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Abstract We present a complete mechanized proof of the result in homological
algebra known as basic perturbation lemma. The proof has been carried out in the
proof assistant Isabelle, more concretely, in the implementation of higher-order logic
(HOL) available in the system. We report on the difficulties found when dealing
with abstract algebra in HOL, and also on the ongoing stages of our project to
give a certified version of some of the algorithms present in the Kenzo symbolic
computation system.
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1 Introduction

Nowadays the interplay between symbolic computation and theorem proving is
attracting a lot of attention in the field of formalized mathematics, with a special
emphasis in constructive and computational logics (see, for instance, [15]). In this
renewed interest, algebraic topology might not be considered as a proper application
field. This could be due to the extremely abstract nature of its constructions and
results, and to the essential occurrence of infinite spaces (as loop spaces), difficult,
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in principle, to be amenable to a computational treatment. Nevertheless, more than
fifteen years ago, a collection of computer algebra programs for algebraic topology
calculations was built by Francis Sergeraert [17]. This software system, called Kenzo,
was developed from scratch in Common Lisp, and, with a functional coding of
infinite spaces, was capable of computing the homology groups of different kinds
of chain complexes; the correctness of some of these results, as of today, has not
been confirmed or refuted by any other means (human or computer-aided). After
years of successful testing, Kenzo became a very reliable system. However, as it
is impossible to test some of its results in an alternative way, it is clear that an
analysis of the correctness of the programs should increase its reliability even more;
this, in any case, should be considered by itself an interesting challenge (see [14]
for details).

This paper reports on a first step towards this goal. Due to the complexity of
the task, several constraints have been imposed on our approach. First, from a
thematic point of view, we have focused on the algebraic rather than on the geometric
(simplicial) side of algebraic topology. This decision led us to homological algebra,
but in the differential setting (coming from algebraic topology, as introduced in
Mac Lane [23]) rather than in that based on commutative algebra or ring theory,
as presented, for instance, in Jacobson [19] (Chap. 6). Second, we concentrated on
obtaining mechanized proofs of some theorems, rather than on providing certificates
of the correctness of the programs linked to those theorems. A complete automated
certification of Kenzo with the current knowledge and technology in theorem proving
seems to be beyond what is currently reachable, due to the data structures and
language technicalities required in the system. As a third, more technical, constraint,
we worked in an ungraded setting, where the notion of degree or dimension is
skipped. This gives a presentation of the definitions and results which is slightly
different from that found in literature. Let us recall that one of the central notions in
homological algebra is that of chain complex, that is to say, a structure {(C,, d,)}ncz,
where {C,}ycz is a family of abelian groups (called a graded abelian group) and
d,: C, - C,_; is a group homomorphism such that d,d,,; =0, Vn € Z. In our
approach, chain complexes are replaced by differential abelian groups (C, d¢), where
C is just an abelian group and d¢ is a differential of C. This notion will be formally
introduced in Definition 1, where an example of the relationship between the graded
and ungraded approaches is also given. The justification for this third constraint is
twofold. First, the problem of dealing with infinite sequences of spaces is orthogonal
to the main difficulties to be solved in our case study, and may be based on completely
different techniques. Second, the fact of being graded or ungraded has no influence
on the steps of the proof (as an attentive reading of the original papers can confirm),
and so we can expect that our automated proofs could be reused unchanged, in the
graded case.

Our goal was to give a mechanized proof, with the Isabelle/HOL theorem prover,
of the basic perturbation lemma, which will be referred to as BPL in the rest of the
paper. This “lemma” (which in fact is the fundamental theorem of computational
algebraic topology) was chosen for three different reasons. First, it lies neatly
on the algebraic side of algebraic topology, without any reference to topological
considerations. Second, it is general enough, in the sense that it makes use of the
essential structures of the field, and its proof is the most difficult one among the
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results Kenzo is based upon (see [32]). The third and most relevant reason is that
the BPL plays a central role in Kenzo, being the key component of the software
architecture. Thus, the Isabelle proof of the BPL presented in this paper could be
considered as a foundational point for the rest of the work to be done in order
to obtain reliable symbolic computation systems in algebraic topology. Another
consequence of our work is to enlarge the application field of theorem provers, and,
as it is natural, to evaluate the provers themselves (in our case, especially the Isabelle
module system, locales, as will be documented in the paper).

The paper is organized as follows. After a preliminaries section, introducing
fundamentals of homological algebra and Isabelle, the BPL is presented, and we
discuss its relevance, statement and the proof we have implemented in Isabelle.
Section 4 reports on our main technical contributions, explaining the features of the
encoded proof. Especially relevant is Section 4.1, since our proposals for dealing with
algebraic structures seem to be applicable to many other fields of mathematics where
the categorical view (based on objects and morphisms) is also used. In Section 5 we
discuss briefly the constructiveness of our proof, which relates our work to others
based on the proof assistant Coq [13], and as a natural sequel, in Section 6 program
extraction from our proofs is explored. The paper ends with the conclusions and
further work section and the bibliography.

2 Preliminaries
2.1 Homological Algebra

Definitions have been extracted from Rubio and Sergeraert [32]. In our ungraded
setting, the most important concept is the one of differential group (rather than chain
complex).

Definition 1 A differential group is a pair (C, d¢) where C is an abelian group and d¢
is an endomorphism such that dcde = Ogpgac (Where Ogna ¢ denotes the application
which maps every element to O¢); d¢ is called the differential map or boundary
operator of C.

The following example illustrates the notions of chain complex, differential group,
and some of the differences among the graded and ungraded notions already
introduced.

Example 1 Let us consider a chain complex {(C,, d,) },cz concentrated on degrees 0,
land 2 (ie.,Vne Z,n #0,1,2, C, = {0}),such that C, =Z,C, =Z®Z, Co = Z
and dy(a) = (a,0), di(b,c) = c¢ (the rest of the differentials are necessarily null
homomorphisms). This chain complex can be encoded in a differential group (C, d¢)
by defining C =Z S Z S Z ® Z and dc(a, b, c,d) = (0, a, 0, ¢). This representation
of the chain complex preserves the homological information. Thus, the ungraded
approach does not imply a lost of expressiveness with respect to the more usual
graded approach in homological algebra.
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The boundary condition dcdc = Ognda ¢ (Which implies that im d¢ C kerdc) allows
us to introduce the homology group of a differential group. This situation is reflected
in the following commutative diagram:

de
C C
O
dc d(.’
(9 OEnde
imdc € kerde —— {0c} S C
dclerdc

Definition 2 Given a differential group (C, d¢), its homology group, denoted as
H(C, d¢), is given by the quotient group ker dc/ imdc.

The homology group is the main object to be calculated in algebraic topology,
and thus, in the Kenzo system. Under favorable circumstances (for instance, when
C is a finitely generated free abelian group) the homology group can be easily
calculated, but in many other cases in algebraic topology, the computability of such
a group remains an open problem, and even when it is proved computable, its actual
computation becomes a challenge.

As usual in mathematics, the concept of differential group is accompanied by its
corresponding morphism notion.

Definition 3 Given (A, d4) and (B, dg) two differential groups, a differential group
homomorphism f: (A,dsy) — (B, dp) is a group homomorphism f: A — B which
commutes with the differentials: fd4 = dgf.

An important feature of our context is that both group homomorphisms (between
differential groups) and differential group homomorphisms appear in a natural way.
This characteristic (the concurrence of the two kinds of homomorphisms) is explicit
in the following definition.

Definition 4 Given two differential groups (D, dp) and (C, d¢), a reduction between
them is a triple of homomorphisms ( f, g, h): (D, dp) = (C, d¢) satisfying:

1. The components f and g are differential group homomorphisms, f: (D, dp) —
(C,d¢)and g: (C,dc) — (D, dp).

2. The component 4 is a group endomorphism on D, called the homotopy operator.

3. The following relations hold:

a) fg=idc;

b) gf+dph+ hdp =idp;
C) fh = OHom D C;

d) hg = OHomcp;

e) hh=Ogup,

where Oygom p ¢ denotes the application which maps every element in D to O¢ (and
0 i8S Ogom ¢ p), and given i and j homomorphisms, i + j denotes the operation which
maps x to i(x) + j(x).

A reduction establishes a link between a differential group (D, dp) (referred to
as “big”) and a differential group (C, d¢) (referred to as “small”), in such a way
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that the homology group H(D, dp) is canonically isomorphic to H(C, d¢). Thus, if
we know how to compute the homology of (C, d¢) (for instance, because it is free
and finitely generated), then the problem of computing H(D, dp) (even if D is of
infinite type) is also solved. The BPL defines an algorithm to obtain a reduction
from another reduction when the input data are slightly perturbed. The following
definition introduces the notion of perturbation and formalizes the notion of slight
perturbation (local nilpotency condition).

Definition 5 Let (D, dp) be a differential group. A perturbation of the differential
dp is a group endomorphism §p: D — D such that dp + §p is a differential for the
abelian group D. A perturbation §p of dp satisfies the local nilpotency condition
with respect to a reduction (f, g, h): (D, dp) = (C, dc) if the composition Sph is
pointwise nilpotent, that is, given x an element of D, there exists a natural number n
such that (8ph)"(x) = 0, where n depends on each x in D.

2.2 Isabelle/HOL

Information in this section has been mainly extracted from Paulson [29-31], and
Nipkow et al. [27]. Isabelle is a generic theorem prover in the sense that different
logics can be implemented on top of it. Our project was developed in the implemen-
tation of higher-order logic (Isabelle/HOL) found in the Isabelle distribution [28].
We found this logic specially suitable for our project due to its high expressiveness
and also to the existence of some previous works with successful results in related
mathematical fields, for instance, the proof of the Sylow’s theorem in Kammiiller
and Paulson [21], the proof of the Hahn—-Banach theorem, with a large development
in functional analysis, available in Bauer and Wenzel [9], or the formalization of the
prime number theorem in Avigad et al. [3].

The Isar (Intelligible Semi-Automated Reasoning) [36] extension of Isabelle
consists of a programming language defined on top of Isabelle, resembling a mathe-
matical language for producing proofs, accepting both backward and forward proofs,
with the aim of obtaining human readable documents.

In our case of study, the proof of the BPL, the infrastructure included Isabelle, the
HOL distribution, and also the Isar language.

The type system in HOL resembles Church’s system of simple types, and only
includes basic and variable types, with function and product types over them. From
them, lists and record types can be built in an ad-hoc manner. In our work, record
types will be especially relevant for implementing algebraic structures. In this simple
type theory, record types are implemented as labeled product types; this type hierar-
chy is also enriched with extensible records (see [26]), by means of record schemes,
which are particularly suitable to represent a hierarchy of algebraic structures with
polymorphic features. For instance, this kind of polymorphism permits us to consider
any differential group homomorphism as an abelian group homomorphism, since
differential groups are implemented by means of inheritance from abelian groups.

It is worth noting that our mechanized proof will make use of a version of HOL
which includes Hilbert’s epsilon symbol and the excluded middle principle (placing
ourselves in a non-constructive logical setting).

The Algebra library available in the standard Isabelle distribution [7] provides us
with a convenient infrastructure, from which we made intensive use of definitions
and lemmas up to abelian groups and also of specialized tactics.
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Locales [4] are a tool for the management of structured contexts and were
highly valuable in our development. Locales can be used for the specification part
of algebraic structures, and they enable the user to manage the theorems of the
related algebraic theories that are proved in Isabelle. In addition to this, some other
technical features of locales, such as extending locales with new definitions, fixing
new constants and variables or introducing abbreviations, were really valuable in our
development.

Even more relevant in this project were Isabelle’s facilities for the interpretation
of locales. Isabelle’s implementation of theory interpretation (see, e.g. [20]) enables
one to reuse theorems from locales in other contexts including other locales, by
transporting them along suitable morphisms among these contexts. In our setting, we
will be able to reuse some Isabelle generic theories (such as ring theory), including
the lemmas proved in them, and apply them to our concrete case studies. More
information on locale interpretation in Isabelle, which is yet an ongoing project, can
be found in Ballarin [5, 6].

3 Relevance and Statement of the BPL
3.1 Relevance of the BPL

As explained in Section 2, the BPL can be interpreted as an algorithm computing
a reduction from both a reduction and a perturbation. In order to illustrate the
importance of this algorithm in computational homological algebra, the following
situation can be considered. Let us suppose that we are interested in computing
the homology group of some differential group (D, dp), where D is a free abelian
group with an infinite set of generators. Since its set of generators is infinite, the
usual method to compute the homology group (based on diagonalization of integer
matrices) cannot be applied. Let us now assume that the differential dp can be
decomposed as dp = d/, + 8, with d/, being a differential of D (we will refer to §
as the perturbation of the differential). If a reduction (f, g, &) from the differential
group (D, d7,)) to another differential group (C, d¢) is known, and the perturbation
8 satisfies the local nilpotency condition with respect to (f, g, #), the BPL algorithm
can be applied, providing us with a reduction ( f’, g, #’) from the initial differential
group (D, dp) to (C, d.). The relevance of this new reduction lies in the fact that in
the small differential group (C, di.), the group C remains the same as in the input
reduction (just the differential is modified). Therefore, if C is finitely generated, it
can be used to compute the homology of (D, dp) by means of the usual methodology.
Sometimes, the algorithm has to be applied various times before reaching a finitely
generated differential group.

This is exactly the strategy followed in Kenzo. A typical calculation in Kenzo
enables the user to compute, for example, Hs(2%(S5%)) (its rank, torsion coefficients
and a finite list of generators), the fifth homology group of the second loop space
of the sphere of dimension 3. The second loop space of a topological space is a
highly infinite dimensional space, of which many of its geometrical properties are yet
unknown. Topologists can use Kenzo to explore part of its homological properties.
In this concrete calculation, six instances of the BPL have been applied, in order to
reduce the infinite spaces to finite algebraic versions of them.
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3.2 Statement of the BPL and Organization of the Proof

The following proposition is needed in order to make the statement of the BPL
meaningful.

Proposition 1 Let (f, g, h): (D,dp) = (C,dc) be a reduction between two differ-
ential groups and 8p a perturbation of dp satisfying the local nilpotency condition
with respect to the reduction. Then both Y2 (—1)'(8ph)’ and Y22 (—1) (hép)' define
endomorphisms of the abelian group D.

The following statement corresponds to the basic perturbation lemma as pre-
sented in Rubio and Sergeraert [32]:

Theorem 1 Basic Perturbation Lemma Let (f, g, h): (D, dp) = (C, dc) be a reduc-
tion between two differential groups and §p: D — D a perturbation of the differential
dp satisfying the local nilpotency condition with respect to the reduction (f, g, h).
Then, a new reduction (f',g,h): (D',dp) = (C',dc) can be obtained, where the
underlying abelian groups D and D' (resp. C and C') are the same, but the differentials
are perturbed: dp = dp + 8p, do = dc + 8¢, where 8¢ = fopy¥g f = fo, & = vg
W = h¢, where ¢ = Y2 (=) (Sph), and y = > > (—1)'(hdp)".

We have divided the proof of the previous result into two parts as a step towards
the formalization in Isabelle. The different mathematical nature of each part of the
proof was the reason for such an approach. The proof of the first part deals with
equations of power series of endomorphisms, and we named it “analytic part”; in
the proof of the second part, differential groups and relations among them (usually
defined through homomorphisms and reductions) are required, and we named it
“structural part”.

Part 1 From the BPL hypotheses, the following equalities are proved:

dh = hy; (1a)
Spp = ¥ép; (1b)
¢ =idp—hdpd =idp —phsp = idp —hyrsp: (1c)
v =idp —Sphyr = idp —ySph = idp -8 pdh. (1d)

Part2 Then, using only the previous equations for ¢ and v, it is proved that
(f,g,h): (D,dp) = (C',dc) defines a reduction.

Proofs of the BPL are given in Gugenheim [18], Barnes and Lambe (8],
Rubio and Sergeraert [32]. An extremely detailed proof of both parts is given in
Aransay [1] (Chap. 2), where we wrote down a proof as close as possible to the one
we have implemented in a later stage in Isabelle. Our proof gave rise to 20 pages
of results and proofs. In the first part, 6 lemmas were needed; in the second part,
6 previous propositions and 6 relevant lemmas were produced. We report on these
details since we consider them useful to compare the mathematical proof with the
proof produced in Isabelle which we will introduce later, taking into account that
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one of our goals was to produce a proof as close as possible to a proof in natural
language.

4 The Isabelle Proof

In this section we present the mechanized proof of the BPL we have implemented in
the Isabelle/HOL environment. The Isabelle source files, as well as a more friendly
version in html code, including comments and cross references, can be found in the
web site [2].

In Table 1 we present the list of files we have generated, as well as an estimation
of their size. Later, in this same section, the contents (and mathematical results) of
each file will be thoroughly detailed.

4.1 Relevant Algebraic Structures

The relevant algebraic structures needed in the proof of the BPL can be divided into
two families:

— Algebraic structures representing the differential structures involved in the proof
(mainly differential groups).

— Algebraic structures over the sets of homomorphisms and endomorphisms
among differential structures.

As we explained in Section 2.2, algebraic structures can be represented in Isabelle by
means of records where each field represents one of the operations in the algebraic
structure. For instance, the type for differential groups is the following:

record ‘a diff group =

carrier :: ’‘a set

mult :: [’a, ’al => ’a (infixl ®1 70)
one :: ’a (11)

diff :: 'a = ’‘a (differi 81)

Table 1 List of source files

File name Proof part Number of lines
HomGroupCompletion Relevant algebraic structures ca. 820
HomGroupsCompletion Relevant algebraic structures ca. 360
lemma_2 2 11 Structural part ca. 515
lemma_2 2 14 Structural part ca. 480
analytic_part_local Analytic part ca. 830
lemma_2_2_15_local_nilpot Structural part ca. 150
lemma_2_2_17_local_nilpot Structural part ca. 610
lemma_2_2_ 18 local_nilpot Structural part ca. 140
lemma_2_2 19_local_nilpot Structural part ca. 115
Basic_Perturbation_Lemma_local_nilpot Structural part ca. 620
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Note that in the right part of each field, concrete syntax is provided (together with
a number indicating the precedence of the operation).

The properties held by differential groups can be established as a locale definition,
where the concrete syntax is available:

locale diff group = comm group D +
assumes diff hom : differ € hom completion D D
and diff nilpot : differ o differ = (Ax. 1)

The locale diff_group is presented as an extension of the locale comm_group
(taken from the Algebra library) by adding two more conditions. The first one
indicates that the differential must be an endomorphism (the meaning of “com-
pletion” will be explained later), and the second one is the boundary condition.
Note that we have used a multiplicative notation for abelian groups, with the binary
operation called mult (or ® in infix notation) and the neutral element denoted by
one (or 1). The reason to introduce a multiplicative notation for differential groups
instead of the additive one we have proposed in Definition 1, was to reuse the
Isabelle implementation of commutative groups. In the following, we will refer to
the elements of differential groups by means of multiplicative notation.

The most relevant property of the given type definition is that the carrier set
of algebraic structures is coded as a predicate (set) over the underlying type (‘a).
This decision enables us to work with groups of any cardinality. In general, the
groups appearing in homological algebra are of infinite cardinality, and in the
context of algebraic topology, even non-finitely generated; this feature was translated
into Kenzo as a Common Lisp functional coding of infinite sets, a solution which
corresponds accurately to the representation we are proposing in Isabelle. This
representation is also suitable as far as we will have to deal in the future with subsets
(such as the kernel or the range of applications) of carrier sets.

When it comes to the homomorphisms, two main matters were addressed in our
development. The first one refers to the most appropriate way to define homomor-
phisms and operations over them. The second one captures the properties verified
by homomorphisms, seeking the most suitable way to deal with homomorphisms in
proofs.

4.1.1 Definition of Homomorphisms

First, the very definition of homomorphisms in Isabelle will be of great importance. A
type definition and a specification of monoid homomorphisms in the Isabelle library
are as follows:

constdefs (structure G and H)

hom :: => => (’a => ’'b)set

hom G H == {h. h € carrier G -> carrier H &
(Vx € carrier G. Yy € carrier G.

h (x ®; yv) = (h x) Qu(h y))}

Homomorphisms have the type of a set of functional objects between the cor-
responding source and target algebraic structures (the underscores in the type
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definition mean, here, any record type with, at least, fields carrier and ®). The
specification of homomorphisms has two requirements: first, that they map elements
from their source set to elements of their target set, and second, that they preserve
the (binary) operation.

Since we must deal with both group homomorphisms and differential group
homomorphisms, this definition is a good candidate in a first step (for a differential
group morphism, it would be enough to impose that differentials are respected too).
Nevertheless, from the previous definition, it follows that for every homomorphism
h, whenever an element x of the carrier set of G is considered, Ax will be an element
of the carrier set of H; on the contrary, for every element x with type 'a out of the
carrier set of G, nothing can be said (neither proved) about the value of 4x. This is a
substantial matter when one is using the Isabelle built-in equality (=), which is total
on types.

For instance, let us consider a concrete algebraic structure in Isabelle where:

— The carrier set is End G;
— The binary operation is the composition of homomorphisms A fg € End G.Ax €
carrier G.g( fx).

If we consider the Isabelle function id; = Ax.1id(x), which belongs to End G, as the
unit, the previous algebraic structure can be proven to be a monoid. If we consider
now id, = (Ax.if x € carrier G id(x) else 1), both functions id, and id, are equal over
their domain (the carrier set of G), whereas they are not equal with the extensional
definition of equality for functions. The uniqueness of representation has been lost,
and thus some of the equalities among endomorphisms and homomorphisms we
have to achieve, might be unreachable. Under these circumstances, we should modify
either the representation of homomorphisms or the equality in our setting.

The problem of representing partial domains in a total setting is well-known, and
different solutions can be considered (for a thorough study, see, for instance [25]).
One of them would consist in defining a new equality between functional objects.
This equality should rely on the concrete set where we compare the functional ob-
jects, and thus modifying this set (as we usually do in our lemmas, when considering
as domain the kernel of an endomorphism, instead of its original domain) would
imply modifying also the equality. Another option to solve the problem in Isabelle is
given by the arbitrary value, which is a polymorphic element, present in every type. It
denotes an unspecified default value, and thus no fact can be proved from it. We can
select every function that maps the values out of its domain to this element by means
of a conditional definition. This solution provides uniqueness of representation in
the set End G, but, for instance, is not closed under usual function composition in
Isabelle (i.e., o), since from the very specification of the term arbitrary, f(arbitrary)
cannot be proved to be equal to arbitrary.

The solution proposed by us consisted in adding a new requirement to the Isabelle
definition of homomorphisms; thus, a unique representation for each homomorphism
is obtained. This representation is quite appropriate for Isabelle built-in features,
such as equality and function composition. We introduced the notion of completion,
which is a function that out of its domain, maps every element to a distinguished
element of the image set; more concretely, to the neutral element of the target
algebraic structure.
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constdefs

completion :: [(’a, ’‘c) monoid scheme, (’b, ’d) monoid scheme,
(‘a => 'b)] => ('a => ’b)

completion G H f == (Ax. 1f x € carrier G then f x else one H)

With the already introduced definition of homomorphism enriched with the
previous requirement, we were able to prove that the set of endomorphisms over
a differential group with the natural operations satisfy the properties of a ring, and
also that homomorphisms satisfy the properties of an abelian group.

4.1.2 Properties of Homomorphisms

As a second matter dealing with homomorphisms, one of the lessons we learned
from our detailed mathematical proof was that in order to carry out proofs where
various homomorphisms and endomorphisms appear at the same time, it would be
more feasible and appropriate to consider them as elements of a suitable algebraic
structure, and then to make use of the automation provided by Isabelle tactics to
simplify expressions in such structures. This second requirement, as stated in the
previous paragraph, is also satisfied by the representation of homomorphisms we
have proposed.

From the previous considerations, and as a simple example, in the ring of
endomorphisms, by using the algebra tactic defined for normalizing expressions
in rings, equalities between expressions involving endomorphisms can be proven
automatically. Applying simplifications of an abstract algebraic structure to concrete
instances of it is a trivially admitted strategy in informal proofs. Nevertheless, in
our concrete case in a mechanized proving environment, it demands two relevant
steps. First, to prove that the set of endomorphisms we have defined in Isabelle, with
suitable operations, satisfy the ring specification available in the system. Second, to
apply theory interpretation facilities, as introduced in Section 2.2, that make every
tactic defined for an abstract algebraic structure available to any concrete instance.
The user has to explicitly state and prove the interpretation required, but then the
system automatically enables the user to apply all available tactics.

With these tools, we are able to consider homomorphisms in two different ways:
One, as functional objects, and the other, as elements of the algebraic theories they
have been proved to satisfy (for instance, endomorphisms viewed as elements of the
carrier set of an interpretation of the Ring Isabelle theory). In Section 4.3 we will
see in detail how these two different views are relevant depending on which of the
lemmas of the BPL proof we are facing.

Definitions and proofs introduced in this section are available in Aransay [2],
(files;HomGroupCompletion.html, HomGroupsCompletion.html); these results
took up 30 pages of Isabelle code and form the main infrastructure used in the sequel.

4.2 Analytic Part
The analytic part of the proof requires one to deal with the power series that

were defined in the BPL statement in Theorem 1, ie., ¢ = Y 2(=D)i(8ph) and
Y= 2o (=D(hép)".
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In order to give a definition in Isabelle of the condition of nilpotency as introduced
in Definition 5, some additional elements are needed. The concrete meaning of
addition, composition, exponentiation, the null element or application, require from
us, at least, the introduction of a ring of endomorphisms. Consequently, we make use
of the results obtained in the previous section. Then, an Isabelle locale definition is
used; a ring endomorphism a will be said to satisfy the nilpotency condition whenever
it satisfies the following:

locale local nilpotent term = ring endomorphisms D R + var a +
assumes a_in R: a € carrier R

and a_local nilpot: Vxe€carrier D. 3n::nat.(a(*)g n) x = 1p
fixes deg of nilpot

defines deg of nilpot == (Ax.(LEAST n.(a(”)gr(n::nat)) x = 1p))

As explained, the definition demands the introduction of a ring of endomorphisms
R over the differential group D, as done by means of the import specification
ring_endomorphisms D R. In the previous locale, once a nilpotency bound is ensured
(for each x), we define the minimal bound as a function, giving rise to the notion of
degree of nilpotency.

From the previous definition, we introduce the power series of the element a as a
function assigning to each x € D the finite product (recall: multiplicative notation) in
D of the powers of such an endomorphism:

definition (in local nilpotent term)
power_series X ==
finprod D (A i::nat. (a(")gr i) x) {..deg of nilpot x}

In the context defined by the previous locale we proved properties about opera-
tions with the power series, such as associativity (with respect to the composition of
endomorphisms) and the extraction of terms of the series, needed for our lemmas.

The definition of the set of perturbations of a given differential group (D, dp),
according to Definition 5, had to be also provided by us:

constdefs (structure D)
pert :: => (’a => ’a) set
pert D == {§. § € hom completion D D &
diff group ( carrier = carrier D, mult = mult D, one = one D,
diff = (Ax. 1f x € carrier D then ((differ) x) ® (§ x)

else 1)) }

Assuming the BPL premises, we can apply locale interpretation to make use of
the definitions and results proved in the locale local_nilpotent_term. We choose as
a ring of endomorphisms the ring of endomorphisms over (D, dp); a local nilpotent
term is given by (—1)(8ph); a bound function is originated from the local nilpotency
condition in the BPL statement, as the function that for every x returns the natural
number n which makes the endomorphism (—1)(8 p/) nilpotent.

With these three parameters, the locale interpretation mechanism automatically
makes available in our setting (the locale local_nilpotent_alpha shown below, con-
taining the BPL premises required in the analytic part) the content of the generic
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locale local_nilpotent_term (specially interesting is the inner morphism which enables
us to use the results proved in the original locale).

locale local nilpotent alpha =
alpha beta + local nilpotent term D R a bound phi

This previous locale will be later used to define the locale containing all the
BPL premises. Then, the results stated in Part 1 were proved in Isabelle in ap-
proximately 25 pages of code (see [2], file:analytic_part_local.html), including the
given definitions and comments. The pretty syntax facilities provided by Isabelle
allowed us to maintain the appearance of the statements similar to the mathematical
ones presented in Part 1. For instance, (1a) and (1d) in Section 3.2 (which are a
consequence of the BPL premises) correspond to:

corollary (in Iocal nilpotent alpha) lemma 2 2 3:
shows (h o ®) = (V¥ o h)

lemma (in local nilpotent alpha) lemma 2 2 5:
shows W = 1z ©r (h ®r § ®r V)
and ¥V = 1p ©r (h Qr ® ®r 8)
and ¥V = 1z ©r (¥ ®r h ®r §)

4.3 Structural Part

The proof of the structural part required us to prove 6 different lemmas. The notion
of local nilpotency, used in the analytic part, is no longer necessary; just the identities
stated in Part 1: 1a, 1b, 1c, 1d are relevant. The sketch of the proof is as follows.

Given a reduction ( f, g, h) from a differential group (D, dp) to a differential group
(C, dc) and a perturbation §p, a new reduction between (D, dp + 8p) and (C, d.) is
obtained through the following collection of lemmas.

Lemma 1 Given a reduction (f, g, h) from (D,dp) to (C,dc), an isomorphism is
defined between (C, dc) and (im gf, dp) by means of g and f|im gt.

Lemma 1 and some preliminary results required 11 pages of Isabelle code (see [2],
file:lemma_2_2_11.html). A definition of isomorphism between differential groups
was also provided. As we have explained in Section 4.1, the automation provided with
the Isabelle ring theory was available when reasoning with endomorphisms by using
interpretation. Unfortunately, when homomorphisms between different algebraic
structures are involved in the proof, this direct automation is not applicable. In this
case, it is necessary to resort to the functional view of homomorphisms. An arbitrary
element of the homomorphism domain has to be selected, and the proof is carried

out over it. Thus, the proof in Isabelle turns out to be a bit rambling.

Lemma 2 Given a differential group (D, dp), a reduction can be defined from it to
(ker p, dp) by means of (idp — p, inCyer p, h),! where p =dph+ hdp.

IThe function incyer p denotes the canonical inclusion of the differential subgroup ker p into D.
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Lemma 2 and some previous results required 10 pages of code (see [2], file:
lemma_2_2 14.html). Here we were able to take advantage of the level of abstraction
provided by the ring of endomorphisms of the differential group (D, dp) (more
concretely, we were able to apply any tactics proved in the ring structure, from
the simple ones as associativity or distributivity, to the most elaborated ones, as
the one already introduced, algebra, avoiding the intrinsic difficulties of dealing with
the explicit operations over endomorphisms). It is hard to estimate how much work
we were able to avoid thanks to this tool, but it can be said that in one of our previous
attempts to prove this result without making use of this automation, we gave up
after 2000 lines of code, whereas the proof of the result now takes up approximately
100 lines of code, and can be read with some previous knowledge of Isabelle and
the mathematical field. The difficulty of estimating the improvement is due to the
effort employed in building the infrastructure to apply the automation tools (the
infrastructure has been written once, but can be indefinitely reused, of course), as
introduced in Section 4.1.

Lemma 3 Under the BPL premises, a reduction from (D', dp) to (ker p’, dp) with
p' =dph + hdp is defined by means of (idp —p’, inCyer pr, 1').

Lemma 3 is an instantiation of Lemma 2, and its proof was almost straightforward.
On the other hand, the notion of perturbation, as well as the equations over the
power series, appears for the first time in our stepwise proof of the BPL. This means
that the analytic part presented in Section 4.2 had to be assembled prior to the proof
of Lemma 3. After the introduction of this additional information, the proof of the
result and some definitions to maintain the similarity with the mathematical notation,
required just 3 pages of code (see [2], file:lemma_2_2_15_local_nilpot.html).

Lemma 4 Under the BPL premises, an isomorphism is defined between the abelian
groups ker p and ker p’ by means of t = 1'|imy and v’ = 7 |im 5, where 1 =idp —p
and ©’ =idp —p'.

Lemma 4, like Lemma 1, demands the definition of a new isomorphism, in this
case between two abelian groups. The proof, with previous results, required 14
pages of code and the difficulties found were similar to the ones explained for
Lemma 1 (see [2], file:lemma_2_2_17_local_nilpot.html). Here, the relevance of the
representation of the domains of homomorphisms can be observed again, because
we have to be able to restrict them to new ones inside of the proofs.

Finally, by using Lemma 5 and 6, ensuring that the composition of the appropriate
reductions and isomorphisms gives rise to new reductions, a reduction is explicitly
defined from (D, dp) to (C, d¢).

Lemma 5 Let (A, d 4) be a differential group, B be an abelian group, and F: A — B,
F~': B — A define an isomorphism between the abelian groups A and B. Then, the
abelian group homomorphism dg defined by Fda F~" is a differential for the abelian
group B such that F and F~' become inverse isomorphisms between differential
groups.
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Lemma 6 Let (f, g h): (A,ds) = (B,dp) be a reduction and F: (B,dp) — (C,dc)
a differential group isomorphism (being F~' its inverse). Then (Ff, gF~', h) :
(A,dy) = (C,dc) defines a new reduction.

These two lemmas are generic ones, that is, they do not need any of the BPL
premises. As usual, dealing with homomorphisms with different domains demands
a careful treatment, and automation for simplifying expressions cannot be applied.
Both results required 6 pages of code (see [2], files:lemma_2_2_18_local_nilpot.html,
lemma_2_2_19_local_nilpot.html).

In the previous detailed description of Part 2 of the BPL proof, some features have
been used very commonly.

For instance, the carrier set of algebraic structures is modified in several occa-
sions. From (D, dp) we have defined (ker p, dp), from (D', dp) we have defined
(ker p’, dp), from (C,d¢) we define (imgf, dc) and also (kergf, dc), and so on.
Our implementation of algebraic structures, as records with the carrier set in one
field, proved to be especially suitable for these modifications. There are, at least,
two possible ways of obtaining this behavior in Isabelle. The first one uses record
updating (i.e., it creates a copy of the record except for the indicated value),
modifying just the required field over an existing record.? The second one, and the
preferred here, is to explicitly write down each field of every updated record, making
unification of record expressions easier (despite its obvious space overhead).

Another notable problem is the dependence of definitions on the underlying
records. An illustrative example is the definition of the group endomorphisms of
a differential group (D, dp). Even when this definition does not involve dp (the diff
field of the record representing the differential group), proving in Isabelle that an
endomorphism of (D, dp) is also an endomorphism of (D, dp + §p) has to be done
explicitly. Some kind of smart inheritance of definitions between structures would
be a very convenient tool here. The idea would be that whenever a definition is
independent of some record fields, any modification of these record fields should
preserve the defined object.

4.4 Assembling the Pieces: The Complete Proof

With a correct chaining of the previous results, a reduction is defined from the
perturbed differential group (D, dp +8p) to (C, f't'(dp + p)lkerpT8) by means
of f't’(idp —p’), incyery Tg and A'. These expressions do not correspond to the
ones announced in the BPL statement (only the one of /4'!), but by applying some
simplifications to them we can reach the initial goal.

These simplifications again prove relationships where endomorphisms and ho-
momorphisms over different domains are present. As an example, consider the

2Unfortunately, updated records are not automatically unfolded, and proving, for instance, that the
unfolded expression of a record is equal to an updated record requires explicit proof steps.
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following Isabelle lemma, where composition of homomorphisms is shown to be
distributive with respect to addition of endomorphisms:

lemma (in ring endomorphisms) 1 _add dist comp:
assumes diff group C and f € hom completion D C
and a € carrier R and b € carrier R
shows £ o (a ®r b) = (Ax. if x € carrier D
then (f o a) x ®c¢ (f o b) x else 1¢)

Similar results had to be proved about difference, multiplication, and both at the
right and left hand. Three pages of code were required for such tasks.

A few more preliminary results were also proved to avoid difficulties related to
partial definitions of (necessarily in Isabelle) total maps. For instance, this is the
case when dealing with differentials of ker p’, (dp + 6p)lkerpr» T = 7' limzx> T = Tlim#'»
where proofs were done by the extensionality principle over functions; the use of the
completion requirement in the definition of homomorphisms showed its usefulness
again, since representing a homomorphism by means of its completion allows us to
know its value both inside and outside of its domain, and thus to complete the proofs.

After these previous requirements, the final statement and proof of the BPL are
obtained in Isabelle as:

lemma (in BPL) BPL: shows reduction D’
( carrier = carrier C, mult = mult C, one = one C,
diff = (Ax. if x € carrier C
then (differec) x Q¢ (f o 8 o W o g) x else 1¢))
(f o ®) (¥ o g) h’
using BPL reduction amnd BPL simplifications by simp

5 On the Constructiveness of the Proof

In this section we will intentionally decrease the degree of formalization used so far.
Our aim is to discuss informally some relevant points on the constructiveness of the
previous mechanized proof of the BPL. In order to accomplish this task, we will
approach constructivism in a loose sense (instead of selecting a specific axiomatic
framework), considering that a proof can be rendered constructive if the excluded
middle, the axiom of choice and similar principles are avoided. The reason for this
rather speculative approach is that to prove formally our claims would require a
substantial effort in re-formalizing our work, and this is not among the goals of this
paper.

Let us first stress that, in its current version, the formalized proof we have
presented is not constructive, even in the previously introduced loose sense. As an
example, in Section 4.2, we have used the Isabelle operator LEAST, whose definition
makes use of the Isabelle operator SOME, which is Hilbert’s epsilon symbol. In the
same vein, we have freely used Isabelle/HOL in its full expressiveness, including the
(explicit or implicit) occurrences of the excluded middle.

In summary, to write this section we have read the previous formal proof seeking
places where some non-constructive tools have been used. This research can be
considered interesting at least from three different perspectives.
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From a theoretical point of view, it is interesting as a first landmark in order to
establish the discipline Sergeraert called constructive algebraic topology (see [33]) as
a true development in some constructive type theory [34].

Technologically, this discussion could open parallel research with the proof as-
sistant Coq, an alternative to Isabelle with respect to its expressiveness. This line
is already being explored in Coq, and some preliminary results can be found in
Coquand and Spiwack [16]. In that paper, they have shown that the structural part
of the BPL proof (see Section 4.3) can be tackled in Coq by using a more abstract
approach than ours. Their framework makes use of pre-abelian categories to create a
context where the proof should be easily implemented. Even when the analytic part
of the BPL proof (presented in Section 4.2) might be difficult to be carried out in this
category theory setting, their approach can be considered very promising.

From a practical perspective, and not independent from the previous point, the
constructive nature of the proof is related to the possibility of extracting programs
from it. Since our primary goal was to certify the correctness of (some parts of) the
Kenzo system, it is clear that any approximation towards verified running code would
be valuable.

Even if in the proof the expressiveness of higher-order logic has been freely
used, an analysis of the proof steps shows that most of them can be expressed in
a constructive logic. Most of the proofs are based on equational reasoning, both in an
automated way (when morphisms are viewed as elements of a group or ring) or in a
set-theoretical manner (when a morphism is interpreted as a function, and proofs are
based on the extensional principle for functions). Thus, as usual, just the parts where
existential quantifiers occur could be dubious for the constructivist.

In the structural part, we made reference in the statements to image subsets
several times. This requires the choice of some elements in these image sets along
the proofs; in other words, to select an element in the preimage, whose existence
is ensured by the very definition, but whose constructiveness is not, in principle,
necessary. A detailed study of the proofs shows that each time an image set appears,
let us say im p, it is the case that the morphism p is a projector, that is pp = p. For
instance, in Lemma 1, p = gf, and then pp = g(fg) f = gf = p, due to condition (1)
in Definition 4. When a projector p is involved, the carrier set of im p is decidable
(x € im p if and only if p(x) = x) and a preimage is computable too, at least in the
case of groups with a decidable equality. This is, anyhow, a reasonable assumption,
since we want to apply our proofs in a computational environment. In fact, in the
Kenzo system, from which most of our examples are obtained, when a group is
defined it is always necessary to provide the system with an equality test among
elements. Thus, assuming that the equality is decidable in our setting, we can
conclude that the occurrence of image sets is not a problem from a constructivist
point of view.

In the analytic part, difficulties are of a completely different nature. Here, the
existential quantifier occurs in the input of the process. The definition of the
nilpotency condition makes use of an existential free of any constraint.

Since the existential quantifier ranges over the natural numbers, it seems that
Markov’s principle [24] might be considered. Let us recall that Markov’s principle
states that

——=3dn.P(n) — 3In.P(n)
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where n ranges over the natural numbers and P is a decidable predicate. Of course,
the previous principle is true in classical logic (it is simply a particular instance of
the excluded middle), and then, to discuss on it, we must place ourselves in an
intuitionistic logic. Let us suppose that we are in intuitionistic logic, and thus our
previous definition of local nilpotency (given on terms of the classical existential
quantifier) should be expressed as:

Vx.——3In.a*(x) =0

If we are assuming that the equality is decidable in our groups (as discussed on the
case of projectors), and Markov’s principle is admitted, the previous formula can be
turned into

Vx.3n.a"(x) =0

but where the existential quantifier is constructive. Then, our proofs can be rewritten
in intuitionistic logic using Markov’s principle (they could be, at least, recursively
constructive ones [35]).

This fact can be made more explicit by taking the following alternative definition
for the nilpotency condition in Isabelle (to be compared with the previous locale
definition, local_nilpotent_term).

locale local nilpotent term = ring endomorphisms D R + var a +
var bound funct +

constraints bound funct :: ‘a => nat

assumes a in R: a € carrier R

and a local nilpot:Vxecarrier D. (a(”)g(bound funct x))x = 1p

While our previous specification of the locale local_nilpotent_term contained a simply
classical existential definition of the nilpotency bound (Vx.3n.a"(x) = 0), here an
explicit bounding function bound_funct is provided (that is to say, bound_funct
is a function f: D — IN such that a/® (x) = 0). Within HOL, and making use of
Hilbert’s epsilon symbol, the two definitions have been proved equivalent. But this
new expression makes it clear that the constructiveness of the notion depends on
the computability of the bounding function. Thus, if we change our definition of the
nilpotency condition by that of the constructive nilpotency condition (that is to say, in
the previous definition we restrict ourselves to working with constructive bounding
functions), we will obtain a framework where the constructiveness of our proof could
be ensured.

6 Code Extraction

From a practical point of view, the previous discussion of constructivism points
out the limits and possibilities for program extraction from our proofs. To this
end, we use the code extraction facilities available in Isabelle (see, for instance,
Berghofer [10, 11]) to extract ML functions from the previous implemented proofs.

As a first consideration, and taking into account the nature of the mathematical
results we have been proving so far (take as an example any of the lemmas in
Section 4.3), the statements of the lemmas are constructive by themselves. In other
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words, the statements establish properties satisfied by some homomorphisms or
algebraic structures, and in addition to this, give the explicit expression of the objects
satisfying those properties. Therefore, the computational content of the mathemat-
ical results is not hidden inside of the proofs (which would make reasonable trying
to extract code from them), but explicitly expressed in the statements. Due to this
consideration, we decided to extract code from the mathematical statements directly,
and to keep proofs apart (the proof itself certifies the correctness of the program
extracted, but is not needed to get that program).

The following example could be illustrative. In an Isabelle lemma we prove that
composition of homomorphisms is closed. Then, once we have the proof, the code
extraction can be directly applied to the Isabelle definition:

lemma hom completion comp: includes group G
assumes £ € hom completion G G and g € hom completion G G
shows f o g € hom completion G G

The ML program extracted from the definition given in the previous lemma is
behaviorally equivalent to the standard ML program which defines the composition
of two functions:

fun comp £ g = (fn x => £ (g %))

In a similar way, we have also applied the code extraction tool to our definition of
addition of homomorphisms:

fun add ¢ D £ g =
(fn x => (if (x |»> carrier C) then mult D (f x) (g x)
else one D)) ;

With these two ML functions, code extraction can be applied to every construction
appearing in the structural part of the BPL as we have introduced it, obtaining the
following result:

val d C’ =
(fn x =>
add C C (diff Q)
(comp (comp (comp f delta) Psi) g) x);

val £’ = (fn x => comp f Phi x);
val g’ = (fn x => comp Psi g x);
val h’ = (fn x => comp h Phi x);

In the previous ML code, delta, Phi, and Psi denote respectively p, & and
WV in Theorem 1, and in the structural part of the BPL, are part of the algorithm
input. Afterwards, ® and W, as explained in the analytic part described in Section 4.2,
are considered as local nilpotent series, and thus, are more complicated from a
constructive or computational point of view. As we have stressed previously, the
formal series appearing in the statement of the BPL defines, in fact, a function, that
can be computed for each element as a finite sum of terms in the power series. Thus,
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the generation of a certified program computing the function defined by the series
should be supported by some inductive process. Being, in some sense, the central
operational core of the BPL, this aspect becomes the essential issue to obtain an
executable ML program from the BPL Isabelle formalization.

In the general case (where the nilpotency condition is expressed by means of an
existential quantifier) code extraction seems to depend on program extraction in
Isabelle when the existence of a bound in an iteration is assumed, but not explicitly
known, a topic interesting by itself and that, according to the authors’ knowledge,
remains open (see [12]).

7 Conclusions and Further Work

The complete mechanized proof of the basic perturbation lemma can be considered a
significant result in formalized mathematics, as far as it deals with both homological
algebra and algebraic topology, two fields of Mathematics that have not received
much attention in automated reasoning up to date. Apart from the work in Coquand
and Spiwack [16], already commented on in Section 5, the only reference known by
the authors is in Kobayashi et al. [22], but even here the approach is not directly
comparable to ours, since it is based on the ring theory approach as described in
Jacobson [19].

Furthermore, our proof can be even more appreciated taking into account the
relevance of the BPL in algorithmic homological algebra, and, from a practical
point of view, in the Kenzo computer algebra system. From the Isabelle community
perspective, perhaps our main contribution is the foundation of an infrastructure that
can be used in any field of mathematics where one must deal with both algebraic
objects and morphisms which interplay (the parts of Mathematics lying on this
description are, as it is well-known, quite dense in the whole discipline). Our method
consists in a balance of the view of morphisms as elements of algebraic structures
(allowing automated equational reasoning) and the view of morphisms as functional
objects (reasoning in a set-theoretical way). This enlarges considerably the field of
application of the tactics already built in the Isabelle Algebra library.

With respect to future work, our next step is to continue the study of the
extraction problems in the context of the BPL. First, it will be necessary to explore
systematically the features of the current Isabelle code generation tools, to elucidate
if they are enough to generate code of the definition of power series we have used in
our proofs. Actually, the definition of power series used so far in our proofs is based
on the Isabelle definition of set, which is not a definition that can be directly applied
to the code generation tool. In the negative case, research to enhance these tools
to cover unbounded iteration should be undertaken. In the same vein, the ongoing
work to improve the interpretation of locales technology should be continued, in
such a way that more parts of our proofs can be automated, or at least, made
more human readable (as explained in the previous paragraph, these improvements
could be applied far beyond the BPL, covering large parts of algebraic categorical
mathematics).

In a more general line, the problem of encoding algebraic topology in some
constructive type theory should be tackled. As a by product, this could relate our
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work to the Coq proof assistant, and could establish new links to compare and
cooperate between the Coq and Isabelle communities.

Even when the certification of Kenzo algorithms (we mean, the real Common Lisp
source code) continues to be a more distant objective, taking into account the current
state of the technology, we do hope that our research enlightens some aspects of the
problem, and, more generally, gives valuable ideas on the question of verifying real-
world software systems.
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