
J Autom Reasoning (2009) 43:19–51
DOI 10.1007/s10817-009-9117-x

An Intuitionistic Proof of a Discrete Form
of the Jordan Curve Theorem Formalized in Coq
with Combinatorial Hypermaps

Jean-François Dufourd

Received: 20 March 2008 / Accepted: 12 February 2009 / Published online: 6 March 2009
© Springer Science + Business Media B.V. 2009

Abstract This paper presents a completely formalized proof of a discrete form of
the Jordan Curve Theorem. It is based on a hypermap model of planar subdivisions,
formal specifications and proofs assisted by the Coq system. Fundamental properties
are proven by structural or noetherian induction: Genus Theorem, Euler Formula,
constructive planarity criteria. A notion of ring of faces is inductively defined and a
Jordan Curve Theorem is stated and proven for any planar hypermap.

Keywords Formal specifications · Computer-aided proofs · Coq system ·
Computational topology · Planar subdivisions · Combinatorial hypermaps ·
Discrete Jordan Curve Theorem

1 Introduction

This paper presents formal specifications and proofs assisted by the Coq system in
combinatorial topology. It deals with surface subdivisions, planarity and a discrete
version of the famous Jordan Curve Theorem. In its common form, the theorem
says that the complement of a continuous simple closed curve (a Jordan curve) C in
an affine real plane is made of two connected components whose border is C, one
being bounded and the other not. The discrete form of Jordan Curve Theorem we
deal with states that in a finite subdivision of the plane, breaking a ring R of faces
increases by one the connectivity of the subdivision. It is a weakened version of the
original theorem where the question of bound is missing. However, it is widely used

This research is supported by the “white” project GALAPAGOS, French ANR, 2007.

J.-F. Dufourd (B)
UFR de Mathématique et d’Informatique, Laboratoire des Sciences de l’Image,
de l’Informatique et de la Télédétection (UMR CNRS-ULP 7005), Université de Strasbourg,
Pôle API, Boulevard Sébastien Brant, 67400 Illkirch, France
e-mail: dufourd@dpt-info.u-strasbg.fr

20 J.-F. Dufourd

in computational geometry and discrete geometry for imaging, where connection is
the essential information [14, 25]. In fact, we only are in a combinatoric framework,
where any embedding is excluded, and where bounding does not make sense.

In computational topology, subdivisions are best described by map models, the
most general being hypermaps [7, 32]. We thus propose a purely combinatorial proof
of Jordan Curve Theorem based on this structure. The hypermap framework is
entirely formalized and the proofs are developed interactively and verified by the
Coq proof assistant [5]. Using an original way to model, build and destruct hyper-
maps, the present work brings new simple constructive planarity and connectivity
criteria. It proposes a new direct expression of Jordan Curve Theorem and a simple
constructive proof with algorithmic extensions. It is also a large benchmark for the
software specification we have been developing for many years with the intention to
safely use map models in geometric modeling and computer imagery [3, 9, 10].

Note that a first part of this paper resumes a hypermap specification and a
formalization of the genus theorem and of the planarity, or its equivalent, the Euler
formula, we have published in [11]. However, the present specification is lighter
and goes further with the traversal of permutation orbits. It allows to obtain new
results, like the periodicity of orbits, the symmetry in their traversal, and a complete
characterization of the planarity. Moreover, a preliminary version of the proof of the
discrete Jordan Curve Theorem has been presented in [12]. But, in the corresponding
work, the theorem statement is only complete for the combinatorial oriented maps
(a subclass of the hypermaps), its formalization is rather far from the mathematical
expression, and the proof is too long.

The rest of the paper is structured as follows. Section 2 summarizes related work.
Section 3 recalls some mathematical materials. Section 4 proposes basic hypermap
specifications. Section 5 proves constructive criteria of hypermap planarity and
connectivity. Section 6 inductively specifies the rings and their properties. Section 7
proves the discrete Jordan Curve Theorem. Section 8 presents validations of our
result. Section 9 discusses our approach of formalization and Section 10 concludes.
The useful Coq features are reminded and the whole process is described along
the paper, but the full details of the proofs are omitted. Appendices A to D give
some technical explanations and proof scripts, but the latters are only readable by
Coq experts.

2 Related Work

The Jordan Curve Theorem is a result of classical plane topology, first stated by
C. Jordan in 1887, but correctly and (fast) completely proven by O. Veblen, only
in 1905 [33]. It is generalized on several occasions, e.g. to higher dimensions or
to homeomorphisms, until in the 1960’s. Classical proofs are based on compacity,
differential calculus or complex analysis.

In 1979, W.T. Tutte proposes operations and properties of combinatorial maps,
e.g. planarity and Euler Formula, defines rings and proves a discrete version of
the Jordan Curve Theorem [31]. Our theorem statement is comparable, but our
framework is modeled differently and all our proofs are formalized and computer-
assisted. In 1983, R. Stahl proposes a statement and a proof which is rather close and
is the basis of further developments in computer science [30]. Since the late 1980’s, a

Discrete Jordan Curve Theorem 21

lot of other discrete forms of the theorem are based on graphs [34], mainly dedicated
to digital topology in the plane or in the space [4, 14, 25, 26].

Indeed, the interest for discrete versions of the Jordan Curve Theorem has
increased during the last years [23, 29]. One reason is the irresistible development
of digital computations on geometric objects in applicative domains, e.g. medical
imagery, molecular modeling, robotics, geographical information systems, computer-
aided design. However, these calculations mainly use floating numbers and are highly
error-prone due to numerical approximations. This is why one observes a flowering
of models of discrete topology and geometry based on natural numbers, which allow
exact calculations. In these frameworks, general concepts of curve and (meshed)
surface have no common definition. They are currently approached by (multi-,
hyper-)graphs or (hyper-)maps. But, whatever the model, the problems of localiza-
tion and separation of points by curves in a topological space is crucial. It is essential
to algorithmically and correctly respond to the question: on a surface, is a given point
(pixel or voxel) on, inside or outside a given closed curve? Consequently, discrete
equivalents of the surface and curve notions must be defined, and Jordan Curve
Theorems stated and correctly proven. In addition, the validity of such a theorem
is the insurance that a discrete model is convenient. Moreover, basic computational
algorithms, e.g. to build convex hulls or Voronoï-Delaunay diagrams, must be
translated is such models. It would be nice to also prove their correctness. Finally,
using hypermaps is certainly a good way to federate an interesting class of discrete
topological-geometrical models.

In 2003, in the way of M. Yamamoto et al. [35], G. Bauer and T. Nipkow specify
planar graphs and triangulations in Isabelle/Isar to carry out interactive proofs of
Euler’s Formula and of the Five Colour Theorem [1]. However, they do not approach
the Jordan Curve Theorem. In 2005, A. Kornilowicz completes for the MIZAR
project a semi-automated classical proof of a continuous form of Jordan Curve
Theorem in an Euclidean space [24]. In 2005 also, on his way towards the proof of the
Kepler conjecture in the Flyspeck projet [19, 20], T. Hales proves the theorem with
the HOL Light system in two parts, first for simple polygons, then for general curves.
The formal proof for polygons is based on intuitive considerations coming from the
graph-paper geometry. The formal proof for the general case uses an approximation
argument and the Kuratowski characterization of planarity [21].

In 2005 always, G. Gonthier et al. achieve the impressionnant proof of the Four
Colour Theorem using Coq. Plane subdivisions are described by hypermaps, and
Euler’s Formula is used as a global planarity criterion [15, 17]. A local criterion,
called hypermap Jordan property, is proven equivalent, and operations to glue
and cut hypermaps are defined. The main part of this work is the gigantic proof
of the Four Colour Theorem with hypermaps and sophisticated proof techniques.
The hypermap formalization is very different from ours and it appears that, if
hypermap cutting is well defined, our form of Jordan Curve Theorem is not explicitly
proven there. We will discuss the resemblances and differences with our approach
in Section 8. In 2006, in his work about the localization of categories, C. Simpson
formalizes in Coq the notion of graph [28]. He particularly pays attention to the
definition and manipulation of paths, which play an important role in the composition
of arrows in categories, as well as in the traversal of the hypermap orbits [11, 15, 17].
Finally, since 1999, we carry out experiments with Coq for combinatorial map models
of space subdivisions [8, 10, 11].

22 J.-F. Dufourd

The logical support of the Coq system is the Calculus of Inductive Constructions,
or CiC [6, 27], which is a higher-order intuitionistic logic based on type theory,
λ-calculus and induction. Proofs are seen as typed lambda-terms according to the
Curry-Howard isomorphism. Inductive types are defined in CiC as presentations of
algebraic theories with constructors. Syntactical term equality is offered. However,
the definition of the exact types we need use the expression of invariants and their
satisfaction thanks to preconditions. The specification language Gallina, the system
libraries [5] and the tactics have provided an appropriate support for all our studies.
For a first glimpse into the Coq system, the reader can follow the on-line tutorial
[22]. All the system features are detailed in [5]. For a comprehensive substantial
Coq presentation, more oriented towards program certification, the reader can
refer to [2].

3 Mathematical Aspects

Definition 1 (Hypermap)

(1) A hypermap is an algebraic structure M = (D, α0, α1), where D is a finite set,
the elements of which are called darts, and α0, α1 are permutations on D.

(2) If y = αk(x), y is the k-successor of x, x is the k-predecessor of y, and x and y
are said to be k-linked together.

In Fig. 1, as functions α0 and α1 on D = {1, . . . , 15} are permutations, M =
(D, α0, α1) is a hypermap. It is drawn on the plane by associating to each dart a curved
arc (maybe a simple line segment) oriented from a bullet to a small stroke: 0-linked
(resp. 1-linked) darts share the same small stroke (resp. bullet). By convention, in
the drawings of hypermaps on surfaces, k-successors turn counterclockwise around
strokes and bullets. If M = (D, α0, α1) is a hypermap, its cells can be combinatorially
defined, mainly through the classical notion of orbit.

Definition 2 (Orbits and hypermap cells)

(1) Let f be a permutation in D. The orbit of x ∈ D for f is the dart sequence
〈 f 〉(x) = (x, f (x), f 2(x), . . . , f p−1(x)), where p, called the period of the orbit, is
the smaller integer such that f p(x) = x.

(2) In M, 〈α0〉(x) is the 0-orbit or edge of dart x, 〈α1〉(x) its 1-orbit or vertex, 〈φ〉(x)

its face for φ = α−1
1 ◦ α−1

0 .

Fig. 1 An example of
hypermap

10

11

12

14

13

7

6

85 9
3

2

1
4 15

1 2 153 4 5 7 9 10 11 12 13 14

 α1 2

14

8 6

3

D
 α0 4 5 3 112 910 12 15 13

111

6

13 15 1461098 74 5 12
1 7 8

Discrete Jordan Curve Theorem 23

(3) The (connected) component of x in hypermap M, denoted by 〈α0, α1〉(x), is the
connected component of M viewed as a 2-multigraph on D equipped with the
two functional binary relations α0 and α1.

In Fig. 1 the hypermap contains 7 edges (strokes), 6 vertices (bullets), 6 faces
and 3 components. For instance, 〈α0〉(5) = (5, 6, 7, 2) is the edge of dart 5, 〈α1〉(5) =
(5, 4, 11) its vertex. Faces are defined, through φ, for a dart traversal also in coun-
terclockwise order, when the hypermap is drawn on a surface. Then, every face
which encloses a bounded (resp. unbounded) region on its left is called internal (resp.
external). In Fig. 1, the (internal) face of 5 is 〈φ〉(5) = (5, 1) and the (external) face of
13 is 〈φ〉(13) = (13, 14). Let d, e, v, f and c be the numbers of darts, edges, vertices,
faces and components of M.

Definition 3 (Euler characteristic, genus, planarity, Euler formula)

(1) The Euler characteristic of M is χ = v + e + f − d.
(2) The genus of M is g = c − χ/2.
(3) When g = 0, M is said to be planar.
(4) A planar hypermap satisfies the Euler formula: χ = 2 ∗ c.

For instance, in Fig. 1, χ = 6 + 7 + 6 − 15 = 4 and g = 3 − χ/2 = 1. Conse-
quently, the hypermap is non-planar. These values satisfy the following properties:

Theorem 1 (of the Genus)

(1) χ is an even integer.
(2) g is a non-negative integer.

When D �= Ø, the representation of M on an orientable closed surface is a mapping
of edges and vertices onto points, darts onto open oriented Jordan arcs, and faces
onto open connected regions. It is an embedding when every component of M
realizes a partition of the surface. Then, the genus of M is the minimum number
of holes in an orientable closed surface where such an embedding is possible, thus
drawing a subdivision, or a polyhedron, by hypermap component [18]. For instance,
all the components of the hypermap in Fig. 1 can be embedded on a torus (1 hole)
but not on a sphere or on a plane (0 hole). When a (planar) hypermap component
is embedded on a plane, the corresponding subdivision has exactly one unbounded
(external) face. But a non-planar hypermap can never be embedded on a plane:
in a drawing on a plane, some of its faces are neither internal nor external, e.g.
〈φ〉(7) = {7, 10, 9, 4, 3, 2, 6, 11} in Fig. 1. Conversely, any subdivision of an orientable
closed surface can be modeled by a hypermap. In fact, the formal presentation
which follows is purely combinatorial, i.e without any topological or geometrical
consideration.

3.1 Double-Links, Ring of Faces and Jordan Curve Theorem

To state the version of Jordan Curve Theorem we will prove in a hypermap M =
(D, α0, α1), we need some other concepts.

24 J.-F. Dufourd

Definition 4 (Double-link and adjacencies)

(1) A double-link is a pair of darts (x, x′) where x and x′ are distinct and belong to
the same edge.

(2) The faces F and F ′ of M are said to be adjacent by the double-link (x, x′) when
y = α0(x) is a dart of F and y′ = α0(x′) a dart of F ′.

(3) The double-links (x, x′) and (z, z′) are said to be adjacent by the face F when
α0(x′) and α0(z) are in F.

These notions are illustrated in Fig. 2 where t = α0(z) and t′ = α0(z′). Hence, a
double-link (x, x′) prepares a cutting in an edge which entails the merging of two
faces, one being incident to y and the other to y′. We choose a face adjacency by an
edge rather than by a vertex as does W.T. Tutte [31]. In fact, due to the homogeneity
of dimensions 0 and 1 in a hypermap, both are equivalent.

Definition 5 (Ring of faces) A ring of faces R of length n in M is a non-empty
sequence of double-links (xi, x′

i), for i = 1, . . . , n, with the following properties,
where Ei is the edge of xi and Fi the face of yi = α0(xi):

(0) Unicity: Ei and E j are distinct, for i, j = 1, . . . , n and i �= j;
(1) Continuity: Fi and Fi+1 are adjacent by the double-link (xi, x′

i), for i = 1, . . . ,

n − 1;
(2) Circularity, or closure: Fn and F1 are adjacent by the double-link (xn, x′

n);
(3) Simplicity: Fi and F j are distinct, for i, j = 1, . . . , n and i �= j.

This notion simulates a Jordan curve represented in dotted lines in Fig. 3 above
for n = 4, with the particular case x3 = y′

3 and y3 = x′
3, where E3 is reduced to two

darts. Of course, such a sequence of double-links, can be viewed as the sequence of
the adjacent faces Fi they separe, from where the name “ring of faces”. Note that
W.T. Tutte uses the term circular belt, for this notion [31]. Then, we define the break
along a ring, illustrated in Fig. 3.

 Double_link (x, x’).
 F and F’ are adjacent by (x, x’).

F F’

y

x
y’

x’

The double_links (x, x’) and (z, z’) are

adjacent by the face F.

y

x
y’

x’ z’

t’

t

z

F

Fig. 2 An example of double-link and faces adjacent by it

Discrete Jordan Curve Theorem 25

Fig. 3 Ring R of length n = 4
in M and break of M along
R giving M′

1y
y4

F1
F2

F3
F4

x’3
1x

1y 1x’ x’2

x4

y4
y3

y’3

E1 2E E4
E3

1x’
x’4

x2

x3

y’3x3

y3 x’3

x4

y’1

y’1

y’2

x’4

y’2

2y

x’2

2y

x2

y’4

y’4

1x

=

=

=

=

M

R

M’

Definition 6 (Break along a ring) Let R be a ring (xi, x′
i)1≤i≤n of faces in M, with

yi = α0(xi), and Mi = (D, α0,i, α1)0≤i≤n be the hypermap sequence, where the α0,i are
recursively defined by:

(1) i = 0: α0,0 = α0;
(2) 1 ≤ i ≤ n: for each z ∈ D, α0,i(z) = if z = xi then y′

i else if z = x′
i then yi else

α0,i−1(z).

Then, Mn = (D, α0,n, α1) is said to be obtained from M by a break along R.

Finally, the theorem we will prove in Coq mimics the behaviour of a cutting along
a Jordan curve of the plane (or of the sphere) into two components:

Theorem 2 (Discrete Jordan Curve Theorem) Let M be a planar hypermap with c
components, R be a ring of faces in M, and M′ be the break of M along R. The number
c′ of components of M′ is such that c′ = c + 1.

4 Hypermap Specifications

4.1 Preliminary Specifications

In Coq, we first define an inductive type dim for the two dimensions at stake:

Inductive dim:Set:= zero: dim | one: dim.

All objects being typed in Coq, dim has the type Set of all concrete types. Its
constructors are the constants zero and one. In each inductive type, the generic

26 J.-F. Dufourd

equality predicate = is built-in but its decidability is not, because Coq’s logic is
intuitionistic. For dim, the latter can be established as the lemma:

Lemma eq_dim_dec: forall i j : dim, {i=j}+{~i=j}.

Once it is made, its proof is an object of the sum type ˜{i=j}+{~i=j}, i.e. a
function, named eq_dim_dec, that tests whenever its two arguments are equal.
The lemma is interactively proven with some tactics, the reasoning being merely a
structural induction on both i and j, here a simple case analysis. Indeed, from each
inductive type definition, Coq generates an induction principle, usable either to prove
propositions or to build total functions on the type. We identify the type dart and its
equality decidability eq_dart_dec with the built-in nat and eq_nat_dec. Finally,
to manage exceptions, a nil dart is a renaming of 0:

Definition dart:= nat.
Definition eq_dart_dec:= eq_nat_dec.
Definition nil:= 0.

4.2 Free Maps

The hypermaps are now approached by a general notion of free map, thanks to a free
algebra of terms of inductive type fmap with 3 constructors, V, I and L, respectively
for the empty (or void) map, the insertion of a dart, and the linking of two darts:

Inductive fmap:Set:=
V : fmap

| I : fmap->dart->fmap
| L : fmap->dim->dart->dart->fmap.

For instance, the hypermap in Fig. 1 can be modeled by the free map represented
in Fig. 4 where the 0- and 1-links by L are represented by arcs of circle, and where
the orbits remain open. Again, Coq generates an induction principle on free maps.
In the following, the use of the constructors will be constrained by preconditions to
avoid meaningless free maps. The corresponding subtype of the hypermaps will be
characterized by an invariant, called inv_hmap, systematically used in conjunction
with fmap (Section 4.3).

Next, observers of free maps can be defined. The predicate exd expresses that a
dart exists in a hypermap. Its definition is recursive, which is indicated by Fixpoint,
thanks to a pattern matching on m written match m with.... The attribute
{struct m} allows Coq to verify that the recursive calls are performed on smaller

Fig. 4 Hypermap example
with its incompletely
linked orbits

10

11

12

14

13

7

6

85 9
3

2

1
4 15

Discrete Jordan Curve Theorem 27

fmap terms, thus ensuring termination. The result is False or True, basic constants
of Prop, the built-in type of propositions. Note that terms are in prefix notation and
that _ is a place holder:

Fixpoint exd(m:fmap)(z:dart){struct m}:Prop:=
match m with

V => False
| I m0 x => z=x \/ exd m0 z
| L m0 _ _ _ => exd m0 z
end.

The decidability exd_dec of exd directly derives, thanks to a proof by induction
on m. Then, a partial version, denoted A, of operation αk of Definition 1 completed
with nil for convenience is written as follows, the inverse A_1 being similar:

Fixpoint A(m:fmap)(k:dim)(z:dart){struct m}:dart:=
match m with

V => nil
| I m0 x => A m0 k z
| L m0 k0 x y =>

if eq_dim_dec k k0
then if eq_dart_dec z x then y else A m0 k z
else A m0 k z

end.

Predicates succ and pred express that a dart has a k-successor and a k-
predecessor (non-nil), with the decidabilities succ_dec and pred_dec. In hyper-
map m of Fig. 4, A m zero 2 = 5, A m zero 6 = nil, succ m zero 2,
~succ m zero 6, A_1 m one 2 = 1. Note that ~ is synonymous with not. In
fact, when a k-orbit remains open, which will be required in the following, we can ob-
tain its top and bottom from one of its dart z. Then, we can do as if the k-orbit were
closed, thanks to the operations cA and cA_1 which close A and A_1, in a way similar
to operation K of W.T. Tutte [31]. For instance, in Fig. 4, top m one 2 = 3,
bottom m one 2 = 1, cA m one 3 = 1, cA_1 m one 1 = 3.

Finally, destructors are also recursively defined. First, D m z deletes the latest
insertion of dart z by I. Second, B m k z (resp. B_1 m k z) breaks the latest
k-link forward (resp. backward) inserted for dart z by L, if any. On a drawing, the
effect is to remove an arc of circle which symbolises a k-link, if any, and nothing
otherwise.

4.3 Hypermaps

Preconditions written as predicates are introduced for I and L:

Definition prec_I(m:fmap)(x:dart):Prop:=
x <> nil /\ ~ exd m x.
Definition prec_L(m:fmap)(k:dim)(x y:dart):Prop:=
exd m x /\ exd m y /\ ~ succ m k x /\ ~ pred m k y /\
cA m k x <> y.

28 J.-F. Dufourd

If I and L are used under them, the free map built necessarily has open orbits. In fact,
thanks to the closures cA and cA_1, it can always be considered as a true hypermap
exactly equipped with operations αk of Definition 1. It satisfies the invariant:

Fixpoint inv_hmap(m:fmap):Prop:=
match m with

V => True
| I m0 x => inv_hmap m0 /\ prec_I m0 x
| L m0 k0 x y => inv_hmap m0 /\ prec_L m0 k0 x y
end.

Such a hypermap was already drawn in Fig. 4. Fundamental proven properties
are that, for any m and k, (A m k) and (A_1 m k) are injections inverse of each
other, and (cA m k) and (cA_1 m k) are permutations inverse of each other, and
are closures. Finally, traversals of faces are based on function F and its closure cF,
which correspond to φ (Definition 2). So, in Fig. 4, F m 4 = nil, cF m 4 = 3.
Properties similar to the ones of A, cA are proven for F, cF and their inverses
F_1, cF_1.

4.4 Orbits

Testing if a path exists from a dart to another in a hypermap orbit for a permutation
is of prime importance, for instance to determine the number of orbits. The problem
is exactly the same for α0, α1 or φ (Definitions 1 and 2) and their inverses. That is
why a signature Sigf with formal parameters f, f_1 and their properties − being
permutations inverse of each other − is first defined.

Then, a generic module (or functor) Mf(M:Sigf), the formal parameter M being
a module of type Sigf, is written in Coq to package generic definitions and proven
properties about f and f_1. Among them, we have that each f-orbit of m is periodic
with a positive smallest uniform period for any dart z of the orbit. The predicate
expo m z t expresses the existence of a path in an f-orbit of m from a dart z
to another t, which is proven to be a decidable equivalence. Note that most of the
properties are obtained by noetherian induction on the length of iterated sequences
of f-successors, bounded by the period. Note that the definition of paths in orbits by
iteration of f is very different from the definition using n-tuples given by C. Simpson
for graphs [28] but is close to the definition of orbits of [15].

Appropriate modules, called MA0, MA1 and MF, are written to instantiate for
(cA m zero), (cA m one), (cF m), and their inverses, definitions and proper-
ties of f and f_1. So, a generic definition or property in Mf(M) has to be prefixed
by the module name to be concretely applied. For instance, MF.expo m z t is
the existence of a path from z to t in a face. Details are in Appendix A. In
the following, MA0.expo is abbreviated into expe, and MF.expo into expf. For
instance, in Fig. 4, expe m 6 9, ~expf m 6 5, expf m 1 5, ~expf m 5 3.
Finally, a binary relation eqc stating that two darts belong to the same component
is easily defined by induction. For instance, in Fig. 4, we have eqc m 1 5 and ~eqc
m 1 13. We quickly prove that (eqc m) is a decidable equivalence.

Discrete Jordan Curve Theorem 29

4.5 Characteristics, Genus Theorem and Euler Formula

We now count cells and components of a hypermap using the Coq library module
ZArith containing all the features of Z, the integer ring, including tools to solve
linear systems in Presburger’s arithmetics. The numbers nd, ne, nv, nf and nc of
darts, edges, vertices, faces and components are easily defined by induction, e.g. nc,
which plays a pre-eminent role in the following:

Fixpoint nc(m:fmap):Z :=
match m with

V => 0
| I m0 x => nc m0 + 1
| L m0 _ x y => nc m0 - if eqc_dec m0 x y then 0 else 1

end.

Euler characteristic ec, genus and planar derive. The Genus Theorem is
obtained as a corollary of the fact that ec is even and satisfies 2 * (nc m) >=
(ec m) [11]. Here, the Euler Formula (for any number (nc m) of components) is
just a rewriting of the planarity property. Remark that -> denotes a functional type
in Set as well as an implication in Prop:

Definition ec(m:fmap): Z:= nv m + ne m + nf m - nd m.
Definition genus(m:fmap): Z:= (nc m) - (ec m)/2.
Definition planar(m:fmap): Prop:= genus m = 0.
Theorem Genus_Theorem: forall m:fmap,
inv_hmap m -> genus m >= 0.

Lemma Euler_Formula: forall m:fmap,
inv_hmap m -> planar m -> ec m / 2 = nc m.

Note that, in the current state, it is impossible to directly obtain these characteris-
tics from a given hypermap term by Coq reductions. That is because some predicates,
i.e. expf_dec or eqc_dec, are not really computable. Even in a program extraction
in Caml, they have to be translated in tractable forms. But, once a Coq specification is
tested by the proof of crucial properties, this translation is more easy, as it is showed
in our image segmentation work [10].

5 Planarity and Connectivity Criteria

A consequence of the genus theorem is a completely constructive criterion of
planarity, when one correctly links with L at dimensions 0 or 1:

Theorem planarity_crit_0: forall (m:fmap)(x y:dart),
inv_hmap m -> prec_L m zero x y ->

(planar (L m zero x y) <->
(planar m /\ (~ eqc m x y \/
expf m (cA_1 m one x) y))).

30 J.-F. Dufourd

Theorem planarity_crit_1: forall (m:fmap)(x y:dart),
inv_hmap m -> prec_L m one x y ->

(planar (L m one x y) <->
(planar m /\ (~ eqc m x y \/ expf m x (cA m zero y)))).

So, at dimension 0 for instance, the planarity of m is preserved for (L m zero
x y) iff one of the following two conditions holds: (1) x and y are not in the same
component of m; (2) x_1 = (cA_1 m one x) and y are in the same face of m, i.e.
the linking operates inside the face containing y. Figure 5 illustrates 0-linking inside
a face, giving two new faces, and between two (connected) faces, giving a new face,
thus destroying planarity. Finally, after a long development, we prove the expected
planarity criterion, when breaking a link with B, at any dimension, e.g. for 0:

Lemma planarity_crit_B0: forall (m:fmap)(x:dart),
inv_hmap m -> succ m zero x -> let m0
:= B m zero x in let y := A m zero x in (planar m <->

(planar m0 /\ (~ eqc m0 x y \/
expf m0 (cA_1 m0 one x) y))).

Such a lemma is easy to write/understand as a mirror form of the 0-linking
criterion (return the arrows in Fig. 5), but it is much more difficult to obtain. In
our specification, it depends on results about the invariance of the number of faces
when doing the permutation of two linkings. Some of them are particularly long
to prove. For instance, the following theorem represents about 9000 Coq lines,

m

F
x

y

x_1

L m zero x y

x

y

F’ F’’

L m zero x y

x

y

F’’x_1
x

m

F

F’

y

a. Planar 0_linking inside a face F giving 2 faces F’ and F’’.

b. Non_planar 0_linking between 2 faces F and F’ giving face F’’.

x0

x0

Fig. 5 Linking at dimension 0 (a, b)

Discrete Jordan Curve Theorem 31

more than the quarter of our total development, because of the number of cases to
considerer:

Theorem nf_L0L1: forall (m:fmap)(x y x’ y’:dart),
let m1:= L (L m zero x y) one x’ y’ in
let m2:= L (L m one x’ y’) zero x y in

inv_hmap m1 -> nf m1 = nf m2.

It would be fruitful to relate the above constructive/destructive criteria with
the static one of G. Gonthier et al. [15, 17]. Finally, some useful results quickly
characterize the effect of a link break on the connectivity of a planar hypermap. For
instance, when 0-breaking x, a disconnection occurs iff expf m y x0, where x0 :=
bottom m zero x:

Lemma disconnect_planar_criterion_B0:forall (m:fmap)
(x:dart), inv_hmap m -> planar m -> succ m zero x ->

let y := A m zero x in
let x0 := bottom m zero x in

(expf m y x0 <-> ~eqc (B m zero x) x y).

6 Rings of Double-Links

6.1 Modeling a Double-Link

First, we inductively define linear lists of pairs of darts, with the two classical
constructors lam and cons, and usual observers and destructors, which we do not
give, because their effect is immediately comprehensible:

Inductive list:Set :=
lam: list

| cons: dart -> dart -> list -> list.

Now, we have to model the conditions required for list l to be a ring in hypermap
m. Translating Definition 5, we have first to define the predicate expressing that a pair
of darts (x,x’) is a double-link in a hypermap m by:

Definition double_link(m:fmap)(x x’:dart):Prop:=
x <> x’ /\ expe m x x’.

Here, expe m x x’ (unfolded into MA0.expo m x x’) expresses that there is
a path from x to x’ in an edge of m, i.e. that both darts are in the same edge since
expe m is a decidable equivalence. Next, the fact that l is really a list of double-links
is easily translated into:

Fixpoint double_link_list(m:fmap)(l:list){struct l}:Prop:=
match l with

lam => True
| cons x x’ l0 => double_link m x x’ /\ double_link_list

m l0
end.

32 J.-F. Dufourd

We must write the four conditions of Definition 5, called pre_ringk m l, for
k = 0, . . . , 3, which we explain in the following sections. Finally, a predicate ring is
defined by:

Definition ring(m:fmap)(l:list):Prop:=
~emptyl l /\ double_link_list m l /\

pre_ring0 m l /\ pre_ring1 m l /\
pre_ring2 m l /\ pre_ring3 m l.

6.2 Ring Condition (0): Unicity

The predicate distinct_edge_list m x l0 saying that the edges of l0 are
distinct in m from a given edge containing x, pre_ring0 m l is recursively defined
to impose that all edges in l are distinct: Condition (0) of Definition 5.

Fixpoint pre_ring0(m:fmap)(l:list){struct l}:Prop:=
match l with

lam => True
| cons x _ l0 => pre_ring0 m l0 /\ distinct_edge_list
m x l0

end.

6.3 Ring Condition (1): Continuity

We define adjacency by a face of m for two double-links (x,x’) and (xs,xs’) by:

Definition face_adjacent(m:fmap)(x x’ xs xs’:dart):=
let y’:= cA m zero x’ in
let ys:= cA m zero xs in

expf m y’ ys.

So, the predicate pre_ring1 m l recursively specifies that two successive faces
in l are adjacent: Condition (1) of Definition 5:

Fixpoint pre_ring1(m:fmap)(l:list){struct l}:Prop:=
match l with

lam => True
| cons x x’ l0 =>

match l0 with
lam => True

| cons xs xs’ l’ =>
pre_ring1 m l0 /\ face_adjacent m x x’ xs xs’

end
end.

6.4 Ring Condition (2): Circularity, or Closure

The predicate pre_ring2 m l specifies that the last and first double-links in l are
adjacent by a face: Condition (2) of circularity in Definition 5:

Definition pre_ring2(m:fmap)(l:list):Prop:=
match l with

Discrete Jordan Curve Theorem 33

lam => True
| cons x x’ l0 =>

match (last l) with (xs,xs’) =>
face_adjacent m xs xs’ x x’

end
end.

6.5 Ring Condition (3): Simplicity

Let (x,x’) and (xs,xs’) be two double-links in m. The predicate distinct_
face specifying that the faces of y:= cA m zero x and ys:= cA m zero
xs are distinct is easy to write, as well as the predicate distinct_face_list
m x x’ l0 expressing that all the faces of l0 are distinct from the face of cA m
zero x:

Definition distinct_faces(m:fmap)(x x’ xs xs’:dart):Prop:=
let y := cA m zero x in
let ys:= cA m zero xs in
~expf m y ys.

Fixpoint distinct_face_list
(m:fmap)(x x’:dart)(l:list){struct l}:Prop:=

match l with
lam => True

| cons xs xs’ l0 => distinct_face_list m x x’ l0
/\ distinct_faces m x x’ xs xs’

end.

Finally, the predicate pre_ring3 m l says that all faces of l are distinct:
Condition (3) of Definition 5:

Fixpoint pre_ring3(m:fmap)(l:list){struct l}:Prop:=
match l with

lam => True
| cons x x’ l0 =>

pre_ring3 m l0 /\ distinct_face_list m x x’ l0
end.

6.6 Breaking a Map Along a Ring of Faces

First, we define the break Br1 of the single double-link (x,x’) in the hypermap
m by:

Definition Br1(m:fmap)(x x’:dart):fmap:=
if succ_dec m zero x
then if succ_dec m zero x’

then B (L (B m zero x)
zero (top m zero x) (bottom m zero x)) zero x’

else B m zero x
else B m zero x’.

34 J.-F. Dufourd

In fact, since x and x’ are distinct and intended to be in the same edge, there are
only three cases, illustrated in Fig. 6:

– Case succ m zero x and succ m zero x’, i.e. x and x’ both have a 0-
successor: first, the 0-link from x is broken, next (top m zero x) is 0-linked
to (bottom m zero x) in order to restore the edge integrity, finally the 0-link
from x’ is broken.

– Case succ m zero x and ~succ m zero x’: it is enough to break the 0-link
from x.

– Case ~succ m zero x: it is easy to prove that succ m zero x’ holds, and
the break of the 0-link from x’ is realized.

Hence, in the three cases, the edge is cut in two, exactly at x and x’. Expected
properties of Br1 are fast proven, mainly the preservation of the hmap invariant, of
the planarity and the commutativity of x and x’. Moreover, the effect of Br1 on A,
cA, cF and their inverses is important in the following. We have for instance:

Lemma Br1_comm: forall (m:fmap)(x x’:dart),
inv_hmap m -> double_link m x x’ ->

Br1 m x x’ = Br1 m x’ x.

Lemma cA0_Br1:forall(m:fmap)(x x’ z:dart),
inv_hmap m -> double_link m x x’ ->

cA (Br1 m x x’) zero z =
if eq_dart_dec x z then cA m zero x’

Fig. 6 Breaking an edge at a
double-link

Case 2: succ m zero x /\ ~ succ m zero x’

Case 3: ~ succ m zero x /\ succ m zero x’

Case 1: succ m zero x /\ succ m zero x’

x

y

x

y

y’

m

m

m

Br1 m x x’

top m zero x bottom m zero x

xy’

x

y

y’

y

x’

x’ x’

x’

y’

Discrete Jordan Curve Theorem 35

else if eq_dart_dec x’ z then cA m zero x
else cA m zero z.

Note that an important part of these good results is due to the observa-
tional equality between m and m0 := L (B m zero x) zero (top m zero
x) (bottom m zero x), in other words to the fact that many properties of the
k-orbits are preserved when their opening is displaced. For instance, we have:

Lemma cA_L_B: forall (m:fmap)(k:dim)(x z:dart),
inv_hmap m ->

let m0:= B (L (B m zero x) zero (top m zero x)
(bottom m zero x)) in

cA m0 k z = cA m k z.

All these properties allow to rewrite the connectivity criterion of Section 5 in
a form which will be more easy to handle in the following (see Fig. 7 to have a
configuration with disconnection):

Theorem disconnect_planar_criterion_Br1:
forall (m:fmap)(x x’:dart),

inv_hmap m -> planar m -> double_link m x x’ ->
let y := cA m zero x in
let y’ := cA m zero x’ in

(expf m y y’ <-> ~eqc (Br1 m x x’) x’ y’).

The effect of Br1 on the number nc of connected components entails:

Theorem nc_Br1: forall (m:fmap)(x x’:dart),
inv_hmap m -> planar m -> double_link m x x’ ->
let y := cA m zero x in
let y’ := cA m zero x’ in

nc (Br1 m x x’) = nc m + if expf_dec m y y’
then 1 else 0.

Finally, Br m l breaks hypermap m along the double-link list l in m. When l has
the properties of a ring, this operation realizes the break along a ring in accordance
with the mathematical definition (Section 3):

Fixpoint Br(m:fmap)(l:list){struct l}:fmap:=
match l with

F1

y’1

1y

y’1
F1

1y

1x
1x

x’1
x’1

M

R

M

R

Fig. 7 Break along a ring of length 1

36 J.-F. Dufourd

lam => m
| cons x x’ l0 => Br (Br1 m x x’) l0

end.

7 Proof of the Discrete Jordan Curve Theorem

The general principle of the Jordan Curve Theorem proof for a hypermap m and a
ring l is a structural induction on l.

– The case where l is empty is immediately excluded because l is not a ring by
definition.

– Thus the true first case is when l is reduced to one element, i.e. is of the form
cons x x’ lam, as illustrated in Fig. 7. Then, we prove the following lemma
as a direct consequence of the previous theorem nc_Br1 (The complete proof is
proposed in Appendix B for Coq practicers):

Lemma Jordan1:forall(m:fmap)(x x’:dart),
inv_hmap m -> planar m ->
let l:= cons x x’ lam in
ring m l -> nc (Br m l) = nc m + 1.

– When a ring l1 contains at least two double-links, we prove that the condition
~expf m y y’ must hold with the first double-link (x,x’) of l1 (in fact,
conditions (1) and (3) are enough):

Lemma ring1_ring3_connect:
forall(m:fmap)(x x’ xs xs’:dart)(l:list),

let l1:= cons x x’ (cons xs xs’ l) in
let y := cA m zero x in let y’ := cA m zero x’ in

inv_hmap m -> planar m ->
double_link_list m l1 ->

pre_ring1 m l1 -> pre_ring3 m l1 ->
~ expf m y y’.

In this case, thanks to disconnect_planar_criterion_Br1 (Section 5), the
lemma entails that the break of the first ring double-link does never disconnects
the hypermap. Then, after examining the behavior of pre_ringk, for k =
0, . . . , 3, we are able to prove the following lemma which states that the ring
properties are preserved after the first break in l:

Lemma ring_Br1: forall(m:fmap)(l:list),
inv_hmap m -> planar m ->
let x:= fst (first l) in let x’ := snd (first l) in
let m1 := Br1 m x x’ in

ring m l -> (emptyl (tail l) \/ ring m1 (tail l)).

Discrete Jordan Curve Theorem 37

Fig. 8 Map M and ring R of
Fig. 3 transformed into
M′ = (Br1 M x1 x′

1) and
R′ = (tail R)

F3
F4

x’3

x2

x4

x’4y3

x3
y’3

2E E4
E3

1x

2y

E’1
F’ F’=1 2

E"1

y’1

1x’

y’4

y4

y’2

1y

x’2
=

=

M’

R’

Figure 8 illustrates the lemma for the ring in Fig. 3 where n > 1, i.e. with no
disconnection after M’ := Br1 M x1 x’1: edge E1 is split into edges E′

1 and
E"1, faces F1 and F2 are merged into F ′

1 = F ′
2, and R′ remains a ring. The most

difficult is to prove the parts of the lemma concerning double_link_list and
the pre_ringk, for k = 0, . . . , 3. The five proofs are led by induction on l
in separate lemmas. Details are given for each proof in Appendix C (for Coq
experts).

Finally, from Jordan1 and pre_ring_Br1 above, we have the expected result
by a quick reasoning by two successive inductions on l, where all the links are broken
one by one from the first (see Appendix D, for Coq experts):

Theorem Jordan: forall(l:list)(m:fmap),
inv_hmap m -> planar m -> ring m l ->

nc (Br m l) = nc m + 1.

8 Validity of the Theorem, Case of the Oriented Maps

It is clear that, provided any mathematical hypermap M and mathematical ring
R conform to Definitions 1 and 5, we can always describe them as terms of our
specification in order to apply our theorem. Conversely, with any hypermap term,
all the rings can directly be written as terms. Hence, our ring specification and our

a. A grid map and a ring of faces b. Grid map in two components after the break along the ring

Fig. 9 Application of the Jordan Curve theorem in a pixel grid (a, b)

38 J.-F. Dufourd

a. Grid map and symmetric ring of faces b. Grid map in two components after the break along the ring

Fig. 10 Application of the Jordan Curve Theorem in a pixel grid in order to break vertices (a, b)

Jordan Curve Theorem formalization are complete with respect to our mathematical
definitions.

In the particular case where α0 is an involution (i.e. for any dart x ∈ D, α0 ◦ α0(x) =
x), the hypermap M = (D, α0, α1) is a combinatorial oriented map, in short a map
[32]. Then, each edge is composed of at most 2 edges, and the embedding is more
intuitive than for general hypermaps. Indeed, each edge is embedded into an open
Jordan arc, and, when it exactly contains two darts opposed by α0, they can be
considered as 2 half-edges having opposite orientations. For instance, a pixel grid
can be modeled as in Fig. 9a. The direct application of the Jordan theorem in this
grid along the ring in Fig. 9a is illustrated by Fig. 9b. The finicky reader will regret
the cutting of pixel outlines together with the appearance of hanging darts. Of course,
the latters can be erased by a second pass or by an improvement of the Br operation.

One can also apply the theorem symmetrically with respect to the dimensions,
that is by exchanging the roles of α0 and α1. Then, the operation Br would break the

b. Primal (light) and dual (dark) representations of a mapa. A primal representation of a map

Fig. 11 Conventional representation (a) and primal-dual representations (b) of a map

Discrete Jordan Curve Theorem 39

φ α1
α0

(a) Dual representation of a map and ring (b) Dual map in two components after the break along the ring

Fig. 12 Dual representation and application of the discrete Jordan Curve Theorem (a, b)

vertices instead of the edges. This is illustrated in Fig. 10 for our pixel grid. However,
the same finicky reader would probably emit the same objection about pixel cutting
and hanging darts, and the remedy could be analogous.

Finally, there is a third way to tackle the question, namely the duality. A combina-
torial oriented map M = (D, α0, α1) is dually represented if the representations of α1

and φ, i.e. of vertices and faces, are exchanged. In this case, consider the conventional
(primal) representation of a map in Fig. 11a. Its dual representation is superposed in
Fig. 11b, and isolated in Fig. 12a. Note that, in the dual, each dart is represented by an
arrow, and an edge with 2 darts by 2 arrows in opposite orientations. The application
of the Jordan Curve Theorem if illustrated in Fig. 12b.

Note that the characteristics are the same on the dual and on the primal. So, when
one of them is planar, the other is planar as well. In this case, a pixel grid with a ring
of faces can be represented as in Fig. 13a. The deconnection by application of the
Jordan Curve Theorem is illustrated in Fig. 13b. Then, the integrity of the pixels is
entirely preserved.

b. Grid map with two components after the break along the ringa. A connected grid map in dual representation and a ring

Fig. 13 Application of the Jordan Curve Theorem in a dual grid (a, b)

40 J.-F. Dufourd

9 Discussion on the Formalization

We are often asked about the similarities between the approach of G. Gonthier et
al. [15, 17] and ours. Clearly, both approaches are in discrete combinatorial topology
and use hypermaps to deal with the topology of plane subdivisions. In this section,
we shall only highlight the key differences between our two formalizations of the
(discrete) Jordan Curve Theorem.

They appear from the very beginning of the specification. In [15], a basic library
contains definitions and properties of finite generic sets, sequences and relations,
including the notions of path, cycle, orbit, connectivity, etc. Then, a hypermap is
statically represented by a finite dart set equipped with 3 functions − for α0, α1 and
φ − which satisfy an identity − α1 ◦ α0 ◦ φ = Id −. With such a definition, properties
involving permutations, genus or planarity, are easy to state and to prove by classical
reasoning. Updating operations inspired by S. Stahl’s work are defined later. Thus,
this approach is guided by a classical static representation of hypermaps considered
as 3-multigraphs. In another way, we represent hypermaps from scratch by a free
map algebra defined by induction on 3 constructors V,I and L. At this level we do
not even have the concept of finite set. We have to preserve an invariant thanks to
preconditions. Our constructors are atomic operations whose properties are proved
by induction on the free map structure. The constructors only deal directly with 2
permutations − α0 and α1 −, the third one − φ − being obtained by composition.
The permutations appear like observers, the definition and the properties of which
are obtained by induction. Thus, our approach is guided by a technique of abstract
algebraic specifications.

In his work, G. Gonthier introduces and uses numerous concepts, as do math-
ematicians. This is fully justified by the broad objective to reach the Four Color
Theorem. It appears that we are more cautious as for the new notions, as do
programmers to avoid the implementation of multiple types and predicates. Indeed,
our objective is not only to prove theorems, but to be able to derive reliable software.
More about the model, note that, in [15], some restrictions on the hypermaps
exclude fixpoints, bridges and non-connectivity, probably always for the Four Color
Theorem. Conversely, we do not impose anything else to our original hypermap
definitions.

Regarding the underlying logic, in G. Gonthier’s work, the proof of the Four
Color Theorem appears to be purely intuitionistic, whereas excluded middle and
functional extentionality are necessarily used ([15], see footnotes in p. 4) in peripheric
arithmetic proofs involving the real plane. Moreover, a big layer of sophisticated
technics and tactics is defined to make easier the proofs. The reflection is one of the
preferred reasoning modes [16]. In our work, the reasoning is fully intuitionistic as
well, and remains elementary without any new tactic. As sophisticated tools, only
modules and functors are used to deal with orbits using finite dart sets.

Concerning the Euler formula, which is synonymous of planarity, G. Gonthier
presents a first proof for a rectangular regular grid, then generalizes it to the
embedded maps by approximation techniques ([15], p. 49–50). He emphasizes the
fact that the (classical continuous) Jordan Theorem is not used in the reasoning,
what could be a real pitfall in such a work. In another way, we have proved a
criterion of planarity when building/destructing a hypermap using V, I and L and

Discrete Jordan Curve Theorem 41

their inverse operations. So, the Euler formula is exactly verified by some hypermaps
we characterize completely in a constructive way.

G. Gonthier proposes an alternative to the Euler formula as planarity criterion,
he calls hypermap Jordan property. It is based on the definition of contour paths,
which comes from [30] and allows to specify how to glue two components, thanks to
a patch operation. This operation needs some smaller operations of Walkup to split
or merge orbits while adding or removing darts. Operation patch is inversible, the
inverse allowing to cut a hypermap in two parts. The latters are a disk (inside), the
border is an edge cycle, and a remaining (outside), the border is a node orbit.

In our approach of the Jordan Curve Theorem, we consider a definition of ring of
faces adjacent by double-links, and a cutting based on the Br1 and Br operations.
We do not define two peculiar parts, and their extraction, in accordance with future
programming. The important information is the disconnection, i.e. the increasing by
1 of the number of components. Note that there is no need to start with a connected
hypermap to obtain this result, since a ring is necessarily connected.

In fact, the ring notion is defined by G. Gonthier in an addendum to the proof
of the Four Color Theorem proof (file rjordan.v) and a notion of Moebius band
is defined. The absence of Moebius band in a hypermap is proven equivalent to the
Jordan property. However it appeared that it was too difficult to deal with the ring
notion in the Four Color Theorem, and the concept of contour path has been taken
to play an alternative role [15] (p. 21). Neverthless, the patch inverse could be seen
as an analogous of our Br operation, as our examples on dual maps suggest it.

In [15], the proof of the equivalence between the Euler formula and the hypermap
Jordan property (consequently, the absence of Moebius band) is sketched (p. 23-24)
using an induction on dart removing. This equivalence is presented in [15] (p. 21)
and [17] (Theorem 2) as a Discrete Jordan Curve Theorem. We do not need such
an equivalence because our work is mainly based on our constructive/destructive
planarity criteria.

Finally, thank to the patch inverse operation, a particular form of discrete Jordan
Curve Theorem is stated and proven in G. Gonthier’s work on the Four Color
Theorem. We have formalized another particular form with rings which is closer to
W.T. Tutte’s one, and like him, we remain at a combinatorical level. Conversely,
and that is valuable additional contribution of his work, G. Gonthier connects his
combinatorial statement with the more intuitive classical Jordan Curve Theorem
statement involving subsets of the real continuous plane.

10 Conclusion

We have presented a discrete statement of the Jordan Curve Theorem based on
hypermaps and rings in the spirit of W.T. Tutte [31], and a formalized proof assisted
by the Coq system. Our hypermap modeling with open orbits simplifies and precises
most of known facts. It also allows to obtain some new results, particularly about
hypermap construction/destruction, connection/disconnection and planarity.

This work involves a substantial framework of hypermap specification, which is
built from scratch, i.e. exempt from any proper axiom, apart from the minimization

42 J.-F. Dufourd

axioms which are induced by our inductive type definitions for dim, fmap and list.
In fact, it is basically the same constructive framework as the one we have designed
to develop geometric modelers via algebraic specifications [3]. So, we know how to
efficiently implement all the notions we formally deal with.

The Coq system turned out to be a precious auxiliary to guide and check all the
process of specification and proof. We used intensively its facilities to define inductive
types, to deal with type polymorphism, to create and instantiate parameterized
functions and modules, thank to the notion of signature, and to lead reasonings and
constructions by structural and noetherian inductions.

The preexistent framework of hypermap specification represents about 25,000
lines of Coq, and the Jordan Curve Theorem development about 5,000 lines,
including about 20 new definitions, and 40 lemmas and theorems. So, we have a
rather complete basis to tackle any topological problem involving orientable surface
subdivisions.

Besides new developments in combinatorial topology, the extensions of this work
are in 2D or 3D computational geometry and geometric modeling by introducing
embeddings [3, 9], and computer imagery by dealing (as in our examples) with pixels
[10] or voxels [26]. Avantages of our kind of formalization and proofs are in a well
design of safe operations allowing to precisely control the topological characteristics
of geometric objects the deal with. In this respect, it is crucial that the implementation
could be a direct consequence of the operations of the specification. We have
often shown that our basic operations are immediately translatable in functional or
imperative languages in an efficient way [3, 9, 10]. The fact that expected properties
can be formally deduced from the specification enforces the safety of this approach.
However, the correctness of the implementation must be checked, e.g. in the spirit of
[13]. Another promising way is the extraction of certified functional programs from
our constructive proofs [5].

Finally, W.T. Tutte proposes a generalization where the successive edges (for him
vertices) do not need to be distinct in a ring, which he qualifies by admissible [31]. In
fact, we guest that our condition double_link_list can be lightened by the two
conditions:

(1) all the darts of the sequence are distinct;
(2) when any two double-links of the sequence, say (x,x’) and (z,z’), are in

the same edge, x and x’ are between z and z’ when they are traversed by (cA
m 0) (between is a predicate we have formalized).

In this case, the discrete Jordan Curve Theorem is still valid in a more general
form, which is far to be intuitive because this does not work in the continuous case.
The formalized assisted corresponding proof is a next challenging task. Note that the
condition of admissibility of W.T. Tutte is expressed by an analogue of disjoint angles
which seems less general than our two conditions.

Acknowledgements The author sincerely thanks the two reviewers and the editors who made
criticisms, requests and suggestions having allowed to complete and improve this work appreciably.

Discrete Jordan Curve Theorem 43

Appendix A

This appendix gives first the signature Sigf, next the structure of the module
Mf(M:Sigf). Finally, it presents modules instantiating module Mf for edges, ver-
tices and faces:

(* SIGNATURE FOR PERMUTATIONS f AND f_1: *)
Module Type Sigf.
Parameter f : fmap -> dart -> dart.

(* PERMUTATION *)
Parameter f_1 : fmap -> dart -> dart.

(* INVERSE PERMUTATION *)
Axiom exd_f:forall (m:fmap)(z:dart),

(* AXIOMS OF f AND f_1 *)
inv_hmap m -> (exd m z <-> exd m (f m z)).

Axiom bij_f : forall m:fmap,
inv_hmap m -> bij_dart (exd m) (f m).

Axiom exd_f_1:forall (m:fmap)(z:dart),
inv_hmap m -> (exd m z <-> exd m (f_1 m z)).

Axiom bij_f_1 : forall m:fmap,
inv_hmap m -> bij_dart (exd m) (f_1 m).

Axiom f_1_f : forall (m:fmap)(z:dart),
inv_hmap m -> exd m z -> f_1 m (f m z) = z.

Axiom f_f_1 : forall (m:fmap)(z:dart),
inv_hmap m -> exd m z -> f m (f_1 m z) = z.

End Sigf.

(* GENERIC MODULE, OR FUNCTOR, Mf,
GROUPING THE PROPERTIES OF f-ORBITS: *)
Module Mf(M:Sigf)<:Sigf

with Definition f:=M.f
with Definition f_1:=M.f_1...

Definition f:=M.f.
Definition f_1:=M.f_1.
Definition exd_f:=M.exd_f.
Definition exd_f_1:=M.exd_f_1.
Definition bij_f:=M.bij_f.
Definition bij_f_1:=M.bij_f_1.
Definition f_1_f:=M.f_1_f.
Definition f_f_1:=M.f_f_1.
...
Definition...(* about f or f_1 *)
...
Lemma... (* about f or f_1 *)
...
Theorem... (* about f or f_1 *)
...
End Mf.

44 J.-F. Dufourd

(* SIGNATURE FOR A DIMENSION k: *)
Module Type Sigd.
Parameter k:dim.
End Sigd.

(* FUNCTOR FOR A PERMUTATION AT A DIMENSION Md.k: *)
Module McA(Md:Sigd)<:Sigf.
Definition f := fun(m:fmap)(z:dart) => cA m Md.k z.
Definition f_1 := fun(m:fmap)(z:dart) => cA_1 m Md.k z.
Definition exd_f := fun(m:fmap)(z:dart) => exd_cA m Md.k z.
Definition exd_f_1 := fun(m:fmap)(z:dart)

=> exd_cA_1 m Md.k z.
Definition bij_f := fun(m:fmap)(h:inv_hmap m)

=> bij_cA m Md.k h.
Definition bij_f_1 := fun(m:fmap)(h:inv_hmap m)

=> bij_cA_1 m Md.k h.
Definition f_1_f := fun(m:fmap)(z:dart) => cA_1_cA m Md.k z.
Definition f_f_1 := fun(m:fmap)(z:dart) => cA_cA_1 m Md.k z.
End McA.

(* INSTANCIATIONS OF Sigd FOR DIMENSIONS 0 AND 1: *)
Module Md0<:Sigd.
Definition k:=zero.
End Md0.

Module Md1<:Sigd.
Definition k:=one.
End Md1.

(* INSTANCIATIONS OF McA FOR DIMENSIONS 0 AND 1: *)
Module McA0:=McA Md0.
Module MA0:= Mf McA0.
Module McA1:=McA Md1.
Module MA1:= Mf McA1.

(* TO CATCH THE ORBITS IN FACES: *)
Module McF<:Sigf.
Definition f := cF.
Definition f_1 := cF_1.
Definition exd_f := exd_cF.
Definition exd_f_1 := exd_cF_1.
Definition bij_f := bij_cF.
Definition bij_f_1 := bij_cF_1.
Definition f_1_f := cF_1_cF.
Definition f_f_1 := cF_cF_1.
End McF.

Module MF:= Mf McF.

Discrete Jordan Curve Theorem 45

Appendix B

This appendix gives the complete script of the proof of the Jordan Curve Theorem
in the case of a ring of length 1. It is intended to readers which are familiar with the
syntax and tactics of Coq.

(* JORDAN CURVE THEOREM FOR A RING OF LENGTH 1: *)
Lemma Jordan1:forall(m:fmap)(x x’:dart),

inv_hmap m -> planar m ->
let l:= cons x x’ lam in
ring m l -> nc (Br m l) = nc m + 1.

Proof.
unfold ring in |- *.
unfold pre_ring0 in |- *.
unfold pre_ring1 in |- *.
unfold pre_ring2 in |- *.
unfold pre_ring3 in |- *.
unfold double_link_list in |- *.
unfold double_link in |- *.
unfold distinct_face_list in |- *.
unfold distinct_edge_list in |- *.
unfold face_adjacent in |- *.
simpl in |- *. intros.
decompose [and] H1. clear H1 H2 H6 H5 H9 H3 H10 H12.
set (y := cA m zero x) in |- *.
set (y’ := cA m zero x’) in |- *.
fold y in H8. fold y’ in H8.
rewrite nc_Br1 in |- *.
fold y in |- *. fold y’ in |- *.

elim (expf_dec m y y’). tauto.
intro. elim b. apply expf_symm. tauto.
tauto. tauto.
unfold double_link in |- *. tauto.
Qed.

Appendix C

This appendix presents proof schemes corresponding to the preservation of the dart-
link list property and of the Conditions (0) to (3), when breaking double-link (x,x’)
in hypermap m. This double-link is the first of the ring l, containing at least one
element. We have to begin with Condition (0), because the preservation of the dart-
link list property depends on it.

• Condition (0): unicity

We first prove a lemma which asserts that, after the break of the first double-link of a
list with at least two elements, the second edge is distinct from all the edges in the list

46 J.-F. Dufourd

obtained by removing the first two double-links. The result is obtained by induction
on the list:

Lemma distinct_edge_list_Br1:
forall(m:fmap)(x x’ xs xs’:dart)(l:list),
inv_hmap m -> planar m ->

pre_ring0 m (cons x x’ (cons xs xs’ l)) ->
distinct_edge_list (Br1 m x x’) xs l.

Then, always by induction on the list l, we obtain the expected result, i.e.
the preservation of the property pre_ring0 for (Br1 m x x’) and (tail l),
(x,x’) := first l being the first double-link in l:

Lemma pre_ring0_Br1: forall(m:fmap)(l:list),
inv_hmap m -> planar m ->

pre_ring0 m l ->
let (x,x’) := first l in

pre_ring0 (Br1 m x x’) (tail l).

• Invariant of the dart-link lists

We first prove a sufficient condition for the preservation of the existence of a path
between two darts in an edge when operating with B:

Lemma expe_expe_B0: forall(m:fmap)(x z t:dart),
inv_hmap m -> exd m x ->
let m0 := B m zero x in
~ expe m x z -> expe m z t-> expe m0 z t.

Then, we prove a lemma which asserts that, after the break of the first double-link
of a list, the remaining list always satisfies the invariant of the double-link list. The
result is obtained by induction on the list. As we said above, pre_ring0 figures in
the premises:

Lemma double_link_list_Br1: forall(m:fmap)(l:list),
inv_hmap m ->

double_link_list m l -> pre_ring0 m l ->
let (x,x’) := first l in

double_link_list (Br1 m x x’) (tail l).

At this stage only, l being a true double-link list, the preservation of the planarity
by Br m l can be obtained under condition (0):

Lemma planar_Br:forall(l:list)(m:fmap),
inv_hmap m -> planar m -> pre_ring0 m l ->

double_link_list m l ->
planar (Br m l).

Discrete Jordan Curve Theorem 47

• Condition (1): continuity

We have first to prove a useful lemma asserting that, in the case where the break
(Br1 m x x’) entails no disconnection, i.e. where ~expf m y y’, two darts in
the same face of m are always in the same face of (Br1 m x x’):

Lemma expf_Br1:forall(m:fmap)(x x’ z t:dart),
inv_hmap m -> planar m ->
double_link m x x’ ->
let y:= cA m zero x in
let y’:= cA m zero x’ in
~expf m y y’ ->

(expf m z t -> expf (Br1 m x x’) z t).

Then, the core of the reasoning is the fact that (Br1 m x x’), where (x,x’)
is the first double-link in the list, does not affect the adjacency of the two following
faces. This reasoning concerns 3 successive faces, or representative darts in the list,
with the fact that (Br1 m x x’) can interfere with the last two. Then, by induction
on the ring, we obtain the expected result, i.e. the preservation of the property
pre_ring1 for (Br1 m x x’) and (tail l), (x,x’):= first l, where l is
a true double-link list satisfying Conditions (0) and (1):

Lemma pre_ring1_Br1: forall(m:fmap)(l:list),
inv_hmap m -> planar m ->

double_link_list m l -> pre_ring0 m l -> pre_ring1 m l ->
let (x,x’) := first l in
let y := cA m zero x in
let y’ := cA m zero x’ in

~expf m y y’ -> pre_ring1 (Br1 m x x’) (tail l).

• Condition (2): circularity

The following property, which expresses the opening of a face when breaking by Br1
the first double-link of a list, turned out to be very useful:

Lemma expf_Br1_link:forall (m : fmap) (x x’: dart),
inv_hmap m -> planar m -> double_link m x x’ ->
let y :=cA m zero x in
let y’:=cA m zero x’ in

~expf m y y’ -> expf (Br1 m x x’) y y’.

Thank to this property, always by induction on the ring, we obtain the expected
result, i.e. the preservation of the property pre_ring2, for (Br1 m x x’) and
(tail l), under all previous proven properties:

Lemma pre_ring2_Br1: forall(m:fmap)(l:list),
inv_hmap m -> planar m ->
double_link_list m l -> pre_ring0 m l ->

48 J.-F. Dufourd

pre_ring1 m l -> pre_ring2 m l ->
let (x,x’) := first l in
let y := cA m zero x in
let y’ := cA m zero x’ in

~expf m y y’ -> pre_ring2 (Br1 m x x’) (tail l).L

The reasoning is a structural induction on l which is rather difficult because it
takes in play the beginning and the end of l.

• Condition (3): simplicity

Here, a new lemma about the effect of Br1 on expf is useful. It is rather difficult to
prove using the characteristic property expf_B0_CNS:

Lemma not_expf_Br1:forall (m:fmap)(x x’ z t:dart),
inv_hmap m -> planar m -> double_link m x x’ ->

let y := cA m zero x in
let y’ := cA m zero x’ in

(~expf m y z /\ ~expf m y’ z
\/ ~expf m y t /\ ~expf m y’ t) ->

~expf m z t -> ~expf (Br1 m x x’) z t.

Then, we obtain a result asserting that, for 4 consecutive double-links in the ring,
(x,x’) being the first one, (Br1 m x x’) does not affect the fact that the last two,
namely (z,z’) and (zs,zs’), determine distinct faces:

Lemma distinct_faces_Br1:
forall(m:fmap)(x x’ xs xs’ z z’ zs zs’:dart)(l:list),
inv_hmap m -> planar m ->
let l1:= cons x x’ (cons xs xs’ (cons z z’

(cons zs zs’ l))) in
double_link_list m l1 ->

pre_ring0 m l1 ->
pre_ring3 m l1 ->
face_adjacent m x x’ xs xs’ ->

distinct_faces (Br1 m x x’) z z’ zs zs’.

Finally, by induction on the ring (Condition (2) being useless), we obtain in the
planar case the expected result, i.e. the preservation of the property pre_ring3 for
(Br1 m x x’) and (tail l), (x,x’) := first l being the first double-link
in ring l:

Lemma pre_ring3_Br1: forall(m:fmap)(l:list),
inv_hmap m -> planar m ->

let (x,x’) := first l in
double_link_list m l ->
pre_ring0 m l -> pre_ring1 m l -> pre_ring3 m l ->

pre_ring3 (Br1 m x x’) (tail l).

It is sufficient to collect the five above results to immediately prove lemma
ring_Br1, which leads to the general case of Jordan’s Curve Theorem
(Appendix D).

Discrete Jordan Curve Theorem 49

Appendix D

The general Jordan Curve Theorem is obtained by a quick reasoning by induction
on the ring l using Jordan1, ring1_ring3_connect and ring_Br1:.

Theorem Jordan: forall(l:list)(m:fmap),
inv_hmap m -> planar m -> ring m l ->

nc (Br m l) = nc m + 1.
Proof.
induction l. (* 1. FIRST INDUCTION ON l *)
unfold ring in |- *. (* 1.1. CASE: l IS EMPTY *)
simpl in |- *.
tauto.

rename d into x. (* 2.1. CASE: l IS NON-EMPTY *)
rename d0 into x’.

simpl in |- *.
intros.
induction l. (* SECOND INDUCTION On l *)

simpl in |- *. (* 2.1.1. CASE: (new) l IS EMPTY:
APPL. OF Jordan1 *)

generalize (Jordan1 m x x’).
simpl in |- *.
tauto.

rename d into xs. (* 2.1.2. CASE: (new) l IS NON-EMPTY *)
rename d0 into xs’.
set (y := cA m zero x) in |- *.
set (y’ := cA m zero x’) in |- *.
assert (~ expf m y y’).
unfold y in |- *. unfold y’ in |- *. unfold ring in H1.
apply (ring1_ring3_connect m x x’ xs xs’ l). tauto.
tauto. tauto. tauto. tauto.

rewrite IHl in |- *. (* USE OF THE INDUCTION HYPOTHESIS *)
rewrite nc_Br1 in |- *. fold y in |- *. fold y’ in |- *.

elim (expf_dec m y y’). (* a. CASE: y AND y’ ARE IN
THE SAME FACE)

tauto.
intro. omega. tauto. tauto.

unfold ring in H1.
simpl in H1. tauto.

apply inv_hmap_Br1. (* b. CASE: y AND y’ ARE NOT
IN THE SAME FACE)

tauto.
apply planar_Br1.

tauto. tauto.
unfold ring in H1.

simpl in H1. unfold double_link in H1. tauto.
generalize (ring_Br1 m (cons x x’ (cons xs xs’ l)) H H0 H1).

simpl in |- *. tauto.
Qed.

50 J.-F. Dufourd

References

1. Bauer, G., Nipkow, T.: The 5 colour theorem in Isabelle/Isar. In: Theorem Proving in HOL Conf.
LNCS, vol. 2410, pp. 67–82. Springer, New York (2002)

2. Bertot, Y., Castéran, P.: Interactive theorem proving and program development—Coq’art: the
calculus of inductive construction. In: Text in Theoretical Computer Science, An EATCS Series.
Springer, New York (2004)

3. Bertrand, Y., Dufourd, J.-F.: Algebraic specification of a 3D-modeler based on hypermaps.
Graph. Models Image Process. 56, 1 29–60 (1994)

4. Chen, L.: Note on the discrete Jordan Curve Theorem. In: SPIE Conf. on Vision Geometry VIII,
vol. 3811, pp. 82–94. SPIE, Bellingham (1999)

5. The Coq Team Development-TypiCal Project: The Coq proof assistant reference manual—
version 8.1. INRIA, Le Chesnay http://coq.inria.fr/doc-fra.html (2007)

6. Coquand, T., Huet, G.: Constructions: a higher order proof system for mechanizing mathematics.
In: EUROCAL. LNCS, vol. 203. Springer, New York (1985)

7. Cori, R.: Un code pour les graphes planaires et ses applications. Astérisque 27 (1970) (Société
Math. de France)

8. Dehlinger, C., Dufourd, J.-F.: Formalizing the trading theorem in Coq. Theor. Comp. Sci. 323,
399–442 (2004)

9. Dufourd, J.-F., Puitg, F.: Functional specification and prototyping with combinatorial oriented
maps. Comput. Geom. Theory Appl. 16, 129–156 (2000)

10. Dufourd, J.-F.: Design and certification of a new optimal segmentation program with hypermaps.
Pattern Recogn. 40, 2974–2993 (2007). doi:10.101b/j.patcog.2007.02.013

11. Dufourd, J.-F.: Polyhedra genus theorem and Euler formula: a hypermap-formalized intuitionis-
tic proof. Theor. Comp. Sci. 403, 133–159 (2008). doi:10.101b/j.tcs.2008.02.012

12. Dufourd, J.-F.: Discrete Jordan Curve Theorem: a proof formalized in Coq with hypermaps.
In: Weil, P. (ed.) Symp. on Theoretical Aspects on Computer Science, 12 pp (2008). doi:hal-
archives-ouvertes.fr/hal-002211501∼v1

13. Filliâtre, J.C.: Formal proof of a program: FIND. Sci. Comput. Program. 24(3), 332–340 (2006)
14. Françon, J.: Discrete combinatorial surfaces. CVGIP, Graph. Models Image Process. 57(1), 20–

26 (1995)
15. Gonthier, G.: A computer-checked proof of the four colour theorem, 57 pp. Microsoft Research,

Cambridge. http://research.microsoft.com/~gonthier (2005)
16. Gonthier, G., Mahboubi, A.: A small scale reflection extension for the Coq system, 75 pp. RR

6455, Microsoft Research-INRIA. http://hal.inria.fr/inria-00258384/ (2007)
17. Gonthier, G.: Formal proof - the four-Colour theorem. Not. Am. Math. Soc. 55(11), 1382–1393

(2008)
18. Griffiths, H.: Surfaces. Cambridge University Press, Cambridge (1981)
19. Hales, T.: Formalizing the proof of the Kepler conjecture. In: Theorem Proving in HOL Conf.

LNCS, vol. 3223, p. 117. Springer, New York (2004)
20. Hales, T.: A verified proof of the Jordan Curve Theorem. Seminar talk. Dep. of Math., University

of Toronto http://www.math.pitt.edu/~thales (2005)
21. Hales, T.: The Jordan Curve Theorem, formally and informally. Am. Math. Mon. 114(10), 882–

893 (2007)
22. Huet, G., Kahn, G., Paulin-Mohring, C.: The Coq proof assistant—a tutorial—version 8.0. Tech.

report, INRIA, France http://coq.inria.fr/doc-fra.html (2004)
23. Khachan, M., Chenin, P., Deddi, H.: Digital pseudomanifolds, digital weakmanifolds and Jordan-

Brower separation theorem. Discrete Appl. Math. 125(1), 45–57 (2003)
24. Kornilowicz, A.: Jordan Curve Theorem. Formaliz. Math. 13(4), 481–491 (2005) (Univ. of

Bialystock)
25. Kong, T.Y., Rosenfeld, A.: Digital topology: introduction and survey. Comput. Vis. Image

Process. 48, 357–393 (1989)
26. Malgouyres, R.: A definition of surfaces of Z3—a new 3D discrete Jordan theorem. Theor. Comp.

Sci. 186, 1–41 (1997)
27. Paulin-Mohring, C.: Inductive definition in the system Coq—rules and properties. In: Typed

Lambda-Calculi and Applications. LNCS, vol. 664, pp. 328–345. Springer, New York (1993)
28. Simpson, C.: Explaining Gabriel-Zisman localization to the computer. J. Autom. Reason. 36

(2006). doi:10.1007/s10817-006-9038-x,259–285
29. Slapal, J.: A digital analog of the Jordan Curve Theorem. Discrete Appl. Math. 139(1–3), 231–251

(2004)

http://coq.inria.fr/doc-fra.html
http://dx.doi.org/10.101b/j.patcog.2007.02.013
http://dx.doi.org/10.101b/j.tcs.2008.02.012
http://dx.doi.org/hal-archives-ouvertes.fr/hal-002211501~v1
http://dx.doi.org/hal-archives-ouvertes.fr/hal-002211501~v1
http://research.microsoft.com/~gonthier
http://hal.inria.fr/inria-00258384/
http://www.math.pitt.edu/~thales
http://coq.inria.fr/doc-fra.html
http://dx.doi.org/10.1007/s10817-006-9038-x,259--285

Discrete Jordan Curve Theorem 51

30. Stahl, S.: A combinatorial analog of the Jordan Curve Theorem. J. Comb. Theory B 26, 28–38
(1983)

31. Tutte, W.T.: Combinatorial oriented maps. Can. J. Math. XXXI(5), 986–1004 (1979)
32. Tutte, W.T.: Graph theory. In: Encyclopedia of Mathematics and its Applications. Addison

Wesley, Reading (1984)
33. Veblen, O.: Theory on plane curves in non-metrical analysis situs. Trans. Am. Math. Soc. 6, 83–98

(1905)
34. Vince, A., Little, C.H.C.: Discrete Jordan Curve Theorems. J. Comb. Theory B 47, 251–261

(1989)
35. Yamamoto, M., Nishizaki, S., Hagiya, M., Tamai, T.: Formalization of planar graphs. In: Theorem

Proving in HOL Conf. LNCS, vol. 971, pp. 369–384. Springer, New York (1995)

	An Intuitionistic Proof of a Discrete Form of the Jordan Curve Theorem Formalized in Coq with Combinatorial Hypermaps
	Abstract
	Introduction
	Related Work
	Mathematical Aspects
	Double-Links, Ring of Faces and Jordan Curve Theorem

	Hypermap Specifications
	Preliminary Specifications
	Free Maps
	Hypermaps
	Orbits
	Characteristics, Genus Theorem and Euler Formula

	Planarity and Connectivity Criteria
	Rings of Double-Links
	Modeling a Double-Link
	Ring Condition (0): Unicity
	Ring Condition (1): Continuity
	Ring Condition (2): Circularity, or Closure
	Ring Condition (3): Simplicity
	Breaking a Map Along a Ring of Faces

	Proof of the Discrete Jordan Curve Theorem
	Validity of the Theorem, Case of the Oriented Maps
	Discussion on the Formalization
	Conclusion
	Appendix A
	Appendix B
	Appendix C
	Appendix D
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

