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Abstract Interactive provers typically use higher-order logic, while automatic
provers typically use first-order logic. To integrate interactive provers with automatic
ones, one must translate higher-order formulas to first-order form. The translation
should ideally be both sound and practical. We have investigated several methods
of translating function applications, types, and λ-abstractions. Omitting some type
information improves the success rate but can be unsound, so the interactive prover
must verify the proofs. This paper presents experimental data that compares the
translations in respect of their success rates for three automatic provers.

Keywords Interactive theorem provers · Higher-order logic ·
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1 Introduction

Interactive theorem provers, such as HOL4 [4], Isabelle [13], and PVS [14], are
widely used for formal specification and verification. They provide expressive for-
malisms and tools for managing large-scale proof projects. However, a weakness of
interactive provers is their lack of automation. To overcome this weakness, we have
integrated Isabelle with automatic theorem provers (ATPs) [11]. ATPs use a variety
of reasoning methods and do not require hints on how or when to use an axiom. For
example, they do not expect users to orient equalities or instantiate quantifiers.

J. Meng
National ICT, Canberra, Australia
e-mail: jia.meng@nicta.com.au

L. C. Paulson (B)
Computer Laboratory, University of Cambridge, 15 JJ Thomson Avenue,
Cambridge CB3 OFD, UK
e-mail: lp15@cam.ac.uk



36 J. Meng, L.C. Paulson

Many interactive provers implement some form of higher-order logic (HOL).
Isabelle supports a variety of logics, but most users know it only as Isabelle/HOL.
In contrast, the most powerful ATPs are all based on first-order logic (FOL).
Therefore, a successful integration requires translating HOL problems into first-
order form.

Our criteria for these translations are pragmatic and relate to the requirements
of our integration. We do not expect to obtain automation of full higher-order logic.
We do not expect the translations to have interesting theoretical properties, such
as completeness. We merely seek a translation that achieves a high success rate
for problems containing higher-order features. As will be seen, we even consider
unsound translations, for our integration can verify the soundness of proofs when
importing them into Isabelle (Section 2.8).

We build on the work of Hurd. He has integrated Metis, his own first-order prover,
with the HOL4 interactive proof environment [7]. We consider alternatives to Hurd’s
treatments of function applications, types, and λ-abstractions, backing up our choices
with extensive experimentation. A translation should preserve type information; a
sound approach is to include types for all terms. Unfortunately, full type information
takes up much space. A more compact representation yields better results, as we
demonstrate below. Omitting some type information can lead to unsound proofs.
We outline an algorithm to translate proofs from an unsound translation into a sound
one, which can be used to test the soundness of the original proofs.

A contrasting approach is Otter-λ: Beeson [1] has modified the source code of
the Otter theorem prover, in particular its unification algorithm, to provide limited
higher-order features. Beeson notes, however, that Otter-λ does not implement
higher-order logic:

We do not regard Otter-λ as a “combination of first-order logic and higher-order
logic.” Lambda logic is not higher-order, it is untyped. . . . While there probably
are interesting connections to typed logics, some of the questions about those
relationships are open at present. [1, p. 313]

Even with an ATP for higher-order logic [2], we would somehow need to formalize
Isabelle/HOL’s unusual type system (Section 2.2). Our translations permit the use of
high-performance ATPs, unmodified. ATP technology is developing rapidly, and we
do not wish to be tied to a single system such as Otter.

Bouillaguet et al. [3] have developed a translation from higher-order logic to
first-order logic. They eliminate type information and have proved this approach to
be sound and complete. They even use Isabelle/HOL. Their work is impressive in
its specific application of data structure verification. However, they do not translate
λ-abstractions, and their formulas may refer only to the types of integers and
Java objects.

We have implemented three HOL to FOL translations, two of which are new.
We have also developed an optimization technique that essentially produces two
additional translations. Moreover, we have addressed the question of how to remove
λ-abstractions from the HOL problems. We have implemented both λ-lifting, which
replaces λ-abstractions by newly defined functions [5], and two combinator transla-
tions [22]. We have carried out extensive experiments on all of these translations,
using the provers E [19], SPASS [24], and Vampire 8.1 [18]. One compact translation
significantly outperforms the basic, fully typed one.
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Compared with our previous work [9], we test more translations, we use a larger
problem set, and we take strong measures to ensure that only sound proofs are
counted.

Paper outline. We first describe three approaches to translating types and
discuss their soundness (Section 2). We then describe our experimental results
(Section 3). Next, we present three approaches to translating λ-abstractions, along
with experimental results (Section 4). Finally, we offer some conclusions (Section 5).
Appendix A presents examples of the translations.

2 The Three Translations

Any problem that involves function variables, Boolean variables, or λ-abstractions
is clearly higher-order, but the precise criteria are surprisingly subtle. Consider that
an equation such as hd(Cons X L) = X is first-order if X is of polymorphic type,
but higher-order if its type is Boolean. This situation seems odd: the polymorphic
equation encompasses all types, including type bool. Only in the Boolean case,
however, can hd(Cons X L) be seen as a formula as opposed to a term. In higher-
order logic, formulas are simply terms of Boolean type.

True higher-order reasoning requires deductive mechanisms, such as higher-order
unification, to generate suitable λ-abstractions and logical formulas as the proof
develops. We aim to allow reasoning merely about the first-order aspects of higher-
order problems. Our methods allow use of the equation hd(Cons X L) = X even
for Boolean lists, but we do not expect to prove hd(Cons X L) except in trivial
cases. Our methods accept problems containing functions expressed in λ-notation
and can simplify the results of applying such functions to arguments, but we do not
expect proofs to find interesting instantiations of function variables.

If a higher-order formula is essentially first-order, then translating it to first-
order logic is straightforward; otherwise, its higher-order features must be removed
as described below. We use the following criteria for a formula to be essentially
first-order:

– No function has an argument involving function or Boolean types.
– There are no variables of function or Boolean types.
– There are no higher-type instances of overloaded constants.

An example of the last criterion is the constant 1, which Isabelle/HOL allows to have
any type. (Users can overload 1 with multiple definitions, even at function types.)
If it appears with a function type, then the problem counts as higher-order, because
potentially 1 can appear both as a constant and as a function symbol.

2.1 Features Common to All Translations

Our translations act on the output of the clause form transformation, which takes
place inside Isabelle. Thus, their input consists of clauses that contain higher-order
features. The translations are designed to preserve the first-order aspects of the
problem while making them acceptable to a first-order prover. Higher-order logic
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extends first-order logic in several respects: chiefly, that HOL terms can denote truth
values and functions.

Function values can be expressed by using λ-abstractions or by currying: that is,
by applying a function to fewer than the maximum number of arguments. In FOL,
a function must always be supplied the same number of arguments. Not so in HOL,
as we can see by considering the function map, which applies a function to every
element of a list. It can appear with no arguments, with one argument, or with two
arguments.

map = map
map id = id

map F [] = []

In translating from HOL to FOL, the natural treatment of currying is to regard
all HOL functions as constants while providing a two-argument function (called @
below) to express function application.

HOL formulas are simply Boolean terms, but in first-order logic, formulas and
terms are distinct. A HOL term such as X < g(Y) can appear as an assertion, but it
can also be a function argument, as in f(X < g(Y)). Our translations address this
distinction by providing a predicate, called B below, to convert a Boolean term to a
formula. Logically, B(x) means x=True. Ignoring types, we translate the assertion
X < g(Y) to the formula B(@(@(less,X),@(g,Y))) and the term f(X <
g(Y)) to the term @(f,@(@(less,X),@(g,Y))).

Equality requires special treatment: a HOL equality assertion must be trans-
lated to use the ATP’s built-in equality primitive. However, equality in HOL
may appear in a Boolean-valued term, for example f(X=0). We translate
such occurrences to a new constant symbol, fequal, yielding for our example
@(f,@(@(fequal,X),0)). Reasoning steps may promote this constant to the
predicate level, where it expresses an ordinary equality. To handle such situations,
we define fequal in Isabelle/HOL using the axiom

∀X Y [fequal X Y ⇐⇒ X = Y].
Ignoring types again, this corresponds to the following two clauses.

-B(@(@(fequal,X),Y)) | X = Y
B(@(@(fequal,X),X))

Following Hurd [7] (based, of course, on Turner [23]), we remove λ-abstractions
by translating them to Curry’s combinators S, K, I, B, and C. These are easily defined
in higher-order logic by the usual combinator reduction equations. This and other
approaches are examined in Section 4.

A basic axiom of HOL is function extensionality:

∀ fg [(∀x f (x) = g(x)) → f = g].
It has the following clause form, where ext is a reserved Skolem function symbol.
Given f and g, it yields some x such that f (x) �= g(x).

@(F,@(@(ext,F),G)) != @(G,@(@(ext,F),G)) | F = G
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There is no need for ext to be available as a constant.1 Converting it to a function
would abbreviate this axiom as follows.

@(F,ext(F,G)) != @(G,ext(F,G)) | F = G

Generalizing this idea, we might eliminate unnecessary uses of the constants @ and B
by preprocessing the set of clauses. We examine this optimization in Section 2.7.

All of the examples shown above ignore types. The translations described below
differ in their treatment of types. They translate terms involving the constants
fequal and ext in the same manner as they translate other constants.

2.2 Types in Isabelle/HOL

Isabelle supports polymorphism. This expresses universal quantification over types,
though with no explicit type quantifier. For example, a polymorphic identity function
might have type ’a=>’a, allowing it to take on any type of the form T=>T by
instantiating ’a. For purposes of deduction, type variables come in two forms.
Schematic type variables, written ?’a, ?’b, . . . , can be instantiated by types. Free
type variables, written ’a, ’b, . . . , are not really variables but represent fixed,
unknown types; they typically occur in conjecture clauses and are essentially Skolem
constants for polymorphism.

An example may be illustrative. Consider proving that map id, the function that
applies the identity function to every element of a list, equals the identity function
for lists.

map id = id

When this equation is stated as a conjecture, the functions have the following types.2

– map: (’a=>’a) => (’a list => ’a list)
– id (first occurrence): ’a => ’a
– id (second occurrence): ’a list => ’a list

Proving this equation for the arbitrary, fixed type ’a establishes it for all types.
Isabelle replaces ’a by ?’a once the theorem has been proved, to express this
generality.

The Isabelle/HOL type system has further refinements. An axiomatic type class
denotes a set of types. For example, real (the type of real numbers) is a member
of type class linorder. A type class is axiomatic because it may have a set of
properties – specified by axioms – that all its member types should satisfy. A type may
belong to several type classes, and an intersection of type classes is a sort. Moreover,
each type constructor has one or more arities, which describe how the result type
class depends on the arguments’ type classes. For example, the type constructor
list has an arity that says if its argument is a member of class linorder, then the
resulting list’s type is also a member of linorder. This claim is justified by Isabelle
declarations that define a lexicographic ordering for lists and prove it to satisfy the
axioms of a linear order.

1Miller [12] notes that providing Skolem functions as constants yields the effect of the axiom of
choice. Isabelle/HOL includes this axiom anyway, so we see this as no danger.
2Type constructors in Isabelle use a postfix syntax, so we write ’a list rather than list(’a).
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A constant can be overloaded by giving it a polymorphic type, with different
definitions for various types. For example, the ≤ operator has the polymorphic type
’a=>’a=>bool; when it has type nat=>nat=>bool, it denotes the usual ordering
of the natural numbers, and when it has type ’a set =>’a set => bool it
denotes the subset relation. The latter type is still polymorphic in the type of the
set’s elements. Isabelle’s overloading cannot be eliminated by preprocessing because
polymorphic theorems about ≤ are applicable to all instances of this function, despite
their different meanings.

2.3 Translating Types and Terms to First-Order Logic

Type information – at least some of it – must be preserved when translating higher-
order formulas to first-order logic. This in turn requires that we translate Isabelle
types to FOL terms. A translation should respect overloading, ensuring that Isabelle
theorems involving polymorphic functions are used only for appropriate types.
Isabelle’s axiomatic type class information can be formalized as a collection of simple
facts and implications, and easily translated to Horn clauses [11].

Isabelle types are translated to first-order logic as follows:

– Schematic type variables are translated to first-order variables; for example, ?’a
is translated to T_a. (An initial capital signifies a variable in most ATPs.)

– Free type variables are translated to first-order constants; for example, ’a is
translated to t_a. (Lower case signifies a constant.)

– Compound types are formed by the application of a type constructor to argu-
ments. The type constructor is translated to a first-order function, prefixed with
tc_, and its arguments are translated recursively. For example, the function type
?’a=>nat is translated to tc_fun(T_a,tc_nat). This example contains two
type constructors, fun and nat, the latter taking zero arguments. The translation
of ’a set set is tc_set(tc_set(t_a)).

Our three translations differ in how much type information they retain. As a
starting point, consider a translation that retains no type information at all. The input
is a HOL term from which all λ-abstractions have been removed, as discussed in
Section 4. There are four remaining kinds of terms:

– Schematic variables express generality and are translated to first-order variables.
– Free variables are essentially Skolem constants.
– Constants, even those of function type, are translated to first-order constants.
– Function applications are translated by using the @ operator, as shown in

Section 2.1.

This basic translation resembles the one for types mentioned above. Variable and
constant names are given prefixes to ensure correct capitalization and to distinguish
entities of different kinds that have the same name; we omit the details.

Omitting types yields a compact result, but the resulting proofs can be unsound,
that is, meaningless in higher-order logic. In an unsound proof, the empty clause is
reached through violations of the (omitted) type constraints rather than by refuting
the conjecture, which typically plays no role in the proof. For example, in Isabelle we
can declare a two-element enumeration type, two.

datatype two = a | b
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The Isabelle theory will then include the following theorem.

∀x::two. x=a ∨ x=b

An untyped translation from Isabelle/HOL to first-order logic will discard the
constraint to type two.

X=a | X=b

It therefore asserts that the universe consists of two elements. Given a few axioms
about the natural numbers or lists, ATPs easily detect the inconsistency.

Combinator axioms can also give rise to unsound proofs. If their types are omitted,
then they can express fixedpoint operators, thus deriving a formula φ such that φ =
¬φ. This effect can occur not only with the traditional combinators S, K, and I but
with any higher-order functions that may be present.

Unsound proofs fail during proof reconstruction because Isabelle’s inference
system enforces type constraints. Therefore, they cannot cause Isabelle to accept
false theorems. However, they can prevent the discovery of sound proofs. Including
type information in the translation can prevent unsound proofs, but it can make
problems too large, again preventing the discovery of sound proofs. We have a
tradeoff between sound and prolix translations and unsound but compact ones.
Below we discuss three possible treatments of types: the fully typed, partially typed,
and constant-typed translations. We also say more about soundness and proof
reconstruction.

2.4 Fully Typed Translation

The fully typed translation, due to Hurd [6], is sound. A special function ti pairs
each term with its type. For instance, the term X ≤ Y is translated to

ti(@(ti(@(ti(le, T_a => T_a => bool),
ti(X, T_a)),

T_a => bool),
ti(Y, T_a)),

bool).

For clarity of presentation, we omit the predicate B, needed if X ≤ Y occurs as a
literal. We also leave the type constructors => and bool in their Isabelle form rather
than translating them as tc_fun (T_a, tc_bool) and so forth. Although the
equality predicate built into ATPs is untyped, this translation preserves the types of
the two operands: the equality literal X = Y is translated to

ti(X,T_a) = ti(Y,T_a).

In detail, the translation works as follows:

– A schematic variable is translated to ti(V,T), where V is a logical variable and
T is a translation of its type.

– A free variable or constant is translated to ti(c,T), where c is a constant and
T is a translation of its type.

– A function application is translated to ti(@(t,u),T), where t and u are
translations of the two subterms and T is the translation of the resulting type.
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This translation is sound because it includes types for all terms and subterms,
right down to the variables. When two terms are unified during a resolution
step, their types are unified as well. For example, unifying ti(X, T_a) with
ti(0, nat) instantiates T_a to nat, preventing the unification of ti(Y, nat)
with ti(b, two). This instantiation of types guarantees that terms created in the
course of a proof continue to carry correct types. Isabelle unifies polymorphic terms
similarly. In fact, the resolution steps performed by an ATP could in principle
be reconstructed in Isabelle. Each FOL axiom clause corresponds to an Isabelle
theorem. If two FOL clauses are resolved, then the resolvant FOL clause will
correspond to the Isabelle theorem produced by Isabelle’s own resolution rule.

As the example illustrates, the fully typed translation introduces much redun-
dancy. Every part of a function application is typed: the function’s type includes its
argument and result types, which are repeated in the translation of the function’s
argument and by including the type of the returned result. These large terms are
likely to yield a poor success rate, compared with more compact translations.

The size of the type information grows quadratically. To see this, consider how
many times the type τ occurs in the application of a function f that takes n
arguments.

Arity Term Occs. of τ

0 f : τ 1
1 ( f : τ → τ)(x : τ) : τ 4
2 ((( f : τ → τ → τ)(x : τ)) : τ → τ)(x : τ) : τ 8

As we increase the arity of f from n to n + 1, we replace f : τ n → τ by

(
f : τ n+1 → τ

)
(x : τ) : τ n → τ.

Therefore, the number h(n) of occurrences of τ satisfies the recurrence h(0) = 1
and h(n + 1) = h(n) + n + 3. A simple induction allows us to prove that h(n) =
(n2 + 5n + 2)/2.

To achieve a compact HOL translation, we must omit some type information,
potentially admitting unsound proofs. Hurd [7] uses an untyped translation, relying
on proof reconstruction to verify the proofs and reject unsound ones. If reconstruc-
tion fails, Hurd calls the ATP again, using the fully typed translation. Combining an
efficient but unsound translation with a soundness check achieves both efficiency and
soundness.

We cannot use an untyped translation because our requirements differ from
Hurd’s. His tactic gives the ATP a list of theorems chosen by the user. In contrast,
we send ATPs hundreds of theorems, many involving overloading. Omitting all
types from this large collection would result in many absurd proofs, where, for
example, the operator ≤ simultaneously denoted an integer ordering and the subset
relation. We have designed and experimented with two compact HOL translations:
the partially typed and constant-typed translations. These attach the most important
type information (such as type instantiations of polymorphic constants) that can
block some incorrect resolutions. Neither attaches type information to variables, so
neither correctly handles type two, described in Section 2.2.
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2.5 Partially Typed Translation

The partially typed translation is intended to preserve enough type information to
prevent most unsound proofs, while avoiding the extreme redundancy of the fully
typed translation. It includes only the types of functions in function calls. The type
is translated to a FOL term and is inserted as a third argument of the application
operator (@). Taking the previous formula X ≤ Y as an example, we translate it to

@(@(le, X, T_a => T_a => bool), Y, T_a => bool).

Here, the type of < is a=>a=>bool, and we include this type as an additional
argument of function application @.

In detail, the translation works as follows:

– A schematic variable is translated to a logical variable.
– A free variable or constant is translated to a constant.
– A function application is translated to @(t,u,T), where t and u are translations

of the two subterms and T is the translation of the function’s type.

This translation includes the type of every term, whether a constant or not, that is
used as a function. It still contains some redundant type information, as the example
shows.

2.6 Constant-Typed Translation

The constant-typed translation is designed to be as compact as possible. It retains the
minimum type information needed to ensure correct overloading of constants. Each
polymorphic constant carries type information. We do not include a constant’s full
type but only the instantiated values of its type variables. Monomorphic constants
do not need to carry types because their names alone determine the types of their
arguments. A polymorphic constant is translated to a first-order function symbol. Its
arguments, which represent types, are obtained by matching its actual type against its
declared type. For example, the ≤ operator is declared to have type ’a=>’a=>bool;
if it appears with the type nat=>nat=>bool, then the type argument used in its
translation is nat. This treatment of types is similar to the one we use for problems
that are already first-order.

Again considering our standard example, if X and Y are natural numbers (type
nat), we translate the formula X ≤ Y to

@(@(le(nat), X), Y).

If X and Y are sets (type α set), we translate the formula to

@(@(le(set(T_a)), X), Y).

Equality literals use the built-in equality symbol and contain no type information.
If equality appears as a constant in a Boolean-valued term, then we use the equality
function fequal mentioned in Section 2.1. This constant is treated like any other
and is translated to fequal(T), where T expresses the type of its operands.

In detail, the translation works as follows:

– A schematic variable is translated to a logical variable.
– A free variable is translated to a constant.
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– A constant is translated to a function applied to translated types, as described
above.

– A function application is translated to @(t,u), where t and u are translations of
the two subterms.

This translation can reduce the size of terms significantly. However, it includes
little type information and can be expected to admit many unsound proofs.

2.7 First-Order Versions of the Translations

As remarked above, our translations do not aim to achieve higher-order reasoning
but merely to put higher-order problems into a form acceptable to first-order provers.
For example, the function map can appear sometimes with one argument and
sometimes with two, due to currying. We obtain a single arity for map by introducing
a function application operator, @.

The application operator naturally captures the syntax of higher-order logic, but it
produces large terms. Are there more compact options? The simplest way of avoiding
arity conflicts is to regard function occurrences with different arities as denoting
different functions, say, map1 and map2. However, such an approach could preclude
many proofs, given the importance of currying. A lemma about map1 could not be
used in a theorem about map2.

We have therefore investigated a hybrid approach that attempts to minimize uses
of @ while not eliminating them. We examine the set of clauses to find the minimum
arity of each function. If some function f always appears with at least n arguments,
then we use @ only for arguments in excess of this minimum. For example, if map
always appears with at least one argument, then (ignoring types) we translate map F
L as @(map(F),L).

This approach also precludes some proofs, namely, those that disassemble
function applications. For example, suppose we have the following axiom:

∀F G X Y [dominates F G ∧ Y < GX −→ Y < F X].

This axiom expects terms of the form @(f,x) and @(g,x); it will not be able
to take part in proofs where the application operator has been suppressed. Note,
however, that if dominates f g appears in the problem, then both functions will
have minimum arities of zero, forcing the use of @ for all of their arguments. We do
not expect many natural problems to be affected by this optimization; recall that our
concern is the overall success rate rather than any notion of completeness.

This optimization is easily applied to our translations. We simply modify them
to pass the first n arguments of function f directly to that function, provided all
occurrences of f in the problem have at least n arguments. A related optimization is
to eliminate the predicate B for Boolean-valued functions that are used exclusively
as predicates and never as arguments of functions.

For the fully typed translation, suppose that the operator ≤ always appears with
two arguments. Then, the term X ≤ Y is translated to

ti(le(ti(X,T_a), ti(Y,T_a)), bool).
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If it occurs as a literal, and if the operator ≤ appears only in literals, then we omit the
predicate B and the constraint to type bool:

le(ti(X,T_a), ti(Y,T_a)).

This translation is still sound: as before, all terms and subterms carry types, right
down to the variables. The difference from the unoptimized version is that there are
fewer subterms.

For the partially typed translation, omitting @ could mean omitting all type
information, so we do not consider this option.

For the constant-typed translation, if X and Y have type nat then X ≤ Y
becomes simply le(X,Y,nat). This is very close to the translation we already use
for first-order problems.

2.8 Soundness Issues

We can contemplate the use of unsound translations because all proofs are
reconstructed in Isabelle. We use Hurd’s Metis prover, which generates proof
objects specifically to assist reconstruction [7]. Metis has now been integrated with
Isabelle/HOL [15]. Hurd envisaged users calling Metis with a list of hand-chosen
theorems, to be supplied as axiom clauses to assist the proof. Our integration, how-
ever, allows all known theorems to be considered as lemmas. Given a conjecture, we
apply our simple relevance filter [10] to reduce the number of clauses from thousands
to hundreds, and then call an ATP such as Vampire. From the resulting proof, we
discover which lemmas were actually used, finally generating a Metis call referring
to a few existing theorems. In other words, we use Vampire as a powerful relevance
filter, making the problem small enough for Metis to prove it. Some 5% of problems
are too difficult for Metis even with this reduction [15]. However, with a prover such
as E that outputs TSTP format [21], we can use Metis to reconstruct each proof line
individually. Each clause is translated to the corresponding Isabelle/HOL assertion;
it is proved by a Metis call whose arguments refer to the proof lines justifying that
inference. The idea is similar to that of the Otterfier proof transformation service
[25], which pushes arbitrary resolution proofs through Otter.

Our implementation of proof reconstruction [15] is an instance of a general
approach to converting TSTP proofs from an unsound translation to a sound one.
The constant-typed and partially typed translations contain enough information to
reconstruct full types using standard type inference techniques [17]. Failure of type
inference would indicate that the proof was unsound. Success would not necessarily
produce a correct TSTP proof, as the reconstructed term could contain new type
variables, so a final Otterfier phase might be necessary.

We approach the soundness problem pragmatically. Unsound proofs cannot
produce false theorems in Isabelle, but they can block the discovery of well-typed
proofs. Therefore, rather than giving our linkup all existing theorems, we filter
out those having certain harmful features: specifically, expressions of finiteness. In
particular, the Isabelle/HOL type unit contains only one element. It exists for
technical reasons but has few serious uses. Theorems containing variables of this
type easily lead to unsound proofs, so we forbid them. The Isabelle/HOL type bool
contains only two elements and similarly leads to unsound proofs. Of course, the type
of truth values is hugely more important than type unit. However, reasoning about
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truth values is the job of the ATP; lemmas concerning bool would allow higher-
order reasoning in a few cases, but at excessive cost. An example may be helpful.
The following two clauses allow us to derive Boolean equality (P = Q) from logical
equivalence (P ⇐⇒ Q).

B(P) | B(Q) | P=Q
∼B(P) | ∼B(Q) | P=Q

These clauses cause numerous unsound proofs unless we use the fully typed transla-
tion. They might be useful for proving equations between sets coded as characteristic
functions, but they do not appear to be relevant to many Isabelle proofs. We suppress
certain other clauses that tend to cause unsound proofs. Typical are induction rules
that are highly unlikely to yield bona fide proofs by induction; note that Beeson’s
achievements concerning induction [1] require modifying the ATP’s unification
algorithm.

3 Experiments

We have to choose between a sound but prolix treatment of types and two treatments
that are more compact but admit ill-typed proofs. Applying the first-order optimiza-
tion of Section 2.7 gives another sound and another unsound translation, for a total
of five. Which translation allows the most sound proofs to be found? The answer can
be found empirically, based on data presented below.

3.1 Experimental Setup

For our experiments, we took 153 problems generated by Isabelle, most of which
contain higher-order features. Since our HOL translation can also be used for
purely FOL problems and our experiments were aimed at testing the efficacy of the
translation methods, we translated all problems (both HOL and FOL) using the three
translation methods described in the previous section. We eliminated λ-abstractions
by translating them to combinators. We used our relevance filter [10] to reduce each
problem. We ran these tests on a bank of Dual AMD Opteron processors running at
2400 MHz, using Condor3 to manage our batch jobs.

Readers may wonder, however, how a comparison between sound and unsound
translations can be fair. We have taken steps to ensure that no unsound proofs are
being counted as successful.

Rather than integrating Isabelle with our test harness, which would be compli-
cated, we simulate proof reconstruction using similar ideas. When a proof is found
using an unsound translation, we can identify which axioms were actually used in the
proof and generate a new problem by selecting those axioms from the fully-typed
translation. Thus, we automatically convert each solved problem to a sound one,
while greatly reducing the number of clauses. If some ATP can prove the converted
problem, then we regard the original proof as sound.

We automated this process and applied it to all of the translations under test. We
used all of the ATPs under consideration, in order to see whether any of them were

3http://www.cs.wisc.edu/condor/.

http://www.cs.wisc.edu/condor/
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Fig. 1 E, Version 0.99:
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finding unsound proofs. In each trial, Vampire confirmed at least 94% of the proofs.
The remainder were supplied to other ATPs, and those still failing were inspected
manually. Problems containing no conjecture clauses could immediately be classified
as unsound. (No problem set contained more than two such cases.) A few problems
looked correct but were large, so we devoted some time to deleting needless clauses.
We eventually obtained machine confirmation of the soundness of all the proofs that
used conjecture clauses.

Therefore, in the graphs presented below, we count a proof as sound provided it
uses at least one conjecture clause. In making this choice, we are discounting three
risks as unlikely:

– We have verified the soundness only of those proofs found by ATPs run with a
limit of 300 s per problem. The graphs include proofs found by ATPs run with
many smaller time limits. Conceivably some of these proofs are different from
the ones we verified.

– Showing that the axioms used in the original proof can be used to express a well-
typed proof does not ensure that the original proof was sound. This possibility
is not merely unlikely but harmless: Metis, given the fully typed translation, will
find only the sound proof.

– The ATPs themselves could be unsound.

The manual steps described in this section were done to make our graphs as
accurate as possible. They also suggest steps that a user can take when proof
reconstruction fails. Our approach to proof reconstruction is to deliver an Isabelle
proof script based on the automatic resolution proof [15]. Users do occasionally
simplify these scripts by hand. Of course, if the work environment requires full
automation, failure of proof reconstruction simply means failure.

Fig. 2 SPASS (SOS Enabled):
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Fig. 3 Vampire (CASC
Mode): percentage solved
against runtime
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Unsound proofs look very different from sound ones. They typically bear no
relation to the problem at hand, ignoring the conjecture clauses and instead finding
a contradiction from unrelated axioms. The terms in these proofs are crazy combina-
tions of functions of various types.

3.2 Results

Each graph compares the success rates of the five translations, for some prover, as the
runtime per problem increases from 20 to 300 s. These short runtimes are appropriate
for our application of ATPs to support interactive proofs.

– “Success rate” denotes the percentage of the 153 problems proved.
– “Runtime” denotes the time spent in the ATPs alone. The problem files were

generated in advance by using Isabelle. Translation time is negligible; other
processing within Isabelle takes a few seconds per problem.

We tested three provers: E 0.99 “Singtom” (Fig. 1), SPASS 2.2 (Fig. 2) and Vampire 8
(Fig. 3). SPASS ran with SOS enabled and splitting disabled.4 Although SOS makes
SPASS incomplete, it greatly improves SPASS’s success rate for our problems by
making the proof search more goal-directed. Vampire ran with its CASC option,
which is highly effective.

The graphs show that the constant-typed translation does indeed yield the highest
success rate, while the fully typed translation yields the lowest. The first-order opti-
mization is beneficial to both translations. The optimized, constant-typed translation
is clearly best for all three ATPs. SPASS gives the widest spread of success rates,
depending on the translation used.

To obtain a quantitative picture of the differences between the three translations,
we chose one of the problems and used tptp2X [20] to summarize its syntactic
features. This problem is of median size in our problem set. It has 329 clauses after
relevance filtering, of which 310 are nontrivial; the remaining 19 constitute a monadic
Horn theory that describes Isabelle’s type class system. Table 1 shows the figures
common to all three translations. Table 2 shows variations among the translations.
The figures shown under “Words” were obtained by the UNIX wc utility, since a
problem’s size is better measured in words than in bytes.

A major difference is the maximal term depth, which increases monotonically
as we move from the best-performing translation to the worst. Shallower terms are

4The precise option string is -Splits=0 -FullRed=0 -SOS=1.
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Table 1 Common to all
translations Number of clauses 329 (40 non-Horn; 126 unit)

Number of literals 681 (171 equality)
Maximal clause size 5 (2 average)

presumably less complex. The problem size in words also increases for the poorer-
performing translations: the largest number exceeds the smallest by a factor of
3.2. For the fully typed translation, the first-order optimization halves the number
of words. This optimization also reduces the number of constants in the problem
because it formalizes functions as functions rather than relying exclusively on the
apply operator.

The workshop version of this paper [9] presents somewhat different results. In a
few cases,5 the partially typed translation comes top. The two sets of experiments
have many differences. Our problem set is larger: 153 rather than 79. Our current
problem set includes the original 79 but adds many harder problems, especially to test
reasoning about λ-expressions. We have refined the code that generates problems.
In particular, we exclude clauses that we expect could harm the success rate, such as
low-level definitions of certain primitives. We now use our relevance filter [10] rather
than supplying substantially the same axioms to all problems.

When choosing a translation, we should also take account of soundness. As
mentioned in Section 3.1 above, we tested all proofs for type correctness by using
them to generate reduced, fully typed versions. Nearly all proofs turned out to be
sound, and all the bad ones had the telltale sign of using no conjecture clauses.
Unsound proofs are not shown in the graphs. As expected, the fully typed translation
produced no unsound proofs. With the partially typed translation, one proof was
unsound. With the constant-typed translation, two proofs were unsound, but with the
first-order optimization, no proofs were unsound. The additional freedom offered by
the apply operator seems to lend itself mainly to unsound proofs. The optimized,
constant-typed translation is obviously the best. If soundness is essential, then we
suggest the optimized fully typed one.

4 Translating λ-Abstractions: An Empirical Comparison

Most first-order provers cannot handle terms that contain λ-abstractions. The lit-
erature on functional programming discusses a variety of different methods for

Table 2 Differences between
three translations Function symbols Max. term depth Words

Constant (FO) 39 (7 constant) 6 (2 average) 3,909
Constant 42 (7 constant) 9 (3 average) 3,909
Partially 42 (39 constant) 11 (5 average) 9,188
Full (FO) 40 (12 constant) 13 (4 average) 5,886
Full 43 (39 constant) 18 (8 average) 12,317

5For Vampire 8.0, with a time limit below 300 s.
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translating λ-abstractions. A well-known approach is to use the five combinators
S, K, I, B, and C. The first two combinators suffice in theory, but they yield an
output that is exponential in the number of nested λ-abstractions. Even with all five
combinators, the size of the output is quadratic [16]. They are inefficient: during a
β-reduction – namely, the evaluation of a function application – numerous occur-
rences of combinators must be expanded in the function body.

In an attempt to improve the success rate, we decided to experiment with two
alternatives to the venerable Curry combinators: Turner’s extended combinator set
[22] and λ-lifting. We were surprised to discover that they yielded no convincing
improvement. We feel that these experiments are of interest despite this outcome.
Future research may improve these translations.

4.1 The Five Curry Combinators

S and K alone can express all λ-abstractions. The identity combinator, I, can be
defined by SKK. As Turner relates [22], Curry improved upon this system by
introducing two new combinators, B and C, to handle special cases of S. The full
set can be defined as follows.

I x = x

K x y = x

S x y z = x z(y z)

B x y z = x(y z)

C x y z = x z y

Note that B x y yields the function composition of x and y.
A λ-expression can be translated to combinators by the following rewrite rules.

λx. x �−→ I

λx. p �−→ K p (x not free in p)

λx. p x �−→ p (x not free in p)

λx. p q �−→ B p (λx. q) (x not free in p)

λx. p q �−→ C (λx. p) q (x not free in q)

λx. p q �−→ S(λx. p)(λx. q) (x free in p and q)

Unfortunately, this translation is quadratic in the nesting depth of λ-abstractions. For
example, consider the translation of the expression λxyz. pq, where p and q may be
arbitrary terms. As each abstraction is translated, the prefix grows dramatically.

λxyz. pq �−→ λxy. S(λz. p)(λz. q)

�−→ λx. S(B S(λyz. p))(λyz. q)

�−→ S(B S(B(B S)(λxyz. p)))(λxyz. q)

Three nested λ-abstractions arise quite easily in our examples, so it is natural to seek
improvements.
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Fig. 4 E, Version 0.99:
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4.2 The Turner Combinators

Turner [22] introduced three new combinators, S′, B′, and C′, in order to address the
quadratic behavior shown above. Peyton Jones [16] claims that Turner’s system can
be further improved if B′ is replaced by B∗, yielding the following definitions of the
new combinators.6

S′ w x y z = w(x z)(y z)

B∗ w x y z = w(x(y z))

C′ w x y z = w(x z) y

This system is used by first translating to the Curry combinators, then simplifying the
result by applying the following optimizations:

B p (B q r) = B∗ p q r

C(B p q)r = C′ p q r

S(B p q)r = S′ p q r

The optimized result is more compact and allows shorter derivations. This might be
expected to yield a higher success rate.

4.3 Defining New Functions: λ-Lifting

The idea of λ-lifting is that the functions actually present in the expression being
translated should serve as the combinators [5]. These are sometimes called super-
combinators. No built-in combinators are required. Instead, λ-abstractions are trans-
lated from the inside out. Each abstraction is replaced by a call to a newly defined
function. This function obviously has as arguments those of the λ-abstraction, with
additional arguments for all variables free in that abstraction. With λ-lifting, we can
expect a compact output (see Appendix A.5 for an example). Moreover, β-reduction
should take only one rewriting step rather than many.

6Turner’s B′ satisfies B′ w x y z = wx(y z).
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Fig. 5 SPASS (SOS enabled):
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During our experiments, it became clear that λ-lifting delivers poor results unless
several points are noted:

– Every occurrence of λx. f x, where x is not free in f , should be replaced by f .
– An equation between a constant and a λ-expression should be translated directly

to another equation. For example, the formula h = λx. f (x, g(x)) should be
translated to h(x) = f (x, g(x)).

– Multiple abstractions can be translated as a unit. Although the general treatment
of nested abstractions will yield a correct result, it will needlessly introduce a
series a function definitions.

– Existing function definitions must be reused as often as possible.

In some of these points, we deviate from Hughes [5]. He did not combine multiple
abstractions. For the additional arguments, he used not the free variables but
the maximal free subexpressions. His prime motivation was to obtain fully lazy
evaluation, which is of no concern to us. In future work, however, we may experiment
with his approach. Our current λ-lifting algorithm is straightforward.

– Traverse the formula recursively.
– If the abstraction λx1 . . . xn. t is encountered, where t does not begin with a λ,

then recursively perform λ-lifting on t, yielding the λ-free term t′. Let y1, . . . , ym

be variables that are free in λx1 . . . xn. t′.
– Choose a new function symbol f , define it by fy1 . . . ym x1 . . . xn = t′, and return

fy1 . . . ym as the translation. However, if an instance of an existing function
symbol can express λx1 . . . xn. t′, use that instead of defining a new function.

Reuse of existing functions is essential because equal abstractions should have
identical translations. Combinators automatically have this valuable property:
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Fig. 7 λ-Lifting versus
combinators (relevance
filtering)
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because they are syntax directed, they are guaranteed to give the same output for
the same input. Even with different inputs, the combinator translations sometimes
have a similar form, as in KX and K(SK). With λ-lifting, the outputs will always be
different unless functions are reused. Such differences can be overcome in a proof
only by an explicit application of extensionality:

∀ fg [(∀x f (x) = g(x)) → f = g].
This theorem states that functions f and g are equal provided they deliver the same
results for equal arguments. Proofs take much longer, and often fail, if they are forced
to perform such a step.7

4.4 Experimental Results for the λ-Translations

The first question to settle is whether our three (or five) translations obey the same
ranking with λ-lifting as they do with combinators. As Figs. 4 and 5 indicate, they
largely do. It is surprising, however, that the two constant-typed translations are
approximately equal for Vampire (Fig. 6).

To compare λ-lifting with combinators, we first consider the optimized constant-
typed translation. Figure 7 plots six graphs, showing the results for E, SPASS, and
Vampire with both treatments of abstractions. This graph shows some interesting
effects. For E, λ-lifting delivers a clear benefit. For SPASS, λ-lifting delivers worse
results, to a similar degree. For Vampire, λ-lifting is slightly inferior. This graph also
shows that E delivers poor results with all of our higher-order translations; these
results are puzzling because with our first-order translations it is generally superior
to SPASS [10].

The comparison of λ-lifting with combinators is complicated by its interaction with
our relevance filter. Relevance filtering behaves differently with λ-lifting because
the abstraction functions are declared as “real” functions early in the translation
to clauses. With our current problem set, we have found that relevance filtering
makes several easy problems impossible by omitting essential axioms, so this could
be biasing the results.

To eliminate this bias, we have also run tests with relevance filtering switched
off. An unfiltered problem typically contains 8,500 clauses. With such large axiom

7Joe Hurd tells us that the very presence of the extensionality axiom in a problem greatly harms the
success rate. We ran experiments with E, SPASS, and Vampire but found that the presence of this
axiom had no effect on the success rate.
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Fig. 8 λ-Lifting versus
combinators (no relevance
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sets, the constant-typed translation admits far too many unsound proofs. In a typical
test, all 153 problems were “proved,” but only 53 (or 35%) of these proofs used any
conjecture clauses. We therefore use the optimized, fully typed translation for this
test (Fig. 8). Now λ-lifting delivers a small benefit for both E and SPASS, but a deficit
for Vampire. The dismal success rates demonstrate the contributions of our work on
both relevance filtering [10] and higher-order translations.

Thus, λ-lifting is beneficial with two automatic provers but is harmful with a
third. This finding is surprising, given that the combinator translation is quadratic.
Of course, theorem proving is very different from functional programming, which is
concerned entirely with the reduction of huge λ-expressions. Few of our problems
have even three nested λ-abstractions, and many of them remain unsolved with both
approaches. Note that λ-lifting generates many equations, compared with the five
equations defining the combinators: perhaps this degrades Vampire’s performance.

We were very surprised to find that Turner’s combinators yielded no improvement
over Curry’s. They performed worse by a tiny margin. On closer investigation, we
discovered that Turner’s optimizations were not yielding dramatic reductions in
the size of the output. Despite Turner’s claim [22, p. 269] that “the sizes of the
successive terms now [form] only a linear progression,” the translation as a whole
is still quadratic [8]. We observed reductions of approximately 30%, in the number
of combinators produced. Set against this modest reduction is the larger number of
combinator equations that must be used in proofs.

5 Conclusions

We have described three HOL to FOL translations, which differ in their treatment
of types. Two of these admit a “first-order” optimization, which uses real function
application whenever possible, so the number of translations is effectively five. We
have carried out extensive experiments to evaluate the effectiveness of these trans-
lations. We have also obtained statistics concerning how compact our translations
are. Of the three translations – fully typed, partially typed, and constant-typed –
the constant-typed translation produces the most compact output. Our optimization,
which applies to the fully typed and constant-typed translations, reduces the term
depth and the problem size. Naturally, we would expect a prover’s success rate
to increase with a more compact clause form. That is what we observed, with all
three provers tested. The difference between best and worst was up to 20 percentage
points.
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Because only the fully typed translations are sound, proofs found by using the
other translations must be validated in some way, such as by proof reconstruction.
The proportion of unsound proofs depends on which and how many axioms are
present. In our experiments, it ranged from zero (for our standard configuration)
to 65% (for huge problems containing thousands of irrelevant axioms). Therefore,
the choice of translation must be made with care.

We have implemented methods for using the sound and unsound translations in
concert. A proof found by using an unsound translation can be used to generate
a version of the same problem by using a sound translation, but containing only
the axioms necessary for the proof. Thus, the unsound translation is used as a
means of relevance filtering, which improves the success rate of the sound but prolix
translation. This method simulates, by using resolution alone, the approach to proof
reconstruction implemented in Isabelle.

We also compared three approaches to eliminating λ-abstractions: the five Curry
combinators, the eight Turner combinators (modified), and λ-lifting. We obtained
evidence in favor of λ-lifting, but it was inconclusive, and we expect further gains to
be made here.

The higher-order logic we have investigated is Isabelle/HOL. However, our
translations should be equally applicable to the similar logic implemented in the
HOL4 system. Any translations for PVS would have to take account of predicate
subtyping, but their treatment of basic types might be based on our techniques.

The test data used in our experiments is available at http://www.cl.cam.ac.
uk/∼lp15/Data/ho-translations/.
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made many useful suggestions for improving this paper.

Appendix

A Examples of the Various Translations

To illustrate the effects of the translations, we present all five variants using combi-
nators and one variant using λ-lifting. The conjecture being proved is the base case
of a structural induction on lists:

map (λx. (f x, g x)) [] = zip (map f xs) (map g [])

It relates two familiar list functions: map, which applies a function to every element
of a list, and zip, which combines a pair of lists to yield a list of pairs. This base case
is trivial because both sides collapse to the empty list.

The three clauses include the negation of the conjecture above and two trivial
properties of our functions.

map f [] = []
zip xs [] = []

Only necessary clauses are presented. The clause set delivered to ATPs contains
approximately three hundred. We have reformatted the text slightly to improve
readability.

http://www.cl.cam.ac.uk/~lp15/Data/ho-translations/
http://www.cl.cam.ac.uk/~lp15/Data/ho-translations/
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A.1 The Fully Typed Translation

cnf(cls_conjecture_0,negated_conjecture,
(ti(hAPP(ti(hAPP(ti(c_List_Omap, tc_fun(tc_fun(t_c,
tc_prod(t_a, t_b)), tc_fun(tc_List_Olist(t_c),
tc_List_Olist(tc_prod(t_a, t_b))))), ti(hAPP(ti(hAPP(ti(c_COMBS,
tc_fun(tc_fun(t_c, tc_fun(t_b, tc_prod(t_a, t_b))),
tc_fun(tc_fun(t_c, t_b), tc_fun(t_c, tc_prod(t_a, t_b))))),
ti(hAPP(ti(hAPP(ti(c_COMBB, tc_fun(tc_fun(t_a, tc_fun(t_b,
tc_prod(t_a, t_b))), tc_fun(tc_fun(t_c, t_a), tc_fun(t_c,
tc_fun(t_b, tc_prod(t_a, t_b)))))), ti(c_Pair, tc_fun(t_a,
tc_fun(t_b, tc_prod(t_a, t_b))))), tc_fun(tc_fun(t_c, t_a),
tc_fun(t_c, tc_fun(t_b, tc_prod(t_a, t_b))))), ti(v_f,
tc_fun(t_c, t_a))), tc_fun(t_c, tc_fun(t_b, tc_prod(t_a,
t_b))))), tc_fun(tc_fun(t_c, t_b), tc_fun(t_c, tc_prod(t_a,
t_b)))), ti(v_g, tc_fun(t_c, t_b))), tc_fun(t_c, tc_prod(t_a,
t_b)))), tc_fun(tc_List_Olist(t_c), tc_List_Olist(tc_prod(t_a,
t_b)))), ti(c_List_Olist_ONil, tc_List_Olist(t_c))),
tc_List_Olist(tc_prod(t_a, t_b))) !=
ti(hAPP(ti(hAPP(ti(c_List_Ozip, tc_fun(tc_List_Olist(t_a),
tc_fun(tc_List_Olist(t_b), tc_List_Olist(tc_prod(t_a, t_b))))),
ti(hAPP(ti(hAPP(ti(c_List_Omap, tc_fun(tc_fun(t_c, t_a),
tc_fun(tc_List_Olist(t_c), tc_List_Olist(t_a)))), ti(v_f,
tc_fun(t_c, t_a))), tc_fun(tc_List_Olist(t_c),
tc_List_Olist(t_a))), ti(c_List_Olist_ONil,
tc_List_Olist(t_c))), tc_List_Olist(t_a))),
tc_fun(tc_List_Olist(t_b), tc_List_Olist(tc_prod(t_a, t_b)))),
ti(hAPP(ti(hAPP(ti(c_List_Omap, tc_fun(tc_fun(t_c, t_b),
tc_fun(tc_List_Olist(t_c), tc_List_Olist(t_b)))), ti(v_g,
tc_fun(t_c, t_b))), tc_fun(tc_List_Olist(t_c),
tc_List_Olist(t_b))), ti(c_List_Olist_ONil,
tc_List_Olist(t_c))), tc_List_Olist(t_b))),
tc_List_Olist(tc_prod(t_a, t_b))))).

cnf(cls_map_Osimps_I1_J_0,axiom,
(ti(hAPP(ti(hAPP(ti(c_List_Omap, tc_fun(tc_fun(T_b__1,
T_a__1), tc_fun(tc_List_Olist(T_b__1), tc_List_Olist(T_a__1)))),
ti(V_f, tc_fun(T_b__1, T_a__1))), tc_fun(tc_List_Olist(T_b__1),
tc_List_Olist(T_a__1))), ti(c_List_Olist_ONil,
tc_List_Olist(T_b__1))), tc_List_Olist(T_a__1)) =
ti(c_List_Olist_ONil, tc_List_Olist(T_a__1)))).

cnf(cls_zip_Osimps_I1_J_0,axiom,
(ti(hAPP(ti(hAPP(ti(c_List_Ozip,
tc_fun(tc_List_Olist(T_a__1), tc_fun(tc_List_Olist(T_b__1),
tc_List_Olist(tc_prod(T_a__1, T_b__1))))), ti(V_xs,
tc_List_Olist(T_a__1))), tc_fun(tc_List_Olist(T_b__1),
tc_List_Olist(tc_prod(T_a__1, T_b__1)))), ti(c_List_Olist_ONil,
tc_List_Olist(T_b__1))), tc_List_Olist(tc_prod(T_a__1, T_b__1))) =
ti(c_List_Olist_ONil, tc_List_Olist(tc_prod(T_a__1, T_b__1))))).

A.2 The Fully Typed Translation (Optimized)

Here we can see the tremendous reduction achieved by the first-order optimization.
It is even more compact than the partially typed version.

cnf(cls_conjecture_0,negated_conjecture,
(ti(c_List_Omap(ti(c_COMBS(ti(hAPP(hAPP(c_COMBB, ti(c_Pair,
tc_fun(t_a, tc_fun(t_b, tc_prod(t_a, t_b))))), ti(v_f,
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tc_fun(t_c, t_a))), tc_fun(t_c, tc_fun(t_b, tc_prod(t_a,
t_b)))), ti(v_g, tc_fun(t_c, t_b))), tc_fun(t_c, tc_prod(t_a,
t_b))), ti(c_List_Olist_ONil, tc_List_Olist(t_c))),
tc_List_Olist(tc_prod(t_a, t_b))) !=
ti(hAPP(hAPP(c_List_Ozip, ti(c_List_Omap(ti(v_f,
tc_fun(t_c, t_a)), ti(c_List_Olist_ONil, tc_List_Olist(t_c))),
tc_List_Olist(t_a))), ti(c_List_Omap(ti(v_g, tc_fun(t_c, t_b)),
ti(c_List_Olist_ONil, tc_List_Olist(t_c))),
tc_List_Olist(t_b))), tc_List_Olist(tc_prod(t_a, t_b))))).

cnf(cls_map_Osimps_I1_J_0,axiom,
(ti(c_List_Omap(ti(V_f, tc_fun(T_b__1, T_a__1)),
ti(c_List_Olist_ONil, tc_List_Olist(T_b__1))),
tc_List_Olist(T_a__1)) =
ti(c_List_Olist_ONil, tc_List_Olist(T_a__1)))).

cnf(cls_zip_Osimps_I1_J_0,axiom,
(ti(hAPP(hAPP(c_List_Ozip, ti(V_xs, tc_List_Olist(T_a__1))),
ti(c_List_Olist_ONil, tc_List_Olist(T_b__1))),
tc_List_Olist(tc_prod(T_a__1, T_b__1))) =
ti(c_List_Olist_ONil, tc_List_Olist(tc_prod(T_a__1, T_b__1))))).

A.3 The Partially Typed Translation

cnf(cls_conjecture_0,negated_conjecture,
(hAPP(hAPP(c_List_Omap, hAPP(hAPP(c_COMBS,
hAPP(hAPP(c_COMBB, c_Pair, tc_fun(tc_fun(t_a, tc_fun(t_b,
tc_prod(t_a, t_b))), tc_fun(tc_fun(t_c, t_a), tc_fun(t_c,
tc_fun(t_b, tc_prod(t_a, t_b)))))), v_f, tc_fun(tc_fun(t_c,
t_a), tc_fun(t_c, tc_fun(t_b, tc_prod(t_a, t_b))))),
tc_fun(tc_fun(t_c, tc_fun(t_b, tc_prod(t_a, t_b))),
tc_fun(tc_fun(t_c, t_b), tc_fun(t_c, tc_prod(t_a, t_b))))), v_g,
tc_fun(tc_fun(t_c, t_b), tc_fun(t_c, tc_prod(t_a, t_b)))),
tc_fun(tc_fun(t_c, tc_prod(t_a, t_b)),
tc_fun(tc_List_Olist(t_c), tc_List_Olist(tc_prod(t_a, t_b))))),
c_List_Olist_ONil, tc_fun(tc_List_Olist(t_c),
tc_List_Olist(tc_prod(t_a, t_b)))) !=
hAPP(hAPP(c_List_Ozip, hAPP(hAPP(c_List_Omap, v_f,
tc_fun(tc_fun(t_c, t_a), tc_fun(tc_List_Olist(t_c),
tc_List_Olist(t_a)))), c_List_Olist_ONil,
tc_fun(tc_List_Olist(t_c), tc_List_Olist(t_a))),
tc_fun(tc_List_Olist(t_a), tc_fun(tc_List_Olist(t_b),
tc_List_Olist(tc_prod(t_a, t_b))))), hAPP(hAPP(c_List_Omap, v_g,
tc_fun(tc_fun(t_c, t_b), tc_fun(tc_List_Olist(t_c),
tc_List_Olist(t_b)))), c_List_Olist_ONil,
tc_fun(tc_List_Olist(t_c), tc_List_Olist(t_b))),
tc_fun(tc_List_Olist(t_b), tc_List_Olist(tc_prod(t_a, t_b)))))).

cnf(cls_map_Osimps_I1_J_0,axiom,
(hAPP(hAPP(c_List_Omap, V_f, tc_fun(tc_fun(T_b__1, T_a__1),
tc_fun(tc_List_Olist(T_b__1), tc_List_Olist(T_a__1)))),
c_List_Olist_ONil, tc_fun(tc_List_Olist(T_b__1),
tc_List_Olist(T_a__1))) =
c_List_Olist_ONil)).

cnf(cls_zip_Osimps_I1_J_0,axiom,
(hAPP(hAPP(c_List_Ozip, V_xs, tc_fun(tc_List_Olist(T_a__1),
tc_fun(tc_List_Olist(T_b__1), tc_List_Olist(tc_prod(T_a__1,
T_b__1))))), c_List_Olist_ONil, tc_fun(tc_List_Olist(T_b__1),
tc_List_Olist(tc_prod(T_a__1, T_b__1)))) =
c_List_Olist_ONil)).
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A.4 The Constant-Typed Translation

cnf(cls_conjecture_0,negated_conjecture,
(hAPP(hAPP(c_List_Omap(t_c, tc_prod(t_a, t_b)),
hAPP(hAPP(c_COMBS(t_c, t_b, tc_prod(t_a, t_b)),
hAPP(hAPP(c_COMBB(t_a, tc_fun(t_b, tc_prod(t_a, t_b)), t_c),
c_Pair(t_a, t_b)), v_f)), v_g)), c_List_Olist_ONil(t_c)) !=
hAPP(hAPP(c_List_Ozip(t_a, t_b), hAPP(hAPP(c_List_Omap(t_c,
t_a), v_f), c_List_Olist_ONil(t_c))), hAPP(hAPP(c_List_Omap(t_c,
t_b), v_g), c_List_Olist_ONil(t_c))))).

cnf(cls_map_Osimps_I1_J_0,axiom,
(hAPP(hAPP(c_List_Omap(T_b__1, T_a__1), V_f),

c_List_Olist_ONil(T_b__1)) =
c_List_Olist_ONil(T_a__1))).

cnf(cls_zip_Osimps_I1_J_0,axiom,
(hAPP(hAPP(c_List_Ozip(T_a__1, T_b__1), V_xs),

c_List_Olist_ONil(T_b__1)) =
c_List_Olist_ONil(tc_prod(T_a__1, T_b__1)))).

A.5 The Constant-Typed Translation (Optimized)

This version is almost legible. Here, we compare combinators with λ-lifting.
cnf(cls_conjecture_0,negated_conjecture,

(c_List_Omap(c_COMBS(hAPP(hAPP(c_COMBB(t_a, tc_fun(t_b,
tc_prod(t_a, t_b)), t_c), c_Pair(t_a, t_b)), v_f), v_g, t_c,
t_b, tc_prod(t_a, t_b)), c_List_Olist_ONil(t_c), t_c,
tc_prod(t_a, t_b)) !=
hAPP(hAPP(c_List_Ozip(t_a, t_b), c_List_Omap(v_f,
c_List_Olist_ONil(t_c), t_c, t_a)), c_List_Omap(v_g,
c_List_Olist_ONil(t_c), t_c, t_b)))).

cnf(cls_map_Osimps_I1_J_0,axiom,
(c_List_Omap(V_f, c_List_Olist_ONil(T_b__1), T_b__1, T_a__1) =
c_List_Olist_ONil(T_a__1))).

cnf(cls_zip_Osimps_I1_J_0,axiom,
(hAPP(hAPP(c_List_Ozip(T_a__1, T_b__1), V_xs),

c_List_Olist_ONil(T_b__1)) =
c_List_Olist_ONil(tc_prod(T_a__1, T_b__1)))).

Here is the same problem, using λ-lifting. The second conjecture clause defines the
function v_llabs__subgoal__1 corresponding to the abstraction in the problem.
In this proof it is not actually required, because map f [] = [].

cnf(cls_conjecture_0,negated_conjecture,
(c_List_Omap(hAPP(hAPP(v_llabs__subgoal__1, v_f), v_g),

c_List_Olist_ONil(t_c), t_c, tc_prod(t_a, t_b)) !=
c_List_Ozip(c_List_Omap(v_f, c_List_Olist_ONil(t_c), t_c, t_a),

c_List_Omap(v_g, c_List_Olist_ONil(t_c), t_c, t_b),
t_a, t_b))).

cnf(cls_conjecture_1,negated_conjecture,
(hAPP(hAPP(hAPP(v_llabs__subgoal__1, V_f), V_g), V_x) =
c_Pair(hAPP(V_f, V_x), hAPP(V_g, V_x), t_a, t_b))).

cnf(cls_map_Osimps_I1_J_0,axiom,
(c_List_Omap(V_f, c_List_Olist_ONil(T_b__1), T_b__1, T_a__1) =
c_List_Olist_ONil(T_a__1))).

cnf(cls_zip_Osimps_I1_J_0,axiom,
(c_List_Ozip(V_xs, c_List_Olist_ONil(T_b__1), T_a__1, T_b__1) =
c_List_Olist_ONil(tc_prod(T_a__1, T_b__1)))).
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