Actually, it is tempting
to simply copy-paste the code of the method in the JML assertion and then to replace
“=” with “==” and add some “\old” keywords. Unfortunately, this often results
in copying coding errors into the specification. Therefore, care should be taken to
express the specification in a different, and often more abstract, way. This should
increase implementation freedom, and result in specifications which are more robust
to evolution.

The copy-paste effect is a problem especially for testing. From the two case
studies, we noticed that the copy-paste effect had less impact on invariants than on
postconditions. This is due to the fact that writing invariants requires to step back,
since it will concern the class in a global way and not only a method, as it is the case
for postconditions. For this reason, one should favour the identification of invariants
when writing a JML specification, especially for existing code.

An important point to notice is that JML is not completely supported by the dif-
ferent tools. For instance, verification tools such as ESC/Java, JACK, Why/Krakatoa
and Key support only a part of the JML constructions. Similarly, the JML runtime
assertion checker (jmlrac), used for test, supports only executable features of JML
(for instance, a \forall is not executable if the following expression does not
concern a JML set or an integer interval). So, assertions are written with an adequate
subset of JML, with respect to the approach plan to be used.

From a methodological point of view, it seems more appropriate to write the
specification independently of the code and to write first the invariants to reduce
the copy-paste effect, then pre and postconditions. If testing is planned, one should
check if all the assertions are executable. If it is not the case, an executable expression
should be added. If verification is planned, annotation statements should be added.

Using a Specification for Testing or Verification For a JML specification to be usable
for testing or verification, one should pay attention to two elements. First, one
should keep in mind that the specification is never complete and can possibly be
inconsistent with informal requirements. In the first case study, the analysis shows
that the two testing approaches have comparable outcomes: they detect quite the
same inconsistencies between the formal specification and the code. However, the
human analysis of respectively the code and the test results raise additional errors.

A second point that needs attention is the fact that the code and the specification
should be designed so that the verification and both testing tools could be used.
It is especially critical for the verification process, which is possible only if the
construction (code and assertions) are supported. It is also the case for the testing
process, for instance, results should be observable. So in both case, during the whole
development, one should “design for test” and/or “design for verification”, that we
can summarize as “design for validation and verification”.

Reusing a Formal Specification Formal specifications are aimed to be used several
times during software development, and it is often the case that the intended use
of the specification influences its style and contents. But, the way the specification
will be used (resp. the tools that are going to be used) has an influence of how the
specification has to be written. Reusing a specification should then be done carefully.

434 L. du Bousquet et al.

A JML specification designed for verification contains several assertions, such as
invariants associated with constants or loop invariants, which were added specifically
for verification in order to help the tools. Unfortunately this over-specification can
become an obstacle to evolutions of the system.

Over-specification is not spread uniformly in the specification. For the banking
case study, several methods were clearly under-specified (the postcondition is not
stated) and it was not possible to make a judgement on the correctness of their
execution.

A specification designed for test tends to express a judgement about the results.
It generally specifies the expected behaviours. The main requirement is that the
assertions have to be executable. In order to verify such a specification, refactoring
may have to be carried out for both code and assertions. In the case of the HNS
application, it is still not clear for us if the refactoring had to be carried out in order
to help the tools or in order to correct some remaining errors, since no failure was
demonstrated before the refactoring.

As a conclusion, since specification description is motivated by different concerns,
it should be interesting to use structuring and documentation mechanisms that
identify parts of the specification according to their rationale and intended use.
In particular, each assertion of the specification should either be linked to the
requirement it expresses or marked as a proof annotation.

Acknowledgements The work on the first case study was partially supported by the COTE RNTL
project (http://www.irisa.fr/cote/). The work on the second case study was partially supported by
the Ministry of Education, Science, Sports and Culture, Grant-in-Aid for Young Scientists (B) (No.
18700062), Scientific Research (B) (No. 17300007), and Comprehensive Development of e-Society
Foundation Software program. It is also supported by JSPS and MAE under the Japan-France
Integrated Action Program (PHC-SAKURA). A special thanks to Natasha King who corrects the
English phrasing.

References

1. Ahrendt, W., Baar, T., Beckert, B., Bubel, R., Giese, M., Hähnle, R., Menzel, W., Mostowski,
W., Roth, A., Schlager, S., Schmitt, P.H.: The KeY tool. Softw. Syst. Model. 4, 32–54 (2005)

2. Barthe, G., Burdy, L., Charles, J., Grégoire, B., Huisman, M., Lanet, J.-L., Pavlova, M., Requet,
A.: JACK—a tool for validation of security and behaviour of Java applications. In: 5th Inter-
national Symposium Formal Methods for Components and Objects (FMCO). Lecture Notes in
Computer Science, vol. 4709, pp. 152–174. Amsterdam, The Netherlands (2006)

3. Beckert, B., Hähnle, R., Schmitt, P.H. (eds.): Verification of Object-Oriented Software: the KeY
Approach. Springer, New York (2007)

4. Burdy, L., Cheon, Y., Cok, D.R., Ernst, M.D., Kiniry, J.R., Leavens, G.T., Leino, K.R.M., Poll,
E.: An overview of JML tools and applications. In: Eighth International Workshop on Formal
Methods for Industrial Critical Systems (FMICS’03). Electronic Notes in Theoretical Computer
Science, vol. 80, pp. 73–89 (2003)

5. Burdy, L., Cheon, Y., Cok, D.R., Ernst, M.D., Kiniry, J.R., Leavens, G.T., Leino, K.R.M., Poll,
E.: An overview of JML tools and applications. STTT 7, 212–232 (2005)

6. Burdy, L., Requet, A., Lanet, J.-L.: Java applet correctness: a developer-oriented approach. In:
The 12th International FME Symposium, Pisa, Italy (2003)

7. Chalin, P.: Early detection of JML specification errors using ESC/Java2. In: Proceedings of the
2006 Conference on Specification and Verification of Component-Based Systems (SAVCBS),
pp. 25–32. Portland, Oregon (2006)

8. Cheon, Y., Leavens, G.T.: A runtime assertion checker for the java modeling language (JML).
In: Arabnia, H.R., Mun, Y. (eds.) International Conference on Software Engineering Research
and Practice (SERP ’02), pp. 322–328. Las Vegas, Nevada (2002)

http://www.irisa.fr/cote/

Reusing Specification for Verification and Test 435

9. Cheon, Y., Leavens, G.T.: A simple and practical approach to unit testing: the JML and JUnit
way. In: 16th European Conference on Object-Oriented Programming (ECOOP’02), pp. 231–
255 (2002)

10. du Bousquet, L., Ledru, Y., Maury, O., Oriat, C., Lanet, J.-L.: A case study in JML-based
software validation (short paper). In: Automated Software Engineering (ASE). Linz, Austria
(2004)

11. du Bousquet, L., Nakamura, M., Yan, B., Igaki, H.: Using formal methods to increase confidence
in one home network system implementation. Case study. In: Workshop on Leveraging Appli-
cations of Formal Methods, Verification and Validation (ISoLA 2007). Revue des Nouvelles
Technologies de l’Information, vol. RNTI-SM-1. Poitiers, France (2007)

12. Filliâtre, J.-C., Marché, C.: The why/krakatoa/caduceus platform for deductive program verifica-
tion. In: 19th International Conference Computer Aided Verification (CAV). Lecture Notes in
Computer Science, vol. 4590, pp. 173–177. Berlin, Germany (2007)

13. Flanagan, C., Leino, K.R.M., Lillibridge, M., Nelson, G., Saxe, J.B., Stata, R.: Extended static
checking for java. In: PLDI, pp. 234–245 (2002)

14. JML: The java modeling language (JML) home page (2008). http://www.cs.iastate.edu/∼leavens/
JML.html

15. JUnit: JUnit (2008). http://www.junit.org
16. Leavens, G., Baker, A., Ruby, C.: JML: a notation for detailed design. In: Kilov, H., Rumpe, B.,

Simmonds, I. (eds.) Behavioral Specifications of Businesses and Systems, pp. 175–188. Kluwer,
Dordrecht (1999)

17. Ledru, Y., Dadeau, F., du Bousquet, L., Ville, S., Rose, E.: Mastering combinatorial explosion
with the tobias-2 test generator. In: 22nd IEEE/ACM International Conference on Automated
Software Engineering (ASE 2007), pp. 535–536. USA (2007)

18. Ledru, Y., du Bousquet, L., Maury, O., Bontron, P.: Filtering TOBIAS combinatorial test suites.
In: Fundamental Approaches to Software Engineering (FASE’04). LNCS, vol. 2984. Barcelona,
Spain (2004)

19. Loke, S.W.: Service-oriented device ecology workflows. In: First International Conference on
Service-Oriented Computing (ICSOC 2003). Lecture Notes in Computer Science, vol. 2910,
pp. 559–574. Trento, Italy (2003)

20. Marché, C., Paulin-Mohring, C., Urbain, X.: The KRAKATOA tool for certification of
JAVA/JAVACARD programs annotated in JML. J. Log. Algebr. Program. 58(1–2), 89–106
(2004)

21. Maury, O., Ledru, Y., du bousquet, L.: Using TOBIAS for the automatic generation of VDM
test cases. In: Third VDM Workshop (in conjunction with FME’02) (2002)

22. Nakamura, M., Tanaka, A., Igaki, H., Tamada, H., Matsumoto, K.: Adapting legacy home
appliances and web services. In: Int. Conf. on Web Services (ICWS 2006), pp. 849–858 (2006)

23. Nakamura, M., Tanaka, A., Igaki, H., Tamada, H., Matsumoto, K.: Constructing home network
systems and integrated service using legacy home appliances and web services. Int. J. Web Serv.
Res. 5(1) (2009)

24. Oriat, C.: Jartege: a tool for random generation of unit test for java classes. In: First International
Conference on the Quality of Software Architechtures and Second International Workshop of
Software Quality (QoSa/SOQUA). Lecture Notes in Computer Science, vol. 3712, pp. 242–256
(2005)

25. Papazoglou, M.P., Georgakopoulos, D.: Special issue: service-oriented computing. Introduction.
Commun. ACM 46(10), 24–28 (2003)

http://www.cs.iastate.edu/~leavens/JML.html
http://www.cs.iastate.edu/~leavens/JML.html
http://www.junit.org

	Reusing a JML Specification Dedicated to Verification for Testing, and Vice-Versa: Case Studies
	Abstract
	Introduction
	JML: Language and Tools
	The JML Language
	JML for Testing: Principles and Tools
	JML and Verification
	ESC/Java
	JACK
	Why/Krakatoa
	KeY

	From Verification to Testing
	The Banking Application Case Study
	The Banking Application JML Specification for Verification
	Testing the Banking Application
	Partial Conclusion

	From Testing to Verification
	The HNS Case Study
	Testing the HNS Services
	Verifying the HNS Services
	Using ESC/Java
	Using JACK, Why/Krakatoa and KeY

	Partial Conclusion

	Conclusion and Lessons Learnt
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

