
J Autom Reasoning (2008) 40:327–356
DOI 10.1007/s10817-008-9097-2

Nominal Techniques in Isabelle/HOL

Christian Urban

Received: 25 September 2006 / Accepted: 1 January 2008 / Published online: 14 March 2008
© Springer Science + Business Media B.V. 2008

Abstract This paper describes a formalisation of the lambda-calculus in a HOL-
based theorem prover using nominal techniques. Central to the formalisation is an
inductive set that is bijective with the alpha-equated lambda-terms. Unlike de-Bruijn
indices, however, this inductive set includes names and reasoning about it is very
similar to informal reasoning with “pencil and paper”. To show this we provide a
structural induction principle that requires to prove the lambda-case for fresh binders
only. Furthermore, we adapt work by Pitts providing a recursion combinator for the
inductive set. The main technical novelty of this work is that it is compatible with
the axiom of choice (unlike earlier nominal logic work by Pitts et al); thus we were
able to implement all results in Isabelle/HOL and use them to formalise the standard
proofs for Church-Rosser, strong-normalisation of beta-reduction, the correctness of
the type-inference algorithm W, typical proofs from SOS and much more.

Keywords Lambda-calculus · Nominal logic work · Theorem provers

1 Introduction

We thank T. Thacher Robinson for showing us on August 19, 1962 by a
counterexample the existence of an error in our handling of bound variables.

S. C. Kleene [17, Page 16]

When reasoning informally about syntax, issues with binders and alpha-equivalence
are almost universally perceived as unimportant and thus mostly ignored. However,

This paper is a revised and much extended version of Urban and Berghofer [32], and Urban and
Tasson [36].

C. Urban (B)
Technical University Munich, Munich, Germany
e-mail: urbanc@in.tum.de

328 C. Urban

Substitution Lemma: If and , then

.

Proof: By induction on the structure of .
Case 1: is a variable.

Case 1.1. . Then both sides equal since .
Case 1.2. . Then both sides equal , for implies .
Case 1.3. . Then both sides equal .

Case 2: . By the variable convention we may assume that and is not free
in . Then by induction hypothesis

.

Case 3: . The statement follows again from the induction hypothesis.

Fig. 1 An informal proof of the substitution lemma taken from Barendregt’s book [5]. In second
case, the variable convention allows him to move the substitutions under the binder, to apply the
induction hypothesis and finally to pull the substitutions back out from under the binder

errors do arise from these issues as the quotation from Kleene shows. It is therefore
desirable to have convenient techniques for formalising informal proofs. In this paper
such a technique is described in the context of the lambda-calculus and the theorem
prover Isabelle/HOL. However, the techniques generalise to more complex calculi
and parts have already been adapted in HOL4, HOL-light and Coq.

The main point of this paper is to give a representation for alpha-equated lambda-
terms that is based on names, is inductive and comes with a structural induction
principle where the lambda-case needs to be proved for only fresh binders. Fur-
thermore, we give a structural recursion combinator for defining functions over this
set. In practice this will mean that we come quite close to the informal reasoning
using Barendregt’s variable convention [5]. An illustrative example of such informal
reasoning is Barendregt’s proof of the substitution lemma shown in Fig. 1. In this
paper we describe a reasoning infrastructure for formalising such informal proofs
with ease. This reasoning infrastructure has been implemented in Isabelle/HOL as
part of the nominal datatype package.1

Our work is based on the nominal logic work by Pitts et al. [11, 26]. The main
technical novelty is that our work is compatible with the axiom of choice. This is
important, because otherwise we would not be able to built in a HOL-based theorem
prover a framework for reasoning based on nominal techniques. The reason why the
original nominal logic work is incompatible with the axiom of choice has to do with
the way how the finite support property is enforced: FM-set theory is defined in [11]
so that every set in the FM-set-universe has finite support. In nominal logic [26], the
axioms (E3) and (E4) imply that every function symbol and proposition has finite
support. However, there are notions in HOL that do not have finite support, most
notably choice functions (see [27, Example 3.4, Page 470]). Here, we will avoid the
incompatibility with the axiom of choice by not a priory restricting our discourse to
only finitely supported entities as done previously, rather we will explicitly assume
this property whenever it is needed in proofs. One consequence is that we state our

1Available from http://isabelle.in.tum.de/nominal.

http://isabelle.in.tum.de/nominal

Nominal techniques in Isabelle/HOL 329

basic definitions not in terms of nominal sets (as done for example in [27]), but in
terms of the weaker notion of permutation types—essentially sets equipped with a
“sensible” notion of permutation operation.

The paper is organised as follow: Section 2 introduces the basic notions of the
nominal logic work adapted to our Isabelle/HOL setting. Section 3 first reviews
alpha-equivalence for lambda-terms and then gives a construction of an inductive
set that is bijective with the alpha-equated lambda-terms. Two structural induction
principles for this set are derived in Section 4. Recent work by Pitts [27] is adapted
in Section 5 to give a structural recursion combinator for defining functions over the
bijective set. Section 6 gives examples; related work is mentioned in Section 7 and
Section 8 concludes.

2 Atoms, Permutations and Support

In the lambda-calculus there is a single type of bindable names, here denoted by
name, whose elements in the tradition of the nominal logic work we call atoms. While
the structure of atoms is immaterial, two properties need to hold for the type name:
one has to be able to distinguishing different atoms and one needs to know that
there are countably infinitely many of them. This can be achieved in Isabelle/HOL
by implementing the type name as natural numbers or strings.

Permutations are finite bijective mappings from name to name. They can be
represented as finite lists whose elements are swappings (i.e. pairs of atoms). In what
follows the type-abbreviation name prm will stand for the type of permutations, that
is (name× name) list, and we will write permutations as

(a1 b1)(a2 b2) · · · (an bn)

with the empty list [] standing for the identity permutation. The operation of a
permutation π acting on an atom a is defined as:

[]·a def= a

((a1 a2) :: π)·a def=
⎧
⎨

⎩

a2 if π·a = a1

a1 if π·a = a2

π·a otherwise
(1)

where (a b) :: π is the composition of a permutation followed by the swapping
(a b). The composition of π followed by another permutation π ′ is given by list-
concatenation, written as π ′@π , and the inverse of a permutation is given by list
reversal, written as π−1.

Our representation of permutations as lists does not give unique representatives:
for example, the permutation (a a) is “equal” to the identity permutation. We equate
the representations of permutations with a relation ∼:

Definition 1 (Permutation Equality) Two permutations are equal, written π1 ∼ π2,
provided π1·a = π2·a for all atoms a.

To generalise the notion given in (1) of a permutation acting on an atom, we take
advantage of the overloading mechanism in Isabelle by declaring a constant, written
infix as (−)·(−), with the polymorphic type name prm ⇒ α ⇒ α. A definition of

330 C. Urban

the permutation operation can then be given separately for each type-constructor;
for lists, products, unit, sets, functions, options and booleans the definitions are as
follows:

α list : π·[] def= []
π·(x :: t) def= (π·x) :: (π·t)

α1 × α2 : π·(x1, x2)
def= (π·x1, π·x2)

unit : π·() def= ()

α set : π·X def= {π·x | x ∈ X}
α1 ⇒ α2 : π·fn def= λx.π·(fn (π−1·x))

α option : π·None def= None

π·Some(x)
def= Some(π·x)

bool : π·b def= b (2)

It will save much work later on to not establish properties for each of these
permutation operations individually, but reason abstractly over them by requiring
that every permutation operation satisfies three basic properties:

Definition 2 (Permutation Type) A type α will be referred to as permutation
type, written ptα , provided the permutation operation satisfies the following three
properties:

(i) []·x = x
(ii) (π1@π2)·x = π1·(π2·x)

(iii) π1 ∼ π2 implies π1·x = π2·x

These properties entail that the permutations operation behaves over permutation
types as one expects:

Lemma 1 Assuming x and y are of permutation type then:

(i) π−1·(π·x) = x,
(ii) π·x = y if and only if x = π−1·y,

(iii) π·x = π·y if and only if x = y, and
(iv) π·x ∈ π·X if and only if x ∈ X.

Proof The first property holds by Definition 2(i-iii) since (π−1@π) ∼ [], which can
be shown by an induction over the length of π . The second property follows from
the first. The third is a consequence of the first and second. For the fourth one has
to unwind the definition of the permutation operation for sets and apply the third
property. ��

Using Isabelle’s axiomatic type-classes [37], it is very convenient to ensure that a
type is a permutation type because most of the routine work can be performed by the
type-checking algorithm of Isabelle: one only has to establish that some “base” types,
such as name and unit, are permutation types and that type-constructors, such as

Nominal techniques in Isabelle/HOL 331

products and lists, preserve the property of being a permutation type. More formally
we have:

Lemma 2 Given ptα , ptα1 and ptα2 , the types name, unit, α list, α set, α option,
α1 × α2, α1 ⇒ α2 and bool are also permutation types.

Proof All properties follow by unwinding the definition of the corresponding per-
mutation operation and routine inductions. The property ptα1⇒α2 uses the fact that
π1 ∼ π2 implies π−1

1 ∼ π−1
2 .

Note that the permutation operation over a function-type, say α1 ⇒ α2 with α1

being a permutation type, is defined so that for every function fn we have the
equation

π·(fn x) = (π·fn)(π·x) (3)

in Isabelle/HOL; this is because we have π−1·(π·x) = x by Lemma 1(i) and π·fn =
λx.π·(fn (π−1·x)) by definition of permutations acting on functions.

The most interesting feature of the nominal logic work is that as soon as one fixes
a “sensible” permutation operation for a type, then the support for the elements of
this type, very roughly speaking their set of free atoms, is fixed as well. The definition
of support and the derived notion of freshness is:

Definition 3 (Support and Freshness) The support of x, written supp(x), is the set of
atoms defined as:

supp(x)
def= {a | infinite{b | (a b)·x �= x}}

where infinite(−) means that the set is infinite.2 An atom a is said to be fresh for an
x, written a # x, provided a �∈ supp(x).

Intuitively, this definition says that a is fresh for x if and only if (a b)·x = x holds
for all but finitely many b . Unwinding this definition and the permutation operations
given in (2), one can often easily calculate the support for “finitary” permutation
types such as:

name : supp(a) = {a}
α list : supp([]) = ∅

supp(x :: xs) = supp(x) ∪ supp(xs)
α1 × α2 : supp((x1, x2)) = supp(x1) ∪ supp(x2)

unit : supp(()) = ∅

α option : supp(None) = ∅

supp(Some(x)) = supp(x)

bool : supp(b) = ∅ (4)

2In Isabelle/HOL the predicate infinite is defined as “not a finite set” with the predicate for a set
being finite defined inductively starting with the empty set and by adding elements.

332 C. Urban

More subtle is the calculation of the support for “infinitary” permutation types
such as functions and infinite sets. However, the use of the notion of support, as
opposed to the usual notion of free atoms, is crucial for this work: the bijective set
we describe in the next section includes some functions, and for those it is far from
obvious what the definition of the set of free atoms should be (the obstacle is to find
an appropriate definition for free variables of functions with type, say α1 ⇒ α2, in
terms of the free variables for elements of the type α1 and α2). Contrast this with
the definition of permutation for functions given in (2), which is defined in terms of
the permutation acting on the domain and co-domain of functions. It will turn out
that, albeit slightly unwieldy, Definition 3 coincides exactly with what one intuitively
associates with the set of free atoms for the functions we shall use.

For permutation types the notion of support and freshness have good properties:
we first show that the support and the permutation operation commute and that
permutation preserve freshness.3

Lemma 3 For all x of permutation type:

(i) π·supp(x) = supp(π·x),
(ii) a # π·x if and only if π−1·a # x, and

(iii) π·a # π·x if and only if a # x .

Proof The first property follows from the calculation:

π·supp(x)
def= π·{a | infinite{b | (a b)·x �= x}}
def= {π·a | infinite{b | (a b)·x �= x}}
= {π·a | infinite{π·b | (a b)·x �= x}} (∗1)

= {a | infinite{b | (π−1·a π−1·b)·x �= x}}
= {a | infinite{b |π·(π−1·a π−1·b)·x �= π·x}} (∗2)

= {a | infinite{b | (a b)·π·x �= π·x}} def= supp(π·x) (∗3)

where (∗1) holds because the sets {b | . . .} and {π·b | . . .} have the same number
of elements, and where (∗2) holds because permutations preserve by Lemma 1(ii)
(in)equalities; (∗3) holds because π commutes with the swapping, that is π@(c d) ∼
(π·c π·d)@π for all atoms c and d. For the second and third property we have by
Lemma 1(iv) that a ∈ supp(x) if and only if π·a ∈ π·supp(x); they then follow from
(i) and Lemma 1(i). ��

Another important property of freshness is the fact that if two atoms are fresh
w.r.t. an element of a permutation type then the permutation swapping those two
atoms in this element has no effect:

Lemma 4 For all x of permutation type, if a # x and b # x then (a b)·x = x.

3Pitts gives in [27] a simpler proof for (i), but in a more restricted setting, namely where x has finite
support. Our lemma is more general as we only require x to be of permutation type.

Nominal techniques in Isabelle/HOL 333

Proof The case a = b is clear by Definition 2(i,iii) and the fact that (a a) ∼ []. In the
other case, the assumption implies that both sets {c | (c a)·x �= x} and {c | (c b)·x �= x}
are finite, and therefore also their union must be finite. Hence the corresponding
co-set, that is {c | (c a)·x = x ∧ (c b)·x = x}, is infinite (recall that there are infinitely
many atoms). If one picks from this co-set one element, say c, which can be
assumed to be different from a and b , one has (c a)·x = x and (c b)·x = x. Thus
(c a)·(c b)·(c a)·x = x. Under the assumptions a �= c, b �= c a �= b , the permutations
(c a)(c b)(c a) and (a b) are equal. Therefore one can conclude with (a b)·x = x by
using Definition 2(ii,iii). ��

A further restriction on permutation types filters out all those that contain
elements with infinite support:

Definition 4 (Finitely Supported Permutation Types) A permutation type α is said
to be finitely supported, written fsα , if every element of α has finite support.

We shall write finite(supp(x)) to indicate that an element x from a permutation
type has finite support. The following holds:

Lemma 5 Given fsα , fsα1
and fsα2

, the types name, unit, α list, α option, α1 × α2

and bool are also finitely supported permutation types.

Proof Routine proofs using the calculations given in (4).

The crucial property entailed by Definition 4 is that if an element, say x, of a
permutation type has finite support, then there must be a fresh atom for x, since
there are infinitely many atoms. Therefore we have:

Proposition 1 If x of permutation type has finite support, then there exists an atom a
with a # x.

As a result, whenever we need to have a fresh atom for an x of permutation
type, we have to make sure that x has finite support. This task can be automatically
performed by Isabelle’s axiomatic type-classes for most constructions occurring in
informal proofs: Isabelle has to just examine the types of the construction using
Lemma 5.

Proposition 1 also implies that for every finitely supported function a fresh
atom exists. However, to determine whether a function has finite support is more
subtle, because not all functions are finitely supported, even if their domain and
codomain are finitely supported permutation types (see [27, Example 3.4, Page 470]).
Introducing a finitely supported function space and blending it well into Isabelle’s
reasoning infrastructure seems impractical for reasons how Isabelle is implemented.
So for functions one has to “manually” ensure finite support, which we shall do
in Section 5 by introducing a weaker notion that approximates the support of an
element from “above”.

334 C. Urban

3 Constructing a Representation for Alpha-Equated Lambda-Terms

In this section we define an inductive set that is bijective with the set of alpha-
equated lambda-terms. In doing so our goal is to give in Isabelle/HOL a formal
implementation of the usual convention (from Barendregt [5, Page 26]) employed
explicitly or implicitly in many informal proofs:

Convention. Terms that are α-congruent are identified. So now we
write λx.x ≡ λy.y, etcetera.

We begin with defining “raw” lambda-terms. They can be defined in Isabelle/HOL
with the datatype declaration:

datatype lam = Var "name"
| App "lam × lam"
| Lam "name × lam" (5)

Given the following permutation operation for lambda-terms

π·Var(a)
def= Var(π·a)

π·App(t1, t2)
def= App(π·t1, π·t2)

π·Lam(a, t) def= Lam(π·a, π·t) (6)

the datatype lam is a permutation type (routine proof by structural induction). As
mentioned earlier, fixing the permutation operation also fixes the notion of support,
which in case of lam coincides with the set of all atoms occurring in a lambda-term.
Hence lam is a finitely supported permutation type.

The notion of alpha-equivalence for lam is usually defined as the least congruence
of the equation Lam(a, t) =α Lam(b , t[a := b]) involving a renaming substitution and
a side-condition, namely that b does not occur freely in t. In the nominal logic work,
however, atoms are manipulated not by renaming substitutions, but by permutations.
This has a number of technical advantages (compare the technical subtleties of
Dowek et al. [9] with the approach in Urban et al [35]), because permutations are
bijections on atoms, while renaming substitution might identify some atoms. As
a consequence of the bijectivity, a renaming based on permutations preserves the
binding structure. In contrast, applying naïvely a renaming substitution one might
identify an atom that is bound with one that is free.

Using the permutation operation given in (6), alpha-equivalence for lam can be
defined in a simple and syntax directed fashion using the relations (−)≈(−) and
(−) �∈ fv(−) whose rules are given in Fig. 2. Because of the “asymmetric” rule ≈Lam2,
it might be surprising, but:

Proposition 2 The relation ≈ is an equivalence relation.

The proof of this proposition is omitted: it can be found in a more general setting
in Urban et al. [35]. (We also omit a proof showing that ≈ and =α coincide). In the
following, [t]α will stand for the alpha-equivalence class of the lambda-term t, that is

[t]α def= { t′ | t′ ≈ t }, and lam/≈ for the set of lambda-terms quotient by ≈.
Next we will define a set phi; inside this set we will subsequently identify (in-

ductively) a subset, called lamα , that is in bijection with lam/≈. Since Isabelle/HOL

Nominal techniques in Isabelle/HOL 335

Fig. 2 Inductive definitions for (−) ≈ (−) and (−) �∈fv(−)

supports subset types, we can later turn lamα into a new type. In order to obtain the
bijection, phi needs to be defined so that it contains elements corresponding, roughly
speaking, to alpha-equated variables, applications and lambda-abstractions—that
is to [Var(a)]α , [App(t1, t2)]α and [Lam(a, t)]α . Whereas this is straightforward for
variables and applications, the lambda-abstractions are non-trivial: for them we shall
use some specific “partial” functions from name to phi (by “partial” we mean here
functions that return None for undefined values and Some(x) for defined ones4). We
therefore define phi as the Isabelle/HOL datatype:

datatype phi = Am "name"
| Pr "phi × phi"
| Se "name ⇒ (phi option)" (7)

where Am will be used to encode atoms; Pr to encode applications, which are built
up by a pair of terms; and Se to encode an alpha-equivalence class (that is a set) of
terms. The permutation operation for phi is defined over the structure as follows:

π·Am(a)
def= Am(π·a)

π·Pr(t1, t2)
def= Pr(π·t1, π·t2)

π·Se(fn)
def= Se(π·fn) (8)

using in the last clause the permutations operation for functions given in (2). It is not
hard to show that phi is a permutation type (routine induction over the structure of
phi-terms).

4In Urban and Tasson [36] a special error-element was used to stand for undefinedness. However,
the approach based on the option-type turned out to be more convenient for building a nominal
datatype package in Isabelle/HOL.

336 C. Urban

We mentioned earlier that we are not going to use all functions from name to
phi option for representing alpha-equated lambda-abstractions, but some specific
functions.5 These functions are of the form:

[a].t def= λb . if a = b then Some(t)

else if b # t then Some((a b)·t) else None (9)

and we will refer to them as abstraction functions; their parameters are an atom and
a phi-term.

We claim that these functions represent alpha-equivalence classes. To see
this, consider [Lam(a,App(Var(a),Var(b)))]α and the corresponding phi-term
Se([a].Pr(Am(a),Am(b))). The graph of the abstraction function is as follows: the
atom a is mapped to the term Some(Pr(Am(a),Am(b))) since the first if-condition
is true. For b , the first if-condition obviously fails, but also the second one fails,
because supp(Pr(Am(a),Am(b))) = {a, b}; therefore b is mapped to None. For all
other atoms c, we have a �= c and c # Pr(Am(a),Am(b)); consequently these c’s
are mapped by the abstraction function to Some((a c)·Pr(Am(a),Am(b))), which is
Some(Pr(Am(c),Am(b))). Clearly, the abstraction function returns None whenever
the corresponding lambda-term is not in the alpha-equivalence class—in this example
the lambda-term Lam(b ,App(Var(b),Var(b))) �∈ [Lam(a,App(Var(a),Var(b)))]α ;
in all other cases, however, it returns an appropriately “renamed” version of
Pr(Am(a),Am(b)).

To show formally that abstraction functions represent alpha-equivalence classes,
we first establish how the permutation operation behaves on those functions and then
establish the conditions under which two such functions are equal:

Lemma 6 All abstraction functions satisfy:

(i) π·([a].t) = [π·a].(π·t), and
(ii) [a].t1 = [b].t2 if and only if either:

a = b ∧ t1 = t2 or a �= b ∧ t1 = (a b)·t2 ∧ a # t2 .

Proof The first property follows from the following calculation:

π·[a].t
def= π·λb .if a = b then Some(t)

else if b # t then Some((a b)·t) else None
def= λb . π·if a = π−1·b then Some(t)

else if π−1·b # t then Some((a π−1·b)·t) else None
= λb .if π·(a = π−1·b) then Some(π·t)

else if π·(π−1·b # t) then Some(π·(a π−1·b)·t) else None
(∗1)

5This is in contrast to “weak” and “full” HOAS [8, 25] which use the full function space for
representing lambda-abstractions.

Nominal techniques in Isabelle/HOL 337

= λb .if π·(a = π−1·b) then Some(π·t)
else if π·(π−1·b # t) then Some((π·a b)·π·t) else None

(∗2)

= λb .if π·a = b then Some(π·t)
else if b # π·t then Some((π·a b)·π·t) else None

(∗3)

def= [π·a].(π·t)

where we use in (∗1) the fact that

π·if...then...else... = ifπ·...then π·...else π·... (10)

and in (∗2) that π@(a π−1·b) ∼ (π·a b)@π ; for (∗3) the facts that π·(a = π−1·b)

iff π·a = b and π·(π−1·b # t) iff b # π·t, which can be easily derived from Lem-
mas 1(ii) and 3(ii) and the permutation operation on bool.

For the second property the case a = b is by a simple calculation using extension-
ality of functions. In case a �= b we show first the ⇒-direction: the following formula
holds then by extensionality of functions:

∀c. if a = c then Some(t1)
else if c # t1 then Some((a c)·t1) else None

= if b = c then Some(t2)
else if c # t2 then Some((b c)·t2) else None

Instantiating this formula with a yields the equation

Some(t1) = if a # t2 then Some((b a)·t2) else None .

Next, one distinguishes the cases where a # t2 and ¬ a # t2, respectively. In the first
case, Some(t1) = Some((b a)·t2), which by Definition 2(iii) implies t1 = (a b)·t2 since
(a b)∼(b a); and obviously a # t2 by assumption. In the second case Some(t1) = None
which gives a contradiction. The ⇐-direction for the case a �= b is similarly by
extensionality and a case-analysis. ��

Note that, in general, one cannot decide whether two functions from name to
phi option are equal; however for the abstraction functions Lemma 6(ii) provides
the means to decide whether [a].t1 = [b].t2 holds: one just has to consider whether
a = b , which is just like deciding the alpha-equivalence of two lambda-terms using
the relation (−)≈(−) given in Fig. 2. Now it is also clear why abstraction functions
represent alpha-equivalence classes: the condition we derived for the equality be-
tween abstraction functions paraphrase the rules ≈Lam1 and ≈Lam2 defining alpha-
equivalence for lam.

The properties in Lemma 6 also help us to calculate the support for abstraction
functions, provided they “abstract” over a finitely supported phi-term.

Lemma 7 Given a �= b and t being finitely supported, then

(i) a # [b].t if and only if a # t, and
(ii) a # [a].t

Proof By a simple calculations we have that supp([b].t) ⊆ supp(b, t) because for all
c and d we have {d | (c d)·[b].t �= [b].t} ⊆ {d | (c d)·(b, t) �= (b, t)}. Since b and t are

338 C. Urban

finitely supported, [b].t must be finitely supported. Hence (a, b , t, [b].t) is finitely
supported and by Proposition 1 there exists an atom c with (∗) c # (a, b , t, [b].t).

Now we show the direction (i ⇒): using the assumption a # [b].t and the fact that
c # [b].t (from ∗), Lemma 4 and 6(i) give [b].t = (c a)·[b].t = [(c a)·b].((c a)·t). The
right-hand side is [b].((c a)·t) because c �= b (from ∗) and a �= b by assumption.
Hence by Lemma 6(ii) we can infer that t = (c a)·t. Now c # t (from ∗) implies
that c # (c a)·t; and moving the permutation to the other side by Lemma 3(ii) gives
a # t. The direction (i ⇐) is as follows: from (∗), we have that c # [b].t and there-
fore by Lemma 3(iii) also (a c)·c # (a c)·([b].t), which implies by Lemma 6(i) that
a # [b].((a c)·t). From (∗) we also have c # t and from the assumption a # t; then
Lemma 4 implies that t = (a c)·t, and we can conclude with a # [b].t.

The second property follows from the first: we have c # t and c �= a (both from ∗),
and can use (i) to infer c # [a].t. Further, from Lemma 3(iii) it holds that (c a)·c #
(c a)·[a].t. This is a # [c].(c a)·t by Lemma 6(i). Since c �= a and c # t, Lemma 6(ii)
implies that [c].(c a)·t = [a].t. Therefore, a # [a].t. ��

Note that taking both facts of Lemma 7 together implies the following equation
for the support of abstraction functions

supp([a].t) = supp(t) − {a} (11)

provided t is finitely supported.
Now everything is in place for defining the subset lamα . It is defined inductively

by the three rules:

Am(a) ∈ lamα

t1 ∈ lamα t2 ∈ lamα

Pr(t1, t2) ∈ lamα

t ∈ lamα

Se([a].t) ∈ lamα
(12)

using in the third rule the abstraction functions given in (9). We note:

Lemma 8 For the set lamα we have that:

(i) all its elements are finitely supported, and
(ii) it is closed under permutations, that is t ∈ lamα implies π·t ∈ lamα .

Proof Both properties follow by routine inductions over the definition of lamα . For
the first induction we use the equations

supp(Am(a)) = {a}
supp(Pr(t1, t2)) = supp(t1) ∪ supp(t2)
supp(Se([a].t)) = supp(t) − {a} (13)

where the last follows from (11)—t is finitely supported by induction hypothesis; for
the second we use Lemma 6(i). ��

Nominal techniques in Isabelle/HOL 339

Next, one of the main points of this paper: there is a bijection between lam/≈ and
lamα . This is shown using the following mapping from lam to lamα :

q(Var(a))
def= Am(a)

q(App(t1, t2))
def= Pr(q(t1), q(t2))

q(Lam(a, t)) def= Se([a].q(t))

and the lemma:

Lemma 9 t1 ≈ t2 if and only if q(t1) = q(t2).

Proof By routine induction over definition of lamα . ��

Theorem 1 There is a bijection between lam/≈ and lamα .

Proof The mapping q needs to be lifted to alpha-equivalence classes (see Paulson
[24]). For this define q′([t]α) as follows: apply q to every element of the set [t]α and
build the union of the results. By Lemma 9 this must yield a singleton set. The result
of q′([t]α) is then the singleton. Subjectivity of q′ is shown by a routine induction over
the definition of lamα . Injectivity of q′ follows from Lemma 9 since [t1]α = [t2]α for
all t1 ≈ t2. ��

We defined lamα as an inductive subset of phi and showed that there is a bijection
with lam/≈. We can now apply standard HOL-techniques and turn the set lamα

into a type lamα of HOL (see for example the Isabelle tutorial [21, Section 8.5.2]
or Melham [19, 20] for more details). The construction we can perform in HOL is
illustrated by the following picture:

phi

lamα

existing
type

new
type

non-empty
subset

lamα

isomorphism

We are allowed to introduce the type lamα by means of identifying a non-empty
subset in the existing type phi (this type was introduced by the datatype declaration
in (7)) and an isomorphism, which we write here as �−�. The properties of the type
lamα are then given by the isomorphism and how the subset lamα is defined. For
example we can characterise term-constructors of the type lamα as follows:

�Varα(a)� �→ Am(a)

�Appα(t1, t2)� �→ Pr(�t1�, �t2�)

�Lamα(a, t)� �→ Se([a].�t�) (14)

340 C. Urban

with the following “injection” principles

Varα(a) = Varα(b) iff a = b
Appα(t1, t2) = Appα(s1, s2) iff t1 = s1 ∧ t2 = s2

Lamα(a, t1) = Lamα(b, t2) iff [a].t1 = [b].t2 (15)

and the support behaving as follows:

supp(Varα(a)) = {a}
supp(Appα(t1, t2)) = supp(t1) ∪ supp(t2)

supp(Lamα(a, t)) = supp(t) − {a} (16)

Since by Lemma 8(ii) the permutation operation is closed on the set lamα , we
can also lift the permutation operation defined over phi to the new type so that the
following properties hold:

π·Varα(a) = Varα(π·a)

π·Appα(t1, t2) = Appα(π·t1, π·t2)
π·Lamα(a, t) = Lamα(π·a, π·t) (17)

We can further show that:

Lemma 10 The type lamα is a (i) permutation type and (ii) all its elements are finitely
supported.

Proof By routine induction the over definition of lamα . For (i) we lift the property
of phi being a permutation type to lamα using Lemma 8(ii); for (ii) we use (16). ��

The crux of constructing the new type lamα is that we now have an Isabelle/HOL-
type where lambdas are equal provided

Lamα(a, t1) = Lamα(b, t2) if and only if either

a = b ∧ t1 = t2 or a �= b ∧ t1 = (a b)·t2 ∧ a # t2 . (18)

and freshness of a lambda is given by:

a # Lamα(b, t) if and only if either

a = b or a �= b ∧ a # t . (19)

In effect we have achieved what we set out at the beginning of this section: we
have a formal implementation of Barendregt’s convention about identifying alpha-
equivalent lambda-terms.

Nominal techniques in Isabelle/HOL 341

4 Structural Induction Principles

The inductive definition of the set lamα given in (12) comes with an induction
principle. From this induction principle we can derive the following structural
induction principle for the type lamα :

∀a. P (Varα(a))

∀t1 t2. P t1 ∧ P t2 ⇒ P (Appα(t1, t2))

∀a t1. P t1 ⇒ P (Lamα(a, t1))

P t
(20)

However, this structural induction principle is not very convenient in practice.
Consider again Fig. 1 showing a typical informal proof involving lambda-terms. This
informal proof establishes the substitution lemma by considering in the lambda-case
only binders z that have suitable properties (namely being fresh for x, y, N and L).
If one would use for this proof the induction principle given above, then one would
need to show the lambda-case for all z, not just the ones being suitably fresh. This
would mean one has to rename binders and establish a number of auxiliary lemmas
concerning such renamings.

In this section we will derive an induction principle which allows a similar
convenient reasoning as in Barendregt’s informal proof. This induction principle is
as follows:

∀c a. P (Varα(a)) c

∀c t1 t2. (∀d. P t1 d) ∧ (∀d. P t2 d) ⇒ P (Appα(t1, t2)) c

∀c a t1. a # c ∧ (∀d. P t1 d) ⇒ P (Lamα(a, t1)) c

P t c
(21)

where the variable t in the conclusion stands for a lamα-term over which the
induction is done and the variable c stands for the context of the induction. By the
context of an induction we mean all free variables of the lemma to be shown by
induction, except the variable over which the induction is performed. We also assume
that the context is of finitely supported type. In case of the substitution lemma from
Fig. 1, for example, we have

M[x := N][y := L] ≡ M[y := L][x := N[y := L]]
with M being the variable over which the induction is done. So in this case, the
context c would be instantiated with the other free variables in this lemma, namely
the tuple (x, y, N, L)—which is of finitely supported type. When it comes to prove
the lambda-case, that is

P (Lamα(z, M1)) (x, y, N, L)

one can assume in (21) that the binder z is fresh for (x, y, N, L)—which is equivalent
to z not being equal to x and y, and not free in N and L. As we shall see later, with
this induction principle one can formalise Barendregt’s slick informal proof without
difficulties.

In the following we shall establish a slightly more general version of the induction
principle given in (21). In the generalised version we require that the induction
context is finitely supported, but not necessarily has finitely supported type.

342 C. Urban

Theorem 2 (Strong Induction Principle) A property P t c holds for all t terms of type
lamα , provided for a given f

(i) ∀c. finite(supp(f c)),
(ii) ∀c a. P (Varα(a)) c,

(iii) ∀c t1 t2. (∀d. P t1 d) ∧ (∀d. P t2 d) ⇒ P (Appα(t1, t2)) c, and
(iv) ∀c a t1. a # f c ∧ (∀d. P t1 d) ⇒ P (Lamα(a, t1)) c

hold.

Proof By induction over t using (20). We strengthen the induction hypothesis by
aiming to prove ∀π c. P (π·t) c. The cases for Varα and Appα are routine. The inter-
esting case is Lamα : we need to show that P (π·Lamα(a, t1)) c, where π·Lamα(a, t1) =
Lamα(π·a, π·t1) by (17). Since by (i) f c is finitely supported, and by Lemmas 4 and 10
also π·a and π·t1, we can use Proposition 1 to obtain a b with b # (f c, π·a, π·t1).
From this we can infer that b �= π·a and b # π·t1, which implies by (18) that (∗)

Lamα(b, (b π·a)·(π·t1)) = Lamα(π·a, π·t1). From the induction hypothesis, which
is ∀π c. P (π·t1) c, we obtain the fact ∀c. P (((b π·a)@π)·t1) c. Then we can use the
fact b # f c and (iv), and infer that P (Lamα(b, ((b π·a)@π)·t1)) c holds. Moreover
this is by Definition 2(ii) equal to the fact P (Lamα(b, (b π·a)·(π·t1))) c. By (∗) we
can conclude with P (Lamα(π·a, π·t1)) c. ��

If we set in Thoerem 2 f to the identity-function and require that c has finitely
supported type, we can discharge condition (i) in and obtain the structural induction
principle stated in (21). The advantage of (21) is that Isabelle’s axiomatic type classes
can be used to ensure that the induction context is a finitely supported type, while the
induction principle proved in Theorem 2 requires manual reasoning to ensure the
finite support property. However, we will need the more general induction principle
in the next section where we derive a recursion combinator for lamα .

5 A Recursion Combinator

Before we can formalise Barendregt’s proof of the substitution lemma, we need to
be able to define the function of capture-avoiding substitution. This can be done by
first considering an appropriately defined relation and then showing that this relation
behaves like a function. This has been done in Urban and Tasson [36]. However, this
way is rather inelegant. More elegant is a definition by structural recursion.

It turns out that defining functions by recursion over the structure of alpha-
equated lambda-terms is rather subtle. Let us assume we want to define capture-
avoiding substitution by the following three clauses

Varα(x)[y := t′] = (if x = y then t′ else Varα(x))

Appα(t1, t2)[y := t′] = Appα(t1[y := t′], t2[y := t′])
Lamα(x, t)[y := t′] = Lamα(x, t[y := t′]) provided x # (y, t′)

where the side-condition in the lambda-case amounts to the usual condition about
x �= y and x not being a free atom in t′. Then defining it over lamα results in a total
function, while defining it over “raw” lambda-terms of type lam results in a partial

Nominal techniques in Isabelle/HOL 343

function. Furthermore, attempting to define the functions that return the set of bound
names and the immediate subterms by the clauses

bn(Varα(x)) = ∅ ist(Varα(x)) = ∅

bn(Appα(t1, t2)) = bn(t1)∪bn(t2) ist(Appα(t1, t2)) = {t1, t2}
bn(Lamα(x, t)) = bn(t)∪{x} ist(Lamα(x, t)) = {t} (22)

results in an inconsistency when defined over lamα , while it can be defined without
problems over lam. The inconsistency with bn and ist arises by the principle of HOL
stating that a function has to return the “same ouput” for the “same input”. Since by
(18) we have

Lamα(x,Varα(x)) = Lamα(y,Varα(y))

for all x and y, we can assume that this equation holds for x �= y. Then
bn(Lamα(x,Varα(x))) must be equal to bn(Lamα(y,Varα(y))), which implies by the
clauses in (22) that x must be equal to y giving a contradiction with the assumption
x �= y—similar with the function ist.

One way around the problem with the inconsistencies is to derive a recursion
combinator for lamα that includes certain preconditions for binders ensuring no
inconsistency can be derived. For this we will adapt work by Pitts [27] who introduced
such preconditions. We will also adapt his proof establishing the existence of a
structural recursion combinator for lamα . The main difference of our proof is that we
give here a direct proof for the existence, because in our implementation we do not
use anywhere the type lam (Pitts uses lam to derive a structural induction principle).
Another difference is that we derive the recursion combinator without deriving an
iteration combinator first.6

While in “every-day” formalisation, Lemma 4 is sufficient in nearly all situations to
find out when an object has finite support, the reasoning for the recursion combinator
includes in several places proof obligations about ensuring that functions have finite
support. And for functions one cannot find out whether they have finite support by
just looking at their type. In order to automate such proof obligations we use the
auxiliary notion of supports [11].

Definition 5 A set S of atoms supports an x of permutation type, written S supports x,
provided:

∀ a b . a �∈ S ∧ b �∈ S ⇒ (a b)·x = x .

This notion allows us to approximate the support of an x from “above”, because
we can show that:

Lemma 11 If a set S is finite and S supports x, then supp(x) ⊆ S.

6The difference between a recursion and an iteration combinator is that in the former we can use
directly the arguments of the term constructor, while in the latter this can only be achieved via an
encoding of the recursion.

344 C. Urban

Proof By contradiction we assume supp(x) �⊆ S, then there exists an atom a ∈
supp(x) and a �∈ S. From S supports x follows that for all b �∈ S we have (a b)·x = x.
Hence the set {b | (a b)·x �= x} is a subset of S, and since S is finite by assumption,
also {b | (a b)·x �= x} must be finite. But this implies that a �∈ supp(x) which gives the
contradiction. ��

Lemma 11 gives us some means to decide relatively easily whether a function has
finite support: one only needs to find a finite set of atoms and then verify whether
this set supports the function.

If the function is given as a lambda-term on the HOL-level, then for finding a
finite set we use the heuristic of considering the support of the free variables of this
functions. This is a heuristic, because it cannot be established as a lemma inside
Isabelle/HOL—it is a property about HOL-functions. Nevertheless the heuristic is
extremely helpful for deciding whether a function has finite support. Consider the
following two examples:

Example 1 Given a function fn def= f1 c where f1 is a function of type name ⇒ α. We
also assume that f1 has finite support. The question is whether fn has finite support?
The free variables of fn are f1 and c. According to our heuristic we have to verify
whether supp(f1, c) supports fn, which amounts to showing that

∀a b . a �∈ supp(f1, c) ∧ b �∈ supp(f1, c) ⇒ (a b)·fn = fn

To do so we can assume by the definition of freshness (Definition 3) that a #
(f1, c) and b # (f1, c) and show that (a b)·fn = fn. This equation follows from the
calculation that pushes the swapping (a b) inside fn:

(a b)·fn def= (a b)·(f1 c)
by (3)= ((a b)· f1) ((a b)·c)

(∗)= f1 c def= fn

where (∗) follows because we know that a # f1 and b # f1, and therefore by Lemma 4
that (a b)· f1 = f1 (similarly for c).

We can conclude that supp(fn) is a subset of supp(f1, c), because the latter is finite
(since f1 has finite support by assumption and c is finitely supported because the type
name is a finitely supported type). So by Lemma 11, fn must have finite support. ��

Example 2 Let fn′ def= λx. if x = y then t′ else (Varα(x))—where x and y are of type
name and t′ a lamα-term. The free variables of this HOL-function are y and t′; so
by our heuristic we need to verify whether supp(y, t′) supports fn′. This holds by the
following calculation:

(a b)·(λx. if x = y then t′ else Varα(x))
def= λx. (a b)·(if (a b)−1·x = y then t′ else Varα((a b)−1·x))

= λx. if x = (a b)·y then (a b)·t′ then Varα(x) by (10)
= λx. if x = y then t′ else Varα(x) (∗)

where (∗) follows by Lemma 4 and the assumption that a # (y, t′) and b # (y, t′). Since
y and t′ are finitely supported types, fn′ must then have finite support. ��

Nominal techniques in Isabelle/HOL 345

As the examples indicate, by using the heuristic, one can infer from a decision
problem involving permutations whether or not a function has finite support. The
important point here is that the decision procedure involving permutations can be
relatively easily automated with a special purpose tactic analysing permutations. This
seems much more convenient than analysing the support of a function directly.

A definition by structural recursion involves in case of the lambda-terms three
functions (one for each term-constructor) that specify the behaviour of the function
to be defined—let us call these functions f1, f2, f3 for the variable-, application- and
lambda-case, respectively, and let us assume they have the types:

f1 : name ⇒ α

f2 : lamα ⇒ lamα ⇒ α ⇒ α ⇒ α

f3 : name ⇒ lamα ⇒ α ⇒ α

with α being a permutation type. Then the first condition Pitts introduced in [27]
states that f3—the function for the lambda case—needs to satisfy the freshness
condition for binders, or short FCB. We formulate this condition as:7

Definition 6 (Freshness Condition for Binders)
A function f with type name ⇒ lamα ⇒ α ⇒ α satisfies the FCB provided:

∀a t r. a # f ∧ finite(supp(r)) ⇒ a # f a t r .

As we shall see later on, this condition ensures that the result of f3 is independent
of which particular fresh name one chooses for the binder a. The second condition
states that the functions f1, f2 and f3 all must have finite support. This condition
ensures that we can use Proposition 1 when choosing a fresh name for the f s.

With these two conditions we can derive a recursion combinator, we call it
rfun f1 f2 f3

, with the following properties:

Theorem 3 (Recursion Combinator) If f1, f2 and f3 have finite support and f3 sat-
isfies the FCB, then there exists a recursion combinator rfun f1 f2 f3

with the properties:

rfun f1 f2 f3
(Varα(a)) = f1 a

rfun f1 f2 f3
(Appα(t1, t2)) = f2 t1 t2 (rfun f1 f2 f3

t1) (rfun f1 f2 f3
t2)

rfun f1 f2 f3
(Lamα(a, t)) = f3 a t (rfun f1 f2 f3

t)
provided a # (f1, f2, f3)

To give a proof of this theorem we start with the following inductive relation,
called rec f1 f2 f3 and which has type (lamα × α) set where, like above, α is assumed to
be a permutation type:

(Varα(a), f1 a) ∈ rec f1 f2 f3

(t1, r1) ∈ rec f1 f2 f3 (t2, r2) ∈ rec f1 f2 f3

(Appα(t1, t2), f2 t1 t2 r1 r2) ∈ rec f1 f2 f3

a # (f1, f2, f3) (t, r) ∈ rec f1 f2 f3

(Lamα(a, t), f3 a t r) ∈ rec f1 f2 f3

(23)

7We use a different version of the FCB than actually introduced by Pitts. We shall show later that
our version and one that closely resembles his are interderivable.

346 C. Urban

We shall show next that the relation rec f1 f2 f3 defines a function in the sense that
for all lambda-terms t there exists a unique r so that (t, r) ∈ rec f1 f2 f3 . From this we
can again use standard techniques of HOL to obtain a function from lamα to α (see
for example Slind [28]). We first show that in rec f1 f2 f3 the “result” r has finite support
provided the functions f1, f2 and f3 have finite support.

Lemma 12 (Finite Support) If f1, f2 and f3 have finite support, then (t, r) ∈ rec f1 f2 f3

implies that r has finite support.

Proof By induction over the relation defined in (23). In the variable-case we have to
show that f1 a has finite support, which we inferred in Example 1 using our heuristic.
The application and lambda-case are by similar calculations. ��

In the proof of Theorem 3, we need the following lemma establishing that rec f1 f2 f3

is equivariant (see Pitts [26]).

Lemma 13 (Equivariance) If (t, r) ∈ rec f1 f2 f3 holds then for all π , also (π·t, π·r) ∈
rec(π· f1)(π· f2)(π· f3) holds.

Proof By induction over the rules given in (23). All cases are routine by pushing
the permutation π into t and r, except in the lambda-case where we have to apply
Lemma 3(iii) in order to infer π·a # (π· f1, π· f2, π· f3) from a # (f1, f2, f3). ��

Next we can show the crucial lemma about rec f1 f2 f3 being a “function”.

Lemma 14 (Existence and Uniqueness) If f1, f2 and f3 have finite support and f3

satisfies the FCB, then ∃!r. (t, r) ∈ rec f1 f2 f3 .

Proof By the induction principle given in Theorem 2, where we set the function f to
the constant function λ__.(f1, f2, f3) and the induction context c to unit.8 Condition
(i) of Theorem 2 holds because by assumption f1, f2 and f3 have finite support. The
only non-routine case then is the lambda-case with showing that ∃!r. (Lamα(a, t), r) ∈
rec f1 f2 f3 holds. This is difficult, because for lambdas we do not have injectivity (see
(18)). The proof in this case proceeds as follows.

The induction principle allows us to assume that a # (f1, f2, f3), therefore the
“existential” part of the lemma is immediate. In the “uniqueness” part we have to
show that if (Lamα(a, t), f3 a t r) ∈ rec f1 f2 f3 and also (Lamα(b, t′), f3 b t′ r′) ∈ rec f1 f2 f3

with the equation Lamα(a, t) = Lamα(b, t′), then f3 a t r = f3 b t′ r′ holds. By rule
inversion we can assume that b # (f1, f2, f3) and that there exists an r′ such that
(t′, r′) ∈ rec f1 f2 f3 ; further by the induction we know there is a unique r such that
(t, r) ∈ rec f1 f2 f3 . Now we show the following 6 facts:

(i) From (t, r) ∈ rec f1 f2 f3 and (t′, r′) ∈ rec f1 f2 f3 we can infer by Lemma 12 that r
and r′ are finitely supported. Therefore we can apply Proposition 1 to obtain a c
with c # (f1, f2, f3, t, t′, r, r′, a, b)—all variables in the tuple have finite support.

8For this induction we cannot use the more convenient induction principle shown in (21), because
functions do not have finitely supported type.

Nominal techniques in Isabelle/HOL 347

(ii) From (19) we have that a # Lamα(a, t) and b # Lamα(b, t′). With (i) we can
further infer that c # Lamα(a, t) and c # Lamα(b, t′). From the assumption
Lamα(a, t) = Lamα(b, t′), we can then use Lemma 4 to derive (a c)·Lamα(a, t) =
(b c)·Lamα(b , t′), which implies that Lamα(c, (a c)·t) = Lamα(c, (a c)·t′); hence
by (18) that (a c)·t = (b c)·t′.

(iii) From (t, r) ∈ rec f1 f2 f3 , (t′, r′) ∈ rec f1 f2 f3 a # (f1, f2, f3) and b # (f1, f2, f3), we
can infer by Lemma 4 and 13 that ((a c)·t, (a c)·r) ∈ rec f1 f2 f3 and ((b c)·t′,
(b c)·r′) ∈ rec f1 f2 f3 . Since by induction hypothesis ∃!r. (t, r) ∈ rec f1 f2 f3 we also
have the fact that ∃!r. ((a c)·t, r) ∈ rec f1 f2 f3 . Thus we can use (ii) to infer that
(a c)·r = (b c)·r′.

(iv) Using the FCB for f3 and knowing that a # f3 and b # f3 as well as r and r′ are
finitely supported (from (i)), we can infer that a # f3 a t r and b # f3 b t′ r′ hold.

(v) Since supp(f3, a, t, r)supports(f3 a t r) and since c # (f3, a, t, r) (from (i)), we
know by Lemma 11 that c # f3 a t r holds. Similarly we can infer that c # f3 b t′ r′
holds.

(vi) Finally, in order to show that f3 a t r = f3 b t′ r′ holds, it suffices by Lemma 4
and the facts derived in (iv) and (v) to show that (a c)·(f3 a t r) = (b c)·
(f3 b t′ r′) holds. This in turn is by (3) equivalent to f3 c ((a c)·t) ((a c)·r) =
f3 c ((b c)·t′) ((b c)·r′). By the facts derived in (ii) and (iii) we have that these
terms are indeed equal. ��

To prove our theorem about structural recursion we define rfun f1 f2 f3
t to be

the unique r so that (t, r) ∈ rec f1 f2 f3 . This is a standard construction in HOL-based
theorem provers; it involves the HOL’s definite description operator (see Isabelle’s
tutorial [21, Section 5.10.1]). The characteristic equations for rfun f1 f2 f3

are then
determined by the definition of rec f1 f2 f3 given in (23). This completes the proof of
Theorem 3.

As mentioned earlier, the FCB we use differs from the one introduced by Pitts.
He defines this notion as follows:9

Definition 7 (FCB’) A function f with type name ⇒ lamα ⇒ α ⇒ α satisfies the
FCB’ provided:

∃a. a # f ∧ (∀t r. finite(supp(r)) ⇒ a # f a t r) .

It can be shown that in all cases where the recursion combinator is applied both
versions of the FCB are interderivable.

Lemma 15 Provided f is finitely supported, then the FCB holds if an only if the FCB’
holds.

Proof (⇒) Since f is finitely supported, we can choose using Proposition 1
an atom a such that a # f . With this we can instantiate the FCB and obtain
∀t r. finite(supp(r)) ⇒ a # f a t r as we have to show. (⇐) We have that a # f and

9His definition of the FCB does not actually include finite(supp(r)), because he considers only finitely
supported objects, and also does not include the quantification over t as he derives an iteration, rather
than a recursion combinator.

348 C. Urban

finite(supp(r)) and need to show that a # f a t r. By the FCB’ we have an atom a′
such that a′ # f and ∀t r. finite(supp(r)) ⇒ a′ # f a′ t r. Since finite(supp((a a′)−1·r)) if
an only if finite(supp(r)), we can infer a′ # f a′ ((a a′)−1·t) ((a a′)−1·r). By Lemma 3(iii)
we can apply on both sides of # the swapping (a a′) and obtain

a # f a ((a a′)·(a a′)−1·t) ((a a′)·(a a′)−1·r)

which by Lemma 1(i) is equivalent to a # f a t r—the fact we had to show. ��
The reason that we prefer our version of the FCB is that when establishing a

universal quantified formula, Isabelle/HOL will just introduce an eigen-variable and
then proceed to prove the “rest”. This is in practice easier than generating a fresh
atom and then instantiate the existential quantifier in the FCB’.

6 Examples

Finally, we can start to formalise Barendregt’s informal proof of the substitution
lemma (Fig. 1). All the constructions of the previous 3 sections would, due to their
complexity, be of only academic value, if we can not automate them and hide the
complexities from the user. However, we can! We shall illustrate this next.

The type lamα can be defined in Isabelle/HOL using the nominal datatype
package by the two declarations:

atom_decl name
nominal_datatype lamα = Varα "name"

| Appα "lamα × lamα"
| Lamα "«name»lamα"

where the first declaration establishes the type name with the properties described in
Section 2; in the second declaration « . . . » indicates that a name is bound in Lamα .
With this information the nominal datatype package performs automatically the
construction we described in Section 3 and also automatically derives the structural
induction principles from Section 4 and the recursion combinator from Section 5
without any user interference. Furthermore, this package derives this reasoning
infrastructure even for more complicated term-calculi that have more than one
binder and binders may have different types.

After the declaration, we can then use the recursion combinator to define
the capture-avoiding substitution function by stating the following characteristic
equations:

Varα(x)[y := t′] = (if x = y then t′ else Varα(x))

Appα(t1, t2)[y := t′] = Appα(t1[y := t′], t2[y := t′])
x # (y, t′) =⇒ Lamα(x, t)[y := t′] = Lamα(x, t[y := t′]) (24)

where in the clause for Lamα the precondition x # (y, t′) corresponds to the usual
condition that x �= y and x is not free in t′. Internally the nominal datatype package
extracts the following functions for capture-avoiding substitution:

s1 y t′ def= λx. if x = y then t′ else Varα(x)

s2 y t′ def= λt1 t2 r1 r2. Appα(r2, r1)

s3 y t′ def= λx t r. Lamα(x, r)

Nominal techniques in Isabelle/HOL 349

In order to apply Theorem 3 with the instantiation rfun(s1 y t′) (s2 y t′) (s3 y t′), Isabelle
first needs to determine whether the result type of the function is a permutation type.
Since substitution returns a lamα-term, it can use Lemma 10(i) and automatically
determine this fact. Next Isabelle asks the user to verify the preconditions of
Theorem 3 about the functions (s1 y t′), (s2 y t′) and (s3 y t′) having finite support.
It turns out that all of them are supported by the set supp(y, t′), which is finitely
supported because of Lemma 5 (this can be determined automatically by Isabelle).
To verify whether supp(y, t′) supports (s1 y t′) holds, the tactic finite_guess does
automatically the calculations shown in Example 2 and similar ones for the cases
(s2 y t′) and (s3 y t′). Next Isabelle asks the user to verify the FCB for (s3 y t′) which
amounts to showing that

∀ a t r. a # (s3 y t′) ∧ finite(supp(r)) ⇒ a # Lamα(a, r)

holds. This can be done by a simple application of the property given in (19). Last,
Isabelle asks the user to verify that the precondition of the recursion combinator in
the lambda-case, namely that x # (s1 y t′, s2 y t′, s3 y t′) is implied by the precondition
x # (y, t′) given in (24). Since, as indicated earlier, all these functions are supported
by supp(y, t′), Isabelle can determine this automatically with the help of a tactic.
This completes the definition of capture-avoiding substitution. The Isabelle code for
this is:

consts
subst :: "lamα ⇒ name ⇒ lamα ⇒ lamα" ("_[_:=_]"

[100,100,100] 100)

nominal_primrec
"Varα(x)[y:=t’] = (if x=y then t’ else Varα(x))"
"Appα(t1,t2)[y:=t’] = Appα(t1[y:=t’],t2[y:=t’])"
"x # (y,t’) =⇒ Lamα(x,t)[y:=t’] = Lamα(x,t[y:=t’])"

by (finite_guess+,(rule TrueI)+, simp add: abs_fresh,
fresh_guess+)

where in the first two lines we declare the type of the substitution function and
introduce nicer syntax for writing this function. The line starting with by contains
the proof for showing that the characteristic functions of substitution are finitely
supported, that the FCB is satisfied and that the precondition x # (y,t′) is sufficient
for instantiating the recursion combinator.

Having the substitution function at our disposal, we can now formalise Baren-
dregt’s proof of the substitution lemma. First we have to formalise the fact that
x �∈ FV(L) implies L[x := P] = L whose proof is omitted by Barendregt.

Lemma 16 (Forget) If x # L then L[x := P] = P.

Proof The proof proceeds by induction over L using (21) with c instantiated to
(x, P). In the variable case we have to show that Varα(y)[x := P] = Varα(y) under
the assumption that x # Varα(y). This assumption is equivalent to x # y, which is
in turn equivalent to x �= y, allowing us to apply (24) to prove this case. In the
lambda-case we have the induction hypothesis ∀x P. x # L1 ⇒ L1[x := P] = L1 and

350 C. Urban

have to show that Lamα(y, L1)[x := P] = Lamα(y, L1) under the assumption that
x # Lamα(y, L1) holds. The induction in allows us further to assume that y # (x, P)—
(x, P) is the induction context and the point of (21) is that we can assume the
binder is fresh w.r.t. this context. Therefore we can move the substitution under the
binder, namely Lamα(y, L1)[x := P] = Lamα(y, L1[x := P]), and also infer by (19)
that x # L1. This allows us to apply the induction hypothesis and we are done. The
application case is trivial. ��

Using Isabelle’s automatic proof-tools one can formalise this proof with:

lemma forget:
assumes a: "x # L"
shows "L[x:=P] = L"

using a by (nominal_induct L avoiding: x P rule: lamα.induct)
(auto simp add: abs_fresh fresh_atm)

where abs_fresh corresponds to the property given in (19) and the lemma
fresh_atm to the fact that for atoms x and y, x # y holds if and only if x �= y. The
method nominal_induct (see Wenzel [38]) brings the induction principle, called
lamα.induct, automatically to the form needed in (21)—we only have to state over
which variable the induction is done and what the induction context is, that is the
variables to avoid.

Next we need to show a lemma whose need is not immediately apparent by look-
ing at Barendregt’s informal proof. However, in the lambda-case where Barendregt
pulls out a substitution from under the binder, namely in the step

λz.(M1[y := L][x := N[y := L]]) ≡ (λz.M1)[y := L][x := N[y := L]]
we need to know that z is not free in N[y := L]. But by the variable convention
we only know that z is not free in Nand L. In a formalisation, this fact needs to be
established explicitly. It can be done in Isabelle with

lemma fresh_fact:
fixes z::"name"
assumes a: "z # N" "z # L"
shows "z # N[y:=L]"

using a by (nominal_induct N avoiding: z y L rule: lamα.induct)
(auto simp add: abs_fresh fresh_atm)

where z needs to be given an explicit type-annotation so that Isabelle can determine
its type. The substitution lemma can now be formalised with:

lemma substitution_lemma:
assumes a: "x�=y" "x # L"
shows "M[x:=N][y:=L] = M[y:=L][x:=N[y:=L]]"

using a by (nominal_induct M avoiding: x y N L rule: lamα.induct)
(auto simp add: fresh_fact forget) (25)

A formalised proof of this lemma mentioning much more details is shown in Fig. 3.
Other proofs we formalised in a similar fashion are the Church-Rosser proof

from Barendregt [5, pp. 60–62] and [29], the strong normalisation proof given in

Nominal techniques in Isabelle/HOL 351

lemma
assumes
shows

using
proof

case (Case 1: variables)
show is
proof

assume (Case 1.1)
have using by
have using by
from have by

moreover
assume and (Case 1.2)
have using by
have using by
have using by
from have by

moreover
assume and (Case 1.3)
have using by
have using by
from have by

ultimately show by
qed

next
case (Case 2: lambdas)
have by
have by (variable convention)
hence by
show is
proof

have using by
also have using by
also have using by
also have using by
finally show by

qed
next

case (Case 3: applications)
thus by

qed

Fig. 3 A formalised proof of Barendregt’s substitution lemma using the Isabelle’s Isar language.
This proof contains all reasoning steps given in extreme detail. An automated version of this proof,
given in (25), is only 5 lines long. The crucial point in both proofs, however, is that in the lambda-case
we have the assumptions labelled with vc available. They allow us to easily formalise Barendregt’s
slick informal proof, shown in Fig. 1, which uses the variable convention

Girard et al. [12, pp. 42–46], the strong normalisation proof for cut-elimination
from Urban [31], the correctness proof of the type-inference algorithm W from
Leroy [18, pp. 26–31] and the logical relation proof for algorithmic equality between
simply-typed lambda-terms given in Crary [7, pp. 223–244] and between LF-terms
given by Harper and Pfenning in [15]. These proofs are more complicated than

352 C. Urban

the proofs we have given above and need some manual reasoning. All proofs
are included in the distribution of the nominal datatype package available from
http://isabelle.in.tum.de/nominal/

7 Related Work

There are many approaches to formal treatments of binders; this section describes
the ones from which we have drawn inspiration and also work reported in Ambler
et al. [1], Aydemir et al. [2] and Homeier [16].

Our work uses many ideas from the nominal logic work by Pitts et al. [11, 26, 27].
The main difference is that by constructing, so to say, an explicit model of the α-
equated lambda-terms based on functions, we have no problem with the axiom
of choice. This is important. For consider the alternative: if the axiom-of-choice
causes inconsistencies, then one cannot build a framework for binding on top of
Isabelle/HOL with its rich reasoning infrastructure. One would have to base the
implementation on a lower level and would have to redo the effort that has been
spend to develop Isabelle/HOL. This was attempted in Gabbay [10], but the attempt
was quickly abandoned.

Closely related to our work is Gordon and Melham [14], which has been applied
and much further developed by Norrish [22, 23]. Gordon and Melham’s work states
five axioms characterising α-equivalence and then shows that a model based on de-
Bruijn indices satisfies these axioms. This is somewhat similar to our approach where
we construct explicitly the set lamα . In [14] Gordon and Melham give an induction
principle that requires in the lambda-case to prove (using their notation)

∀ x t. (∀ v. P (t[x := VAR v])) =⇒ P (LAM x t)

That means they have to prove P(LAM x t) for a variable x for which nothing
can be assumed; explicit α-renamings are then often necessary in order to get
proofs through. This inconvenience has been alleviated by the version of structural
induction given in [13] and [23], where the lambda-case is as follows

∃X. FINITE X ∧ (∀ x t. x �∈ X ∧ P t =⇒ P (LAM x t))

For this principle one has to provide a finite set X and then has to show the
lambda-case for all binders not in this set. This is very similar to our induction
principle where we have to specify an induction context, but we claim that our
version based on freshness fits better with informal practice (recall Fig. 1 where
Barendregt states that z is fresh w.r.t. x, y, N and L) and can make better use of
the automatic infrastructure of Isabelle (namely the axiomatic type-classes enforce
the finite-support property).

Gordon and Melham [14] do not consider the case of rule inductions over
inductively defined predicates. This has been done in [33, 34]. It turns out that while
the variable convention can be built into every structural induction principle, like our
Theorem 2, this is not the case for rule induction principles. In [33] the authors give
an example where the variable convention can lead to faulty reasoning. The nominal
datatype package prevents this by introducing conditions for when an inductive

http://isabelle.in.tum.de/nominal/

Nominal techniques in Isabelle/HOL 353

definition is compatible with the variable convention and only derives a strong rule
induction principle for those that satisfy these conditions.

Like our lamα , HOAS uses functions to encode lambda-abstractions; it comes in
two flavours: weak HOAS [8] and full HOAS [25]. The advantage of full HOAS
over our work is that notions such as capture-avoiding substitution come for free.
We, on the other hand, load the work of making such definitions onto the user.
The advantage of our work is that we have no difficulties with notions such as
simultaneous-substitution (a crucial notion in the usual strong normalisation proofs
based on logical relation arguments), which in full HOAS seem rather difficult
to encode when one at the same time wants to reap the benefits of a HOAS-
representation. Another advantage we see is that by inductively defining lamα ,
one has induction for “free”, whereas induction requires considerable effort in full
HOAS. The work by Ambler et al. [1] on the Hybrid-system provides full HOAS
on top of Isabelle/HOL. For this they use a de-Bruijn encoding and construct a type
corresponding to full HOAS. This construction is somewhat similar to our subset-
construction from Section 3. However, their construction is done manually and only
for one datatype, while we have automatic support to do the subset construction for
any nominal datatype.

The main difference of our work with weak HOAS is that we use some specific
functions to represent lambda-abstractions; in contrast, weak HOAS uses the full
function space. This causes problems known by the term “exotic terms”—essentially
junk in the model.

Recently, Homeier [16] introduced a quotient package for HOL4 that helps with
defining alpha-equivalence classes (this package supports quotients by any equiva-
lence relation) and with lifting theorems from the “raw” version of the datatype to
the quotient. Norrish makes use of this package in [23]. This package would help
us with the construction of lamα , but would have only little impact on obtaining
the strong induction principles and the recursion combinator. Nevertheless we look
forward to a port of Homeier’s package to Isabelle/HOL. It will simplify our work
when we consider more complicated binding structures.

Aydemir et al. [2] reported work in progress for providing nominal reasoning
techniques in Coq. Essentially, they derive more or less automatically from a
specification of a nominal datatype an axiomatisation of nominal concepts in Coq
and in case of the lambda-calculus use a Gordon-Melham representation to justify
their axiomatisation. However, this justification needs to be done manually, while
with our constructions we provide the justification completely automatically. Judging
from recent work, the authors seem to have “abandoned” this work in favour of
working with a locally nameless representation of α-equated lambda-terms [3].

8 Conclusion

The paper [4], which sets out some challenges for automated proof assistants, claims
that theorem proving technologies have almost reached the threshold where they
can be used by the masses for formal reasoning about programming languages. We
hope to have pushed with this paper the boundary of the state-of-the-art in formal
reasoning closer to this threshold. We showed all our results for the lambda-calculus.

354 C. Urban

But the lambda-calculus is only one example. The nominal datatype package has
no problems with generalising the results reported here to more complicated term-
calculi. For example, there is already work by Bengtson using the nominal datatype
package for formalising the π -calculus [6]; Tobin-Hochstadt and Felleisen used it to
verify their work on Typed Scheme [30].

There has also been work on extending strong induction principles to rule
inductions [33, 34]. The real challenge has been and still is to generalise all
the necessary reasoning infrastructure to more general binding structures. While
there is no problem in the nominal datatype package with iterated binders, as in
Foo «name»«name»__, and binders of different type, as in Bar «name»__ «coname»__,
it is not yet possible to have, for example, a finite set of binders in a term-constructor.
A typical example where such a generalisation is very helpful is the Hindley-Milner
typing-algorithm where one has type-schemes of the form ∀{a1, . . . , an}.ty. Such type-
schemes can at the moment only be represented by encoding them as an iterated list
of single binders. To work out the details for the generalisation of binding structures
and to implement them is future work. Future work also includes the generalisation
of our recursion combinator to work with varying parameters. This has been treated
in [23, 27], but it seems difficult to adapt their results to our setting.

Acknowledgements I am very grateful to Andy Pitts and Michael Norrish for the many discussions
with them on the subject of the paper. Stefan Berghofer and Markus Wenzel have been helpful
beyond measure with implementing the work reported here. Christine Tasson helped with the early
parts of the work. Julien Narboux provided helpful comments.

References

1. Ambler, S.J., Crole, R.L., Momigliano, A.: Combining higher order abstract syntax with tactical
theorem proving and (co)induction. In: Proceedings of the 15th International Conference on
Theorem Proving in Higher Order Logics (TPHOLs). LNCS, vol. 2410, pp. 13–30. Hampton,
20–23 August 2002

2. Aydemir, B., Bohannon, A., Weihrich, S.: Nominal reasoning techniques in Coq (work in
progress). In: Proceedings of the International Workshop on Logical Frameworks and Meta-
Languages: Theory and Practice (LFMTP). ENTCS, pp. 60–68. Seattle, 16 August 2006

3. Aydemir, B., Charguéraud, A., Pierce, B.C., Pollack, R., Weirich, S.: Engineering formal
metatheory. In: Proceedings of the 35rd Symposium on Principles of Programming Languages
(POPL), pp. 3–15. ACM, New York (2008)

4. Aydemir, B.E., Bohannon, A., Fairbairn, M., Foster, J.N., Pierce, B.C., Sewell, P., Vytiniotis, D.,
Washburn, G., Weirich, S., Zdancewic, S.: Mechanized metatheory for the masses: the Poplmark
challenge. In: Proceedings of the 18th International Conference on Theorem Proving in Higher-
Order Logics (TPHOLs). LNCS, vol. 3603, pp. 50–65. Oxford, 22–25 August 2005

5. Barendregt, H.: The Lambda Calculus: Its Syntax and Semantics. Studies in Logic and the
Foundations of Mathematics, vol. 103. North-Holland, Amsterdam (1981)

6. Bengtson, J., Parrow, J.: Formalising the pi-Calculus using nominal logic. In: Proceedings of the
10th International Conference on Foundations of Software Science and Computation Structures
(FOSSACS). LNCS, vol. 4423, pp. 63–77. Braga, March 2007

7. Crary, K.: Logical relations and a case study in equivalence checking. In: Pierce, B.C. (ed.)
Advanced Topics in Types and Programming Languages, pp. 223–244. MIT, Cambridge (2005)

8. Despeyroux, J., Felty, A., Hirschowitz, A.: Higher-order abstract syntax in Coq. In: Proceedings
of the 2nd International Conference on Typed Lambda Calculi and Applications (TLCA).
LNCS, vol. 902, pp. 124–138. Springer, New York (1995)

9. Dowek, G., Hardin, T., Kirchner, C.: Higher-order unification via explicit substitutions. Inf.
Comput. 157, 183–235 (2000)

Nominal techniques in Isabelle/HOL 355

10. Gabbay, M.J.: A theory of inductive definitions with α-equivalence. PhD thesis, University of
Cambridge (2001)

11. Gabbay, M.J., Pitts, A.M.: A new approach to abstract syntax with variable binding. Form. Asp.
Comput. 13, 341–363 (2001)

12. Girard, J.-Y., Lafont, Y., Taylor, P.: Proofs and Types. Cambridge Tracts in Theoretical Com-
puter Science, vol. 7. Cambridge University Press, Cambridge (1989)

13. Gordon, A.D.: A mechanisation of name-carrying syntax up to alpha-conversion. In: Proceedings
of the 6th International Workshop on Higher-order Logic Theorem Proving and its Applications
(HUG). LNCS, vol. 780, pp. 414–426. Vancouver, 11–13 August 1994

14. Gordon, A.D., Melham, T.: Five axioms of alpha conversion. In: Proceedings of the 9th Inter-
national Conference on Theorem Proving in Higher Order Logics (TPHOLs). LNCS, vol. 1125,
pp. 173–190. Turku, 26–30 August 1996

15. Harper, R., Pfenning, F.: On equivalence and canonical forms in the LF type theory. ACM Trans.
Comput. Log. 6(1), 61–101 (2005)

16. Homeier, P.: A design structure for higher order quotients. In: Proceedings of the 18th Inter-
national Conference on Theorem Proving in Higher Order Logics (TPHOLs). LNCS, vol. 3603,
pp. 130–146. Oxford, 22–25 August 2005

17. Kleene, S.C.: Disjunction and existence under implication in elementary intuitionistic for-
malisms. J. Symb. Log. 27(1), 11–18 (1962)

18. Leroy, X.: Polymorphic typing of an algorithmic language. Ph.D. thesis, University Paris 7,
INRIA Research Report, No 1778 (1992)

19. Melham, T.: Automating recursive type definitions in higher order logic. Technical Report 146,
Computer Laboratory, University of Cambridge, September (1988)

20. Melham, T.: Automating recursive type definitions in higher order logic. In: Current Trends
in Hardware Verification and Automated Theorem Proving, pp. 341–386. Springer, New York
(1989)

21. Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle HOL: A proof assistant for higher-order logic.
LNCS, vol. 2283. Springer, New York (2002)

22. Norrish, M.: Recursive function definition for types with binders. In: Proceedings of the 17th
International Conference Theorem Proving in Higher Order Logics (TPHOLs). LNCS, vol. 3223,
pp. 241–256. Park City, 14–17 September 2004

23. Norrish, M.: Mechanising λ-calculus using a classical first order theory of terms with permutation.
High. Order Symb. Comput. 19, 169–195 (2006)

24. Paulson, L.: Defining functions on equivalence classes. ACM Trans. Comput. Log. 7(4), 658–675
(2006)

25. Pfenning, F., Elliott, C.: Higher-order abstract syntax. In: Proceedings of the 10th Conference on
Conference on Programming Language Design and Implementation (PLDI), pp. 199–208. ACM,
New York (1989)

26. Pitts, A.M.: Nominal logic, a first order theory of names and binding. Inf. Comput. 186, 165–193
(2003)

27. Pitts, A.M.: Alpha-structural recursion and induction. J. ACM 53, 459–506 (2006)
28. Slind, K.: Wellfounded schematic definitions. In: Proceedings of the 17th International Con-

ference on Automated Deduction (CADE). LNCS, vol. 1831, pp. 45–63. Pittsburgh, 17–20
June 2000

29. Takahashi, M.: Parallel reductions in lambda-calculus. Inf. Comput. 118(1), 120–127 (1995)
30. Tobin-Hochstadt, S., Felleisen, M.: The design and implementation of typed scheme. In: Pro-

ceedings of the 35rd Symposium on Principles of Programming Languages (POPL), pp. 395–406.
ACM, New York (2008)

31. Urban, C.: Classical logic and computation. Ph.D. thesis, Cambridge University, October (2000)
32. Urban, C., Berghofer, S.: A recursion combinator for nominal datatypes implemented in

Isabelle/HOL. In: Proceedings of the 3rd International Joint Conference on Automated Rea-
soning (IJCAR). LNAI, vol. 4130, pp. 498–512. Seattle, 17–20 August 2006

33. Urban, C., Berghofer, S., Norrish, M.: Barendregt’s variable convention in rule inductions. In:
Proceedings of the 21st International Conference on Automated Deduction (CADE). LNAI,
vol. 4603, pp. 35–50. Bremen, 17–20 July 2007

34. Urban, C., Norrish, M.: A formal treatment of the Barendregt variable convention in rule
inductions. In: Proceedings of the 3rd International ACM Workshop on Mechanized Reasoning
about Languages with Variable Binding and Names, pp. 25–32. ACM, New York (2005)

35. Urban, C., Pitts, A.M., Gabbay, M.J.: Nominal unification. Theor. Comp. Sci. 323(1–2), 473–497
(2004)

356 C. Urban

36. Urban, C., Tasson, C.: Nominal techniques in Isabelle/HOL. In: Proceedings of the 20th Inter-
national Conference on Automated Deduction (CADE). LNCS, vol. 3632, pp. 38–53. Tallinn,
22–27 July 2005

37. Wenzel, M.: Using axiomatic type classes in Isabelle. Manual in the Isabelle distribution.
http://isabelle.in.tum.de/doc/axclass.pdf (2000)

38. Wenzel, M.: Structured induction proofs in Isabelle/Isar. In: Proceedings of the 5th International
Conference on Mathematical Knowledge Management (MKM). LNAI, vol. 4108, pp. 17–30.
Wokingham, 11–12 August 2006

http://isabelle.in.tum.de/doc/axclass.pdf

	Nominal Techniques in Isabelle/HOL
	Abstract
	Introduction
	Atoms, Permutations and Support
	Constructing a Representation for Alpha-Equated Lambda-Terms
	Structural Induction Principles
	A Recursion Combinator
	Examples
	Related Work
	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

