
J Autom Reasoning (2007) 38:227–259
DOI 10.1007/s10817-006-9049-7

A Tableau Algorithm for Description Logics
with Concrete Domains and General TBoxes

Carsten Lutz · Maja Miličić

Accepted: 1 July 2006 / Published online: 6 December 2006
© Springer Science + Business Media B.V. 2006

Abstract In order to use description logics (DLs) in an application, it is crucial to
identify a DL that is sufficiently expressive to represent the relevant notions of
the application domain, but for which reasoning is still decidable. Two means of
expressivity required by many modern applications of DLs are concrete domains
and general TBoxes. The former are used for defining concepts based on concrete
qualities of their instances such as the weight, age, duration, and spatial extension.
The purpose of the latter is to capture background knowledge by stating that the
extension of a concept is included in the extension of another concept. Unfortunately,
combining concrete domains with general TBoxes often leads to DLs for which
reasoning is undecidable. In this paper, we identify a general property of concrete
domains that is sufficient for proving decidability of DLs with both concrete domains
and general TBoxes. We exhibit some useful concrete domains, most notably a
spatial one based on the RCC-8 relations that have this property. Then, we present a
tableau algorithm for reasoning in DLs equipped with concrete domains and general
TBoxes.

Key words description logic · concrete domains · decidability · tableau algorithm

1 Introduction

Description logics (DLs) are an important family of logic-based knowledge repre-
sentation formalisms [4]. In DL, one of the main research goals is to provide a
toolbox of logics such that, for a given application, one can select a DL with adequate
expressivity. Here, adequate means that, on the one hand, all relevant concepts from
the application domain can be captured and, on the other hand, no unessential means

C. Lutz (B) · M. Miličić
Institute of Theoretical Computer Science, TU Dresden, Germany
e-mail: lutz@tcs.inf.tu-dresden.de

228 J Autom Reasoning (2007) 38:227–259

of expressivity should be included to prevent an avoidable increase in computational
complexity. For several relevant applications of DLs such as the Semantic Web and
reasoning about ER and UML diagrams, there is a need for DLs that include, among
others, the expressive means concrete domains and general TBoxes [3, 8, 22]. The
purpose of concrete domains is to enable the definition of concepts with reference
to concrete qualities of their instances such as the weight, age, duration, and spatial
extension. General TBoxes play an important role in modern DLs as they allow to
represent background knowledge of application domains by stating via inclusions
C � D that the extension of a concept C is included in the extension of a concept D.

Unfortunately, combining concrete domains with general TBoxes easily leads
to undecidability. For example, it has been shown in [25] that the basic DL ALC
extended with general TBoxes and a rather inexpressive concrete domain based
on the natural numbers and providing for equality and incrementation predicates
is undecidable; see also the survey paper [23]. In view of this discouraging result,
it is a natural question whether any useful concrete domains can be combined
with general TBoxes in a decidable DL. A positive answer to this question has
been given in [24] and [20], where two such well-behaved concrete domains are
identified: a temporal one based on the Allen relations for interval-based temporal
reasoning, and a numerical one based on the reals and equipped with various
unary and binary predicates such as “≤”, “>5”, and “ �=”. Using an automata-based
approach, researchers have shown [20, 24] that reasoning in the DLs ALC and
SHIQ extended with these concrete domains and general TBoxes is decidable and
ExpTime-complete.

The purpose of this paper is to advance the knowledge about decidable DLs with
both concrete domains and general TBoxes. Our contribution is twofold: first, instead
of focusing on particular concrete domains as in previous work, we identify a general
property of concrete domains, called ω-admissibility, that is sufficient for proving
decidability of DLs equipped with concrete domains and general TBoxes. For
defining ω-admissibility, we concentrate on a particular kind of concrete domains:
constraint systems. Roughly, a constraint system is a concrete domain that has only
binary predicates, which are interpreted as jointly exhaustive and pairwise disjoint
(JEPD) relations. We exhibit two example constraint systems that are ω-admissible:
a temporal one based on the real line and the Allen relations [1], and a spatial
one based on the real plane and the RCC8 relations [6, 9, 29]. The proof of ω-
admissibility turns out to be relatively straightforward in the Allen case, but is
somewhat cumbersome for RCC8. We believe that there are many other useful
constraint systems that can be proved ω-admissible.

Second, we develop a tableau algorithm for DLs with both general TBoxes and
concrete domains. This algorithm is used to establish a general decidability result
for ALC equipped with general TBoxes and any ω-admissible concrete domain.
In particular, we obtain decidability of ALC with general TBoxes and the Allen
relations as first established in [24], and, as a new result, prove decidability of ALC
with general TBoxes and the RCC8 relations as a concrete domain. In contrast to
existing tableau algorithms [13, 17], we do not impose any restrictions on the concrete
domain constructor. As state-of-the-art DL reasoners such as FaCT and RACER are
based on tableau algorithms similar to the one described in this paper [12, 14], we
view our algorithm as a first step toward an efficient implementation of description
logics with (ω-admissible) concrete domains and general TBoxes. In particular, we

J Autom Reasoning (2007) 38:227–259 229

identify an expressive fragment of our logic that should be easily integrated into
existing DL reasoners.

This paper is organized as follows. In Section 2, we introduce constraint systems
and define ω-admissibility. In Section 3, we introduce the description logic ALC(C)

that incorporates constraint systems and general TBoxes. The tableau algorithm for
deciding satisfiability inALC(C) is developed in Section 4. In Section 5, we discuss the
feasibility of our algorithm and identify a fragment for which the tableau algorithm
is implementable in a particularly straightforward way.

2 Constraint Systems

We introduce a general notion of constraint system that is intended to capture
standard constraint systems based on a set of jointly-exhaustive and pairwise-disjoint
(JEPD) binary relations. Examples for such systems include spatial constraint net-
works based on the RCC8 relations [6, 9, 30] or on cardinal direction relations
[10], and temporal constraint networks based on Allen’s relations of time intervals
[1, 28, 34] or on relations between time points [33, 34].

Definition 1 (Rel-network) Let Var be a countably infinite set of variables and Rel
a finite set of binary relation symbols. A Rel-constraint is an expression (x r y) with
x, y ∈ Var and r ∈ Rel. A Rel-network is a (finite or infinite) set of Rel-constraints.
For N a Rel-network, we use VN to denote the variables used in N. We say that N is
complete if, for all x, y ∈ VN , there is exactly one constraint (x r y) ∈ N.

We define the semantics of Rel-network by using complete Rel-networks as mod-
els. Intuitively, the nodes in these complete networks should be viewed as concrete
values rather than as variables. Equivalently to our network-based semantics, we
could proceed as in constraint satisfaction problems, associate each variable with a
set of values, and view relations as constraints on these values; see, for example, [31].

Definition 2 (Model, Constraint System) Let N be a Rel-network and N′ a complete
Rel-network. We say that N′ is a model of N if there is a mapping τ : VN → VN′ such
that (x r y) ∈ N implies (τ (x) r τ(y)) ∈ N′.

A constraint system C = 〈Rel,M〉 consists of a finite set of binary relation symbols
Rel and a set M of complete Rel-networks (the models of C). A Rel-network N is
satisfiable in C if M contains a model of N.

To emphasize the different role of variables in Rel-networks and in models, we
denote variables in the former with x, y, . . . and in the latter with v, v′, and so forth.
Note that Rel-networks used as models have to be complete, which corresponds to
the relations in Rel to be jointly exhaustive and mutually exclusive.

Equivalently to our network-based semantics, we could proceed as in constraint
satisfaction problems, associate each variable with a set of values, and view relations
as constraints on these values; see, for example, [31].

230 J Autom Reasoning (2007) 38:227–259

In the following two subsections, we introduce two example constraint systems:
one for spatial reasoning based on the RCC8 topological relations in the real plane,
and one for temporal reasoning based on the Allen relations in the real line.

2.1 RCC8

The RCC8 relations, which are illustrated in Figure 1, are intended to describe the
relation between regions in topological spaces [29]. In this paper, we will use the
standard topology of the real plane, which is one of the most appropriate topologies
for spatial reasoning. Let

RCC8 = {eq,dc,ec,po, tpp,ntpp, tppi,ntppi}
denote the RCC8 relations. Recall that a topological space is a pair T = (U, I), where
U is a set and I is an interior operator on U ; that is, for all s, t ⊆ U , we have

I(U) = U I(s) ⊆ s

I(s) ∩ I(t) = I(s ∩ t) II(s) = I(s).

As usual, the closure operator C is defined as C(s) = I(s), where t = U \ t, for
t ⊆ U . As the regions of a topological space T = (U, I), we use the set of nonempty,
regular closed subsets of U , where a subset s ⊆ U is called regular closed if CI(s) = s.
Given a topological space T and a set of regions UT, we define the extension of the
RCC8 relations as the following subsets of UT × UT:

(s, t) ∈ dcT iff s ∩ t = ∅
(s, t) ∈ ecT iff I(s) ∩ I(t) = ∅ ∧ s ∩ t �= ∅
(s, t) ∈ poT iff I(s) ∩ I(t) �= ∅ ∧ s \ t �= ∅ ∧ t \ s �= ∅
(s, t) ∈ eqT iff s = t
(s, t) ∈ tppT iff s ∩ t = ∅ ∧ s ∩ I(t) �= ∅ ∧ s �= t

(s, t) ∈ ntppT iff s ∩ I(t) = ∅ ∧ s �= t
(s, t) ∈ tppiT iff (t, s) ∈ tppT

(s, t) ∈ ntppiT iff (t, s) ∈ ntppT.

Let TR2 be the standard topology on R
2 induced by the Euclidean metric, and let

RSR2 be the set of all non-empty regular closed subsets of TR2 . Then we define the
constraint system

RCC8R2 = 〈RCC8,MR2〉

Figure 1 The eight RCC8
relations. s t s t ts ts

s po t s eq t

stt ss t s t

s ntppi ts tppi t

s tpp t s ntpp ts dc t s ec t

J Autom Reasoning (2007) 38:227–259 231

by setting MR2 := {NR2}, where NR2 is defined by fixing a variable vs ∈ Var for every
s ∈ RSR2 and setting

NR2 :=
{
(vs r vt) | r ∈ RCC8, s, t ∈ RSR2 and (s, t) ∈ rT

R2

}
.

Note that using only regular closed sets excludes subdimensional regions such as
points and lines. This approach is necessary for the RCC8 relations to be jointly
exhaustive and pairwise disjoint.

2.2 Allen’s Relations

In artificial intelligence, constraint systems based on Allen’s interval relations are a
popular tool for the representation of temporal knowledge [1]. Let

Allen = {b,a,m,mi,o,oi, d,di, s, si, f, fi,=}
denote the 13 Allen relations. Examples of these relations are given in Figure 2. As
the flow of time, we use the real numbers with the usual ordering. Let IntR denote
the set of all closed intervals [r1, r2] over R with r1 < r2; that is, point-intervals are
not admitted. The extension rR of each Allen relation r is a subset of IntR × IntR. It
is defined in terms of the relationships between endpoints in the obvious way; cf.
Figure 2. We define the constraint system

AllenR = 〈Allen,MR〉
by setting MR := {NR}, where NR is defined by fixing a variable vi ∈ Var for every
i ∈ IntR and setting

NR :=
{
(vi r v j) | r ∈ Allen, i, j ∈ IntR and(i, j) ∈ rR

}
.

We could also define the constraint system AllenQ based on the rationals rather
than on the reals: this has no impact on the satisfiability of finite and infinite Allen-
networks (which are countable by definition). If we use the natural numbers or the
integers, this still holds for finite networks but not for infinite ones: there are infinite

Figure 2 The 13 Allen
relations.

black b gray
gray a black

black m gray
gray mi black

black o gray
gray oi black

black d gray
gray di black

black s gray
gray si black

black f gray
gray fi black

232 J Autom Reasoning (2007) 38:227–259

Allen-networks that are satisfiable over the reals and rationals, but not over the
natural number and integers.

2.3 Properties of Constraint Systems

We will use constraint systems as a concrete domain for description logics. To obtain
sound and complete reasoning procedures for DLs with such concrete domains, we
require that constraint systems satisfy certain properties. First, we need to ensure
that satisfiable networks (satisfying some additional conditions) can be “patched”
together to a joint network that is also satisfiable. This condition is ensured by the
patchwork property.

Definition 3 (Patchwork Property) Let C = 〈Rel,M〉 be a constraint system, and let
N, M be finite complete Rel-networks such that for the intersection parts

IN,M := {(x r y) | x, y ∈ VN ∩ VM and (x r y) ∈ N}
IM,N := {(x r y) | x, y ∈ VN ∩ VM and (x r y) ∈ M}

we have IN,M = IM,N . Then the composition of N and M is defined as N ∪ M. We say
that C has the patchwork property if the following holds: If N and M are satisfiable,
then N ∪ M is satisfiable.

The patchwork property is similar to the property of constraint networks for-
mulated by Balbiani in [5], where constraint networks are combined with linear
temporal logic.

For using constraint systems with the DL tableau algorithm presented in this
paper, we must be sure that, even if we patch together an infinite number of
satisfiable networks, the resulting (infinite) network is still satisfiable. This condition
is guaranteed by the compactness property.

Definition 4 (Compactness) Let C = 〈Rel,M〉 be a constraint system. If N is a Rel-
network and V ⊆ VN , we write N|V to denote the network {(x r y) ∈ N | x, y ∈ V} ⊆
N. Then C has the compactness property if the following holds: a Rel-network N with
VN infinite is satisfiable in C if and only if, for every finite V ⊆ VN , the network N|V
is satisfiable in C.

Finally, our tableau algorithm has to check satisfiability of certain C-networks.
Thus, we have to assume that C-satisfiability is decidable. The properties of constraint
systems we require are summarized in the following definition.

Definition 5 (ω-admissible) Let C = (Rel,M) be a constraint system. We say that C
is ω-admissible iff the following holds:

1. Satisfiability of finite C-networks is decidable;
2. C has the patchwork property (c.f. Definition 3);
3. C has the compactness property (c.f. Definition 4).

In Appendixes A and B, we prove that RCC8R2 and AllenR satisfy the patchwork
property and the compactness property. Moreover, satisfiability of finite networks is

J Autom Reasoning (2007) 38:227–259 233

NP-complete (and thus decidable) in both systems: this is proved in [34] for AllenR

and in [30] for RCC8R2 . Thus, RCC8R2 and AllenR are ω-admissible.

3 Syntax and Semantics

We introduce the description logic ALC(C) that allows us to define concepts with
reference to the constraint system C. Different incarnations of ALC(C) are obtained
by instantiating it with different constraint systems.

Definition 6 (ALC(C)-concepts) Let C = (Rel,M) be a constraint system, and let
NC,NR, andNcF be mutually disjoint and countably infinite sets of concept names, role
names, and concrete features. We assume that NR is partitioned into two countably
infinite subsets NaF and NsR. The elements of NaF are called abstract features and
the elements of NsR standard roles. A path of length k + 1 with k ≥ 0 is a sequence
R1 · · · Rkg consisting of roles R1, . . . , Rk ∈ NR and a concrete feature g ∈ NcF. A path
R1 · · · Rkg with {R1, . . . , Rk} ⊆ NaF is called feature path.

The set of ALC(C)-concepts is the smallest set such that1

1. Every concept name A ∈ NC is a concept.
2. If C and D are concepts and R ∈ NR, then ¬C, C � D, C � D, ∀R.C, and ∃R.C

are concepts.
3. If u1 and u2 are feature paths and r1, . . . , rk ∈ Rel, then the following are also

concepts:

∃u1, u2.(r1 ∨ · · · ∨ rk) and ∀u1, u2.(r1 ∨ · · · ∨ rk).

4. If U1 and U2 are paths of length at most two and r1, . . . , rk ∈ Rel, then the
following are also concepts:

∃U1, U2.(r1 ∨ · · · ∨ rk) and ∀U1, U2.(r1 ∨ · · · ∨ rk).

A concept inclusion is an expression of the form C � D, where C and D are
concepts. We use C .= D as abbreviation for the two concept inclusions C � D and
D � C. A finite set of concept inclusions is called a TBox.

Observe that we restrict the length of paths inside the constraint-based constructor
to two only if at least one of the paths contains a standard role. The TBox formalism
introduced in Definition 6 is often called general TBox [4] because it subsumes
several weaker variants [7, 19]. Throughout this paper, we use � as abbreviation
for an arbitrary propositional tautology and C → D for ¬C � D.

Definition 7 (ALC(C) Semantics) An interpretation I is a tuple (�I, ·I , MI), where
�I is a set called the domain, ·I is the interpretation function, and MI ∈ M. The
interpretation function maps

– Each concept name C to a subset CI of �I ;
– Each role name R to a subset RI of �I × �I ;

1This is an extension of the language introduced in the conference version of this paper [26].

234 J Autom Reasoning (2007) 38:227–259

– Each abstract feature f to a partial function fI from �I to �I ;
– Each concrete feature g to a partial function gI from �I to the set of variables

VMI of MI .

If r = r1 ∨ · · · ∨ rk, where r1, . . . , rk ∈ Rel, we write MI |= (v r v′) iff there exists
an i ∈ {1, . . . , k} such that (v r v′) ∈ MI . The interpretation function is then extended
to arbitrary concepts as follows:

¬CI := �I \ CI ,

(C � D)I := CI ∩ DI,

(C � D)I := CI ∪ DI,

(∃R.C)I := {
d ∈ �I | ∃e ∈ �I with (d, e) ∈ RI and e ∈ CI}

,

(∀R.C)I := {
d ∈ �I | ∀e ∈ �I , if (d, e) ∈ RI , then e ∈ CI}

,

(∃U1, U2.r)I := {
d ∈ �I | ∃v1 ∈ UI

1 (d) and v2 ∈ UI
2 (d)

with MI |= (v1 r v2)
}
,

(∀U1, U2.r)I := {
d ∈ �I | ∀v1 ∈ UI

1 (d) and v2 ∈ UI
2 (d),

we have MI |= (v1 r v2)
}

where for a path U = R1 · · · Rkg and d ∈ �I , UI(d) is defined as

{
v ∈ VMI |∃e1, . . . , ek+1 : d = e1,

(ei, ei+1) ∈ RI
i for 1 ≤ i ≤ k, and gI(ek+1) = v

}
.

An interpretation I is a model of a concept C iff CI �= ∅. I is a model of a TBox
T iff it satisfies CI ⊆ DI for all concept inclusions C � D in T .

Observe that the network M in Definition 7 is a model of the constraint system
C, whence variables in this network correspond to values in C and are denoted with
v, v′ rather than x, y.

The following example TBox describes some properties of a hotel using the con-
straint system RCC8R2 , where has-room is a role, has-reception and has-carpark are
abstract features (assuming that a hotel has at most a single reception and car park),
loc is a concrete feature, and all capitalized words are concept names.

Hotel � ∀has-room.Room � ∀has-reception.Reception

� ∀has-carpark.CarPark

Hotel � ∀(has-room loc), (loc).tpp ∨ ntpp

� ∀(has-room loc), (has-room loc).dc ∨ ec ∨ eq

CarFriendlyHotel .= Hotel � ∃(has-reception loc), (loc).tpp

� ∃(has-carpark loc), (loc).ec

� ∃(has-carpark loc), (has-reception loc).ec

The first concept inclusion expresses that hotels are related via the three roles to
objects of the proper type. The second concept inclusion says that the rooms of a
hotel are spatially contained in the hotel and that rooms do not overlap. The last

J Autom Reasoning (2007) 38:227–259 235

Figure 3 Example of a
CarFriendlyHotel.

concept inclusion describes hotels that are convenient for car owners: they have a
carpark that is directly next to the reception. This situation is illustrated in Figure 3.

The most important reasoning tasks for DLs are satisfiability and subsumption.
A concept C is called satisfiable with respect to a TBox T iff there exists a common
model of C and T . A concept D subsumes a concept C with respect to T (written
C �T D) iff CI ⊆ DI holds for each model I of T . It is well known that subsumption
can be reduced to (un)satisfiability: C �T D iff C � ¬D is unsatisfiable w.r.t. T . This
property allows us to concentrate on concept satisfiability when devising reasoning
procedures.

4 A Tableau Algorithm for ALC(C)

We present a tableau algorithm that decides satisfiability of ALC(C)-concepts w.r.t.
TBoxes. Tableau algorithms are among the most popular decision procedures for
description logics because they are amenable to various optimization techniques and
often can be implemented efficiently. Therefore, we view the algorithm presented
in this paper as a first step toward practicable reasoning with concrete domains and
general TBoxes. On the flip side, algorithms such as the one developed in this section
usually do not yield tight upper complexity bounds.

The algorithm developed in the following is independent of the constraint system
C. This independence is achieved by delegating reasoning in C to an external reasoner
that decides satisfiability of C-networks. Throughout this section, we assume C to be
ω-admissible.

4.1 Normal Forms

For convenience, we first convert the input concept and TBox into an appropriate
syntactic form. More precisely, we convert concepts and TBoxes into negation
normal form (NNF) and restrict the length of paths that appear inside the constraint-
based concept constructors. We start by describing NNF conversion. A concept is
said to be in negation normal form if negation occurs only in front of concept names.
The following lemma shows that NNF can be assumed without loss of generality. For

236 J Autom Reasoning (2007) 38:227–259

a path U = R1 · · · Rkg, we write ud(U) to denote the concept ∀R1. · · · ∀Rk.(∀g, g.r �
∀g, g.r′) where r, r′ ∈ Rel are arbitrary such that r �= r′.2

Lemma 1 (NNF Conversion) Exhaustive application of the following rewrite rules
translates ALC(C)-concepts to equivalent ones in NNF.

¬¬C � C

¬(C � D) � ¬C � ¬D

¬(C � D) � ¬C � ¬D

¬(∃R.C) � (∀R.¬C)

¬(∀R.C) � (∃R.¬C)

¬(∀U1, U2.(r1 ∨ · · · ∨ rk)) �

⎧⎪⎨
⎪⎩

⊥ if Rel = {r1, . . . , rk}
∃U1, U2.

(∨
r∈Rel\{r1,...,rk}

r
)

otherwise

¬(∃U1, U2.(r1 ∨ · · · ∨ rk)) �

⎧⎪⎨
⎪⎩

ud(U1) � ud(U2) if Rel = {r1, . . . , rk}
∀U1, U2.

(∨
r∈Rel\{r1,...,rk}

r
)

otherwise

By nnf(C), we denote the result of converting C into NNF using the above rules.

In Lemma 1, the last two transformations are equivalence preserving since the
Rel-networks used as models in C are complete.

We now show how to restrict the length of paths by converting concepts and
TBoxes into path normal form. This normal form was first considered in [24] in the
context of the description logic T DL and in [20] in the context of�-SHIQ.

Definition 8 (Path Normal Form) An ALC(C)-concept C is in path normal form
(PNF) if it is in NNF and for all subconcepts

∃U1, U2.(r1 ∨ · · · ∨ rk) and ∀U1, U2.(r1 ∨ · · · ∨ rk)

of C, the length of U1 and U2 is at most two. An ALC(C)-TBox T is in path normal
form iff T is of the form {� � C}, with C in PNF.

The following lemma shows that we can w.l.o.g. assume ALC(C)-concepts and
TBoxes to be in PNF.

Lemma 2 Satisfiability of ALC(C)-concepts w.r.t. TBoxes can be reduced in polyno-
mial time to satisfiability of ALC(C)-concepts in PNF w.r.t. TBoxes in PNF.

Proof We first define an auxiliary mapping and then use this mapping to translate
ALC(C)-concepts into equivalent ones in PNF. Let C be an ALC(C)-concept. By

2This presupposes the natural assumption that Rel has cardinality at least two.

J Autom Reasoning (2007) 38:227–259 237

Lemma 1, we may assume w.l.o.g. that C is in NNF. For every feature path u =
f1 · · · fng used in C, we assume that [g], [fng], . . . , [f1 · · · fng] are fresh concrete
features. We inductively define a mapping λ from feature paths u in C to concepts as
follows.

λ(g) = �
λ(f u) = (∃ f [u], [f u]. =) � ∃ f.λ(u)

For every ALC(C)-concept C, a corresponding concept ρ(C) is obtained as follows.
First replace all subconcepts ∀u1, u2.(r1 ∨ · · · ∨ rk) (with u1, u2 feature paths) with

ud(u1) � ud(u2) � ∃u1, u2.(r1 ∨ · · · ∨ rk).

Then replace all subconcepts ∃u1, u2.(r1 ∨ · · · ∨ rk) with

∃[u1], [u2].(r1 ∨ · · · ∨ rk) � λ(u1) � λ(u2).

We extend the mapping ρ to TBoxes. For a TBox T we define

DT := �
C�D∈T

nnf(C → D)

and set

ρ(T) = {� � ρ(DT)}.
Clearly, ρ(C) and ρ(T) are in PNF, and the translation can be done in polynomial
time. Moreover, it is easy to check that C is satisfiable w.r.t. T iff ρ(C) is satisfiable
w.r.t. ρ(T): if I is a model of ρ(C) and ρ(T), then it can be seen that I is also a
model of C and T as well. For the other direction, let I be a model of C and T . A
model J of ρ(C) and ρ(T) is obtained by extending I with the interpretion of freshly
introduced concrete features in the following way:

[f1 . . . fng]J := fJ1 ◦ · · · ◦ fJn ◦ gJ . ��

The previous lemma shows that, in what follows, we may assume w.l.o.g. that all
concepts and TBoxes are in PNF.

4.2 Data Structures

We introduce the data structures underlying the tableau algorithm, an operation
for extending this data structure, and a cycle detection mechanism that is needed
to ensure termination of the algorithm. As already said, we assume that the input
concept C0 is in PNF and that the input TBox T is of the form T = {� � CT }, where
CT is in PNF.

The main ingredient of the data structure underlying our algorithm is a tree
that, in case of a successful run of the algorithm, represents a single model of the
input concept and TBox. Because of the presence of the constraint system C, this
tree has two types of nodes: abstract ones that represent individuals of the logic
domain �I and concrete ones that represent values of the concrete domain. We
use sub(C) to denote the set of subconcepts of the concept C and set sub(C0,T) :=
sub(C0) ∪ sub(CT).

238 J Autom Reasoning (2007) 38:227–259

Definition 9 (Completion system) Let Oa and Oc be disjoint and countably infinite
sets of abstract nodes and concrete nodes. A completion tree for an ALC(C)-concept
C and a TBox T is a finite, labeled tree T = (Va,Vc, E,L) with nodes Va ∪ Vc and
edges E ⊆ (Va × (Va ∪ Vc)) such that Va ⊆ Oa and Vc ⊆ Oc. The tree is labeled as
follows:

1. Each node a ∈ Va is labeled with a subset L(a) of sub(C,T).
2. Each edge (a, b) ∈ E with a, b ∈ Va is labeled with a role name L(a, b) occurring

in C or T .
3. Each edge (a, x) ∈ E with a ∈ Va and x ∈ Vc is labeled with a concrete feature

L(a, x) occurring in C or T .

A node b ∈ Va is an R-successor of a node a ∈ Va if (a, b) ∈ E and L(a, b) = R, while
x ∈ Vc is a g-successor of a if (a, x) ∈ E and L(a, x) = g. The notion U-successor for
a path U is defined in the obvious way.

A completion system for an ALC(C)-concept C and a TBox T is a pair S = (T,N)

where T = (Va,Vc, E,L) is a completion tree for C and T and N is a Rel-network
with VN = Vc.

We now define an operation that is used by the tableau algorithm to add new
nodes to completion trees. The operation respects the functionality of abstract and
concrete features.

Definition 10 (⊕ Operation) An abstract or concrete node is called fresh in a
completion tree T if it does not appear in T. Let S = (T,N) be a completion system
with T = (Va,Vc, E,L). We use the following operations:

– If a ∈ Va, b ∈ Oa fresh in T, and R ∈ NR, then S ⊕ aRb yields the completion
system obtained from S in the following way:

• If R �∈ NaF or R ∈ NaF and a has no R-successors, then add b to Va, (a, b) to
E and set L(a, b) = R, L(b) = ∅.

• If R ∈ NaF and there is a c ∈ Va such that (a, c) ∈ E and L(a, c) = R, then
rename c in T with b .

– If a ∈ Va, x ∈ Oc fresh in T, and g ∈ NcF, then S ⊕ agx yields the completion
system obtained from S in the following way:

• If a has no g-successors, then add x to Vc, (a, x) to E and set L(a, x) = g.
• If a has a g-successor y, then rename y in T and N with x.

Let U = R1 · · · Rng be a path. With S ⊕ aUx, where a ∈ Va and x ∈ Oc is fresh in
T, we denote the completion system obtained from S by taking distinct nodes
b 1, ..., b n ∈ Oa, which are fresh w.r.t. T, and setting

S′ := S ⊕ aR1b 1 ⊕ · · · ⊕ b n−1 Rnb n ⊕ b ngx.

The tableau algorithm works by starting with an initial completion system that
is then successively expanded with the goal of constructing a model of the input
concept and TBox. To ensure termination, we need a mechanism for detecting cyclic
expansions, which is commonly called blocking. Informally, we detect nodes in the
completion tree that are similar to previously created ones and then block them, that

J Autom Reasoning (2007) 38:227–259 239

is, stop further expansion at such nodes. To introduce blocking, we start with some
preliminaries. For a ∈ Va, we define the set of features of a as

feat(a) := { g ∈ NcF | a has a g-successor }.
Next, we define the concrete neighborhood of a as the constraint network

N (a) := { (x r y) | there exist g, g′ ∈ feat(a) s.t. x is a g-succ.
of a, y is a g′-succ. of a, and (x r y) ∈ N }.

Finally, if a, b ∈ Va and feat(a) = feat(b), we write N (a) ∼ N (b) to express that
N (a) and N (b) are isomorphic, namely, that the mapping π : VN (a) → VN (b) de-
fined by mapping the g-successor of a to the g-successor of b for all g ∈ feat(a) is an
isomorphism.

If T is a completion tree and a and b are abstract nodes in T, then we say that a is
an ancestor of b if b is reachable from a in the tree T.

Definition 11 (Blocking) Let S = (T,N) be a completion system for a concept C0

and a TBox T with T = (Va,Vc, E,L), and let a, b ∈ Va. We say that a ∈ Va is
potentially blocked by b if the following holds:

1. b is an ancestor of a in T,
2. L(a) ⊆ L(b),
3. feat(a) = feat(b).

We say that a is directly blocked by b if the following holds:

1. a is potentially blocked by b ,
2. N (a) and N (b) are complete, and
3. N (a) ∼ N (b).

Finally, a is blocked if it or one of its ancestors is directly blocked.

4.3 The Tableau Algorithm

In order to decide the satisfiability of an ALC(C)-concept C0 w.r.t. a TBox T , the
tableau algorithm is started with the initial completion system SC0 = (TC0 ,∅), where
the initial completion tree TC0 is defined by setting

TC0 :=
(
{a0},∅,∅, {a0 �→ {C0}}

)
.

The algorithm then repeatedly applies the completion rules given in Figure 4.
In the formulation of Rnet, a completion of a Rel-network N is a satisfiable and

complete Rel-network N′ such that VN = VN′ and N ⊆ N′. Later, we will argue that
the completion to be guessed always exists.

As noted above, rule application can be understood as the step-wise construction
of a model of C0 and T . Among the rules, there are four nondeterministic ones: R�,
R∃c, R∀c, and Rnet.3 Rules are applied until an obvious inconsistency (as defined
below) is detected or the completion system becomes complete, that is, no more

3By disallowing disjunctions of relations in the constraint-based concept constructors, R∃c and R∀c
can easily be made deterministic.

240 J Autom Reasoning (2007) 38:227–259

R� if C1 � C2 ∈ L(a), a is not blocked, and {C1, C2} �⊆ L(a),
then set L(a) := L(a) ∪ {C1, C2}

R� if C1 � C2 ∈ L(a), a is not blocked, and {C1, C2} ∩ L(a) = ∅,
then set L(a) := L(a) ∪ {C} for some C ∈ {C1, C2}

R∃ if ∃R.C ∈ L(a), a is not blocked, and there is no R-successor b of
a such that C ∈ L(b)
then set S := S ⊕ aRb for a fresh b ∈ Oa and L(b) := L(b) ∪ {C}

R∀ if ∀R.C ∈ L(a), a is not blocked, and b is an R-successor of a
such that C �∈ L(b)
then set L(b) := L(b) ∪ {C}

R∃c if ∃U1, U2.(r1 ∨ · · · ∨ rk) ∈ L(a), a is not blocked, and there exist no
x1, x2 ∈ Vc such that xi is a Ui-successor of a for i = 1, 2 and
(x1 ri x2) ∈ N for some i with 1 ≤ i ≤ k
then set S := S ⊕ aU1x1 ⊕ aU2x2 with x1, x2 ∈ Oc fresh and
N := N ∪ {(x1 ri x2)} for some i with 1 ≤ i ≤ k

R∀c if ∀U1, U2.(r1 ∨ · · · ∨ rk) ∈ L(a), a is not blocked, and there are
x1, x2 ∈ Vc such that xi is a Ui-successor of a for i = 1, 2 and
(x1 ri x2) �∈ N for all i with 1 ≤ i ≤ k
then set N := N ∪ {(x1 ri x2)} for some i with 1 ≤ i ≤ k

Rnet if a is potentially blocked by b or vice versa and N (a) is not complete
then non-deterministically guess a completion N ′ of N (a) and set
N := N ∪N ′

Rtbox if CT �∈ L(a)
then set L(a) := L(a) ∪ {CT }

Figure 4 The completion rules.

rules are applicable. The algorithm returns “satisfiable” if there is a way to apply
the rules such that a complete completion system is found that does not contain a
contradiction. Otherwise, it returns “unsatisfiable.”

All rules except Rnet are standard; see, for example, [2, 21].4 The purpose of Rnet
is to resolve a potential blocking situation between two nodes a and b into either an
actual blocking situation or a nonblocking situation. This is achieved by completing
the networks N (a) and N (b). For ensuring termination, an appropriate interplay
between this rule and the blocking condition is crucial. That is, we have to apply
Rnet with highest precedence. The blocking mechanism obtained in this way is a
refinement of pairwise blocking as known from [18]. In particular, the conditions
L(a) ⊆ L(b) and feat(a) = feat(b) are implied by the standard definition of pairwise
blocking due to path normal form.

We now define what we mean by an obvious inconsistency. As soon as such an
inconsistency is encountered, the tableau algorithm returns “unsatisfiable.”

4Note that our version of the R∃ rule uses the operation S ⊕ aRb , which initializes the label L(b),
and thus the rule only adds C to the already existing label.

J Autom Reasoning (2007) 38:227–259 241

procedure sat(S)
if S contains a clash then return unsatisfiable
if S is complete then return satisfiable
if Rnet is applicable

then S′ := application of Rnet to S
else S′ := application of any applicable completion rule to S

return sat(S′)

Figure 5 The (nondeterministic) algorithm for satisfiability in ALC(C).

Definition 12 (Clash) Let S = (T,N) be a completion system for a concept C and a
TBox T with T = (Va,Vc, E,L). S contains a clash if one of the following conditions
holds:

1. There is an a ∈ Va and an A ∈ NC such that {A,¬A} ⊆ L(a); or
2. N is not satisfiable in C.

If S does not contain a clash, S is called clash-free.

We present the tableau algorithm in pseudo-code notation in Figure 5.
It is started with the initial completion system as argument, that is, by calling

sat(SC0).
Note that checking for clashes before rule application is crucial for Rnet to be

well defined: if Rnet is applied to a node a, we must be sure that there indeed exists
a completion N ′ of N (a) to be guessed, that is, a satisfiable network N ′ such that
V ′
N = VN (a) and N (a) ⊆ N ′. Clash checking before rule application ensures that the

network N is satisfiable when Rnet is applied. Clearly, this implies the existence of
the required completion.

4.4 Correctness

We prove termination, soundness, and completeness of the presented tableau algo-
rithm. In the following, we use |M| to denote the cardinality of a set M. With NC0,T

C ,
NC0,T
R and NC0,T

cF , we denote the sets of concept names, role names, and concrete fea-
tures that occur in the concept C0 and the TBox T . We use |C| to denote the length
of a concept C and |T | to denote

∑
C�D∈T

(|C| + |D|).

Lemma 3 (Termination) The tableau algorithm terminates on every input.

Proof Let S0, S1, . . . be the sequence of completion systems generated during the
run of the tableau algorithm started on input C0, T , and let Si = (Ti,Ni). Set n :=
|C0| + |T |.

Obviously, we have |sub(C0,T)| ≤ n. We first show the following:

(a) For all i ≥ 0, the out-degree of Ti is bounded by n.
(b) For i ≥ 0, the depth of Ti is bounded by � = 22n · |Rel|n2 + 2.

First for (a). Nodes from Vc do not have successors. Let a ∈ Va. Successors of a
are created only by applications of the rules R∃ and R∃c. The rule R∃ generates at

242 J Autom Reasoning (2007) 38:227–259

most one abstract successor (i.e., element of Va) of a for each ∃R.C ∈ sub(C0,T),
and R∃c generates at most two abstract successors of a for every ∃U1, U2.(r1 ∨ · · · ∨
rk) ∈ sub(C0,T). Moreover, R∃c generates at most one concrete successor for every
element of NC0,T

cF . It is not difficult to verify that this implies that the number of
(abstract and concrete) successors of a is bounded by n.

Now for (b). Assume, to the contrary of what is to be shown, that there is an i ≥ 0
such that the depth of Ti exceeds � = 22n · |Rel|n2 + 2. Moreover, let i be smallest with
this property. Hence, Si has been obtained from Si−1 by applying one of the rules R∃
and R∃c to a node on level �, or by applying R∃c to a node on level � − 1.

Let Ti−1 = (Va,Vc, E,L). Since Ti is obtained from Ti−1 by application of R∃ or
R∃c and since Rnet is applied with highest precedence, Rnet is not applicable to
Ti−1. Hence, for every a, b ∈ Va such that b is potentially blocked by a, Ni−1(a) and
Ni−1(b) are complete. Let us define a binary relation ≈ on Va as follows:

a ≈ b iff L(a) = L(b), feat(a) = feat(b), and Ni−1(a) ∼ Ni−1(b).

Obviously, ≈ is an equivalence relation on Va. The definition of blocking implies
that if a is an ancestor of b and a ≈ b , then b is blocked by a in Si−1. Let Va/≈ denote
the set of ≈-equivalence classes, and set m := |NC0,T

cF |. Since L(a) ⊆ sub(C0,T), and
Ni−1(a) is a complete Rel-network with |VNi−1(a)| ≤ m for all a ∈ Va, it is not difficult
to verify that

|Va/≈| ≤ 2|sub(C0,T)|
m∑

i=0

(
m
i

)
|Rel|i2 .

Since m ≤ n, we obtain |Va/≈| ≤ 2n · 2n · |Rel|n2 = 22n · |Rel|n2
. Let a ∈ Va be the

node to which a rule is applied in Ti−1 to obtain Ti. As already noted, the level k
of a in Ti−1 is at least � − 1 ≥ |Va/≈| + 1. Let a0, . . . , ak be the path in Ti−1 leading
from the root to a. Since k > |Va/≈|, we have ai ≈ a j for some i, j with 0 ≤ i < j ≤ k.
This means that a is blocked and contradicts the assumption that a completion rule
was applied to a. Thus, the proof of (b) is finished.

The tableau algorithm terminates because of the following reasons:

1. It constructs a finitely labeled completion tree T of bounded out-degree and
depth (by (a) and (b)) in a monotonic way; that is, no nodes are removed from T
and no concepts are removed from node labels. Also, no constraints are removed
from the constraint system N .

2. Every rule application adds new nodes or node labels to T, or new constraints
to N .

3. The cardinality of node labels is bounded by |sub(C0,T)| and the number of
constraints in N is bounded by |Rel| · k2, with k the (bounded) number of
concrete nodes. ��

Lemma 4 (Soundness) If the tableau algorithm returns satisfiable, then the input
concept C0 is satisfiable w.r.t. the input TBox T .

Proof If the tableau algorithm returns satisfiable, then there exists a complete and
clash-free completion system S = (T,N) for C0 and T . Our aim is to use S for
defining a model I for C0 and T . We start with a brief outline of the proof.

J Autom Reasoning (2007) 38:227–259 243

To obtain the desired model I , the completition tree T is unravelled to another
(possibly infinite) tree by replacing directly blocked nodes with nodes that block
them. The second condition of “potentially blocked” ensures that by doing so, we
do not violate any existential or universal conditions in the predecessor of a directly
blocked node. This procedure yields only the abstract part of I . Defining the concrete
part is less straightforward. The described unravelling process can be seen as follows.
We start with the tree T where all indirectly blocked nodes are dropped, and then
repeatedly patch subtrees of T to the existing tree. More precisely, such a patched
subtree is rooted by a node that blocks the node onto which the root of the subtree
is patched.

The third condition of “directly blocked” ensures that the networks N (a) and
N (b) (which comprise only the concrete successors a and b) are complete and
identical if a is blocked by b . Hence, we can obtain a (possibly infinite) constraint
network N that corresponds to the unravelled tree by patching together fragments
of N which coincide on overlapping parts. Since N is satisfiable, patchwork and the
compactness property ensure that the network N is satisfiable as well, and thus we
can use a model of N to define the concrete part of the model I .

Formally, we proceed in several steps. Let S = (T,N) be as above, T =
(Va,Vc, E,L), and let root ∈ Va denote the root of T. Let blocks be a function that
for every directly blocked b ∈ Va, returns an unblocked a ∈ Va such that b is blocked
by a in S. One can easily see that, by definition of blocking, such node a always exists.
A path in S is a (possibly empty) sequence of pairs of nodes a1

b 1
, . . . , an

b n
, with a1, . . . , an

and b 1, . . . , b n nodes from Va, such that, for 1 ≤ i < n, one of the following holds:

1. ai+1 is a successor of ai in T, ai+1 is unblocked, and bi+1 = ai+1;
2. bi+1 is a successor of ai in T and ai+1 = blocks(bi+1).

Intuitively, a path a1
b 1

, . . . , an
b n

represents the sequence of nodes a1, . . . , an, and the
bi provide justification for the existence of the path in case of blocking situations.
Observe that bi+1 is always a successor of ai. We use Paths to denote the set of all
paths in S including the empty path. For p ∈ Paths nonempty, tail(p) denotes the last
pair of p. We now define the “abstract part” of the model I we are constructing:

�I :=
{

p ∈ Paths | p nonempty and the first pair is
root
root

}

AI :=
{

p ∈ �I | tail(p) = a
b

andA ∈ L(a)

}
, A ∈ NC0,T

C

RI :=
{(

p, p · a
b

)
∈ �I × �I | tail(p) = a′

b ′ and b is

R-successor of a′ in T
}
, R ∈ NC0,T

R

Observe that

(1) �I is nonempty, since root
root ∈ �I .

(2) fI is functional for every f ∈ NaF: this is ensured by the “⊕” operation that
generates at most one f -successor per abstract node and by the definition of
Paths in which we choose only a single blocking node to be put into a path.

244 J Autom Reasoning (2007) 38:227–259

Intuitively, the abstract part of I as defined above is obtained by “patching together”
parts of the completion tree T. For defining the concrete part of I , we make this
patching explicit: For p ∈ �I , p is called a hook if p = root

root or tail(p) = a
b with a �= b

(and thus b is blocked by a). We use Hooks to denote the set of all hooks. Intuitively,
the hooks, which are induced by blocking situations in T, are the points where we
patch together parts of T. The part of T patched at a hook p with tail(p) = a

b
comprises (copies of) all the nodes c in T that are reachable from a, except indirectly
blocked ones. Formally, for p ∈ �I and q ∈ Hooks, we call p a q-companion if there
exists q′ ∈ Paths such that p = qq′ and all nodes a

b in q′ satisfy a = b , with the
possible exception of tail(q′). Then, the part of I patched at p is defined as

P(p) := {q ∈ �I | q is a p-companion}.

For p, q ∈ Hooks, q is called a successor of p if q is a p-companion and p �= q.
Observe that, for each hook p, P(p) includes p and all successor hooks of p.
Intuitively, this means that the parts patched together to obtain the abstract part
of I are overlapping at the hooks.

To define the concrete part of I , we need to establish some additional notions.
Since S is clash-free, N is satisfiable. It is an easy exercise to show that then there
exists a completion of N . We fix such a completion N c with the nodes renamed as
follows: each concrete node x that is a g-successor of an abstract node a is renamed to
the pair (a, g). This naming scheme is well defined because the “⊕” operation ensures
that every abstract node a has at most one g-successor, for every g ∈ NcF. We now
define a network N that, intuitively, describes the constraints put on the concrete part
of the model. If q ∈ Hooks, p ∈ P(q), and tail(p) = a

b , we set

repq(p) :=
{

b if p �= q and a �= b

a otherwise.

Intuitively, this notion is needed for the following reason. Let p, q ∈ Hooks with q a
successor of p. Then tail(q) = a

b with b blocked by a, q ∈ P(p), and q ∈ P(q). As part
of P(p), q represents the blocked node b . As part of P(q), q represents the blocking
node a. This overlapping of patched parts at hooks is made explicit by the notion
repq(p). Now define N as follows.

N :=
{ (

(p, g) r (p′, g′)
) | there is a q ∈ Hooks such that p, p′ ∈ P(q)

and
(
(repq(p), g) r (repq(p′), g′)

) ∈ N c

}

Our next aim is to show that N is satisfiable. To this end, we first show that N is
patched together from smaller networks: every hook p gives rise to a part of N as
follows:

N(p) := N|{(q,g)∈VN|q∈P(p)},

that is, N(p) is the restriction of N to those variables (q, g) such that q is a p-
companion.

J Autom Reasoning (2007) 38:227–259 245

The following claim shows that N is patched together from the networks N(p), p ∈
Hooks.
Claim 1 The following holds:

(a) N = ⋃
p∈Hooks N(p).

(b) If p, q ∈ Hooks, p �= q, q is not a successor of p, and p is not a successor of q,
then VN(p) ∩ VN(q) = ∅.

(c) If p, q ∈ Hooks and q is a successor of p, then N(p)|VN(p)∩VN(q)
= N(q)|VN(p)∩VN(q)

.

Proof

(a) As N ⊇ ⋃
p∈Hooks N(p) is immediate by definition of N(p), it remains to show

N ⊆ ⋃
p∈Hooks N(p). Let ((p, g) r (p′, g′)) ∈ N. Then there is a q ∈ Hooks such

that p, p′ ∈ P(q). By definition of N(q), this implies ((p, g) r (p′, g′)) ∈ N(q).
(b) We show the contrapositive. Let (q∗, g) ∈ VN(p) ∩ VN(q). It follows that q∗ ∈

P(p) ∩ P(q), that is, there are q′, q′′ ∈ Paths such that (1) q∗ = pq′, q∗ = qq′′,
and (2) all nodes a

b in q′, q′′ satisfy a = b , with the possible exception of the last
one. Because of (1), p = q, p is a prefix of q, or vice versa. In the first case, we
are done. In the second case, since q ∈ Hooks we have that tail(q) = a

b for some
a, b with a �= b . Together with q∗ = pq′, (2), and since p is a prefix of q is a
prefix of q∗, this implies that q = q∗. Thus q = pq′. Again by (2), we have that q
is a successor of p. The third case is analogous to the second.

(c) By definition of N(p) and N(q), we have N(p)|VN(p)∩VN(q)
= N|VN(p)∩VN(q)

=
N(q)|VN(p)∩VN(q)

for all p, q ∈ Hooks.

Claim 1 shows that N is patched together from smaller networks. Our aim is to
apply the patchwork and compactness property to derive satisfiability of N. For being
able to do this, we additionally need to know that the smaller networks are complete
and satisfiable and that they agree on overlapping parts. Before we prove this, we
establish some crucial properties.

(P1) If q, q′ ∈ Hooks with q′ successor of q, then VP(q) ∩ VP(q′) = {q′}.
(P2) If ((q, g) r (q′, g′)) ∈ N(p) then ((repp(q), g) r (repp(q

′), g′)) ∈ N c.

(P1) is obvious by definition of hooks and q-companions. For (P2), let ((q, g)

r (q′, g′)) ∈ N(p). Then q, q′ ∈ P(p). Since N(p) ⊆ N, there is a p′ ∈ Hooks such that
q, q′ ∈ P(p′) and

(∗) ((repp′(q), g) r (repp′(q′), g′)) ∈ N c.

If p = p′, we are done. Thus, let p �= p′. By Claim 1(b) and (P1), q, q′ ∈ P(p) ∩
P(p′) implies that q = q′ = p and p is a successor-hook of p′, or q = q′ = p′ and
p′ is a successor-hook of p. W.l.o.g., assume that the former is the case. Let
tail(q) = a

b . Since q = p and p is a hook, we have a �= b , and thus b is blocked
by a in T. By definition of rep, we have repp′(q) = b and repp(q) = a. Thus,
(∗) yields ((b , g) r (b , g′)) ∈ N c. Since b is blocked by a, the blocking condition
yields ((a, g) r (a, g′)) ∈ N c, and we are done. This finishes the proof of Claim 1.

246 J Autom Reasoning (2007) 38:227–259

Claim 2 For every p ∈ Hooks, N(p) is finite, complete, and satisfiable.

Proof Let p ∈ Hooks. Since the completion tree T is finite, so are P(p) and N(p).
Next, we show that N(p) is complete. This involves two subtasks: showing that (1) for
all (q, g), (q′, g′) ∈ VN(p), there is at least one relation r with ((q, g) r (q′, g′)) ∈ N(p);
and (2) there is at most one such relation.

For (1), let (q, g), (q′, g′) ∈ VN(p). By (P2), we obtain that (repp(q), g), (repp(q
′),

g′) ∈ VN c . Since N c is complete, there is an r such that ((repp(q), g) r (repp(q
′), g′)) ∈

N c. By definition of N and N(p), we have ((q, g) r (q′, g′)) ∈ N(p). For (2), assume
that ((q, g) r (q′, g′)) ∈ N(p), for each r ∈ {r1, r2}. Then, (P2) implies ((repp(q), g) ri

(repp(q
′), g′)) ∈ N c for each r ∈ {r1, r2}. Thus, completeness of N c implies that r1 =

r2 as required.
Finally, we show satisfiability of N(p). By (P2), ((q, g) r (q′, g′)) ∈ N(p) implies

((repp(q), g) r (repp(q
′), g′)) ∈ N c. Thus, satisfiability of N c, yields satisfiability of

N(p).
We are now ready to apply the patchwork and compactness properties.

Claim 3 N is satisfiable.

Proof First assume that there are no blocked nodes in S. Then, Hooks = { rootroot }. By
Claim 1(a), we have that N = N(rootroot), and by Claim 2 we obtain that N is satisfiable.
Now assume that there are blocked nodes in S. SinceVa is finite (cf. Lemma 3),Hooks
is a countably infinite set. Moreover, the “successor” relation on Hooks is easily seen
to arrange Hooks in an infinite tree whose out-degree is bounded by the cardinality
of Va. Therefore, we can fix an enumeration {p0, p1, ...} of Hooks such that

– p0 = root
root ,

– if pi is a successor of pj, then i > j.

By Claim 1(a), we have that N = ⋃
i≥0 N(pi). We first show by induction that, for all

k ≥ 0, the network Nk := ⋃
0≤i≤k N(pi) is satisfiable.

– k = 0: N0 = N(p0) is satisfiable by Claim 2.
– k > 0. We have that Nk = Nk−1 ∪ N(pk). By induction, Nk−1 is satisfiable. Let

Nc
k−1 be a completion of Nk−1 and let N′

k = Nc
k−1 ∪ N(pk). There exists a unique

pn ∈ Hooks, n < k, such that pk is a successor of pn. By definition of Nk−1 and
Claim 1(b), and since VNc

k−1
= VNk−1 , we have that

VNc
k−1

∩ VN(pk) = VN(pn) ∩ VN(pk).

Moreover, by Claim 2, N(pn) is complete, and thus

Nc
k−1|VN(pn)∩VN(pk)

= N(pn)|VN(pn)∩VN(pk)
.

Finally, Claim 1(c) yields

N(pn)|VN(pn)∩VN(pk)
= N(pk)|VN(pn)∩VN(pk)

.

J Autom Reasoning (2007) 38:227–259 247

Summing up, we obtain that the intersection parts of Nc
k−1 and N(pk) are

identical.

Nc
k−1|VNc

k−1
∩VN(pk)

= Nc
k−1|VN(pn)∩VN(pk)

= N(pn)|VN(pn)∩VN(pk)

= N(pk)|VN(pn)∩VN(pk)

= N(pk)|VNc
k−1

∩VN(pk)

By Claim 2, we have that N(pk) is finite, complete, and satisfiable. The same
holds for Nc

k−1. Thus, the patchwork property of C yields that N′
k is satisfiable.

Since Nk ⊆ N′
k, Nk is satisfiable.

Now, satisfiability of the networks Nk, k ≥ 0, and the compactness property of C
imply satisfiability of N. This finishes the proof of Claim 3.

We are now ready to define the concrete part of the model I . Since N is satisfiable,
there is an MI ∈ M and a mapping τ : VN → VMI such that (x r y) ∈ N implies
(τ (x) r τ(y)) ∈ VMI . Define I = (�I, ·I , MI) with �I and ·I defined as above, and,
additionally

gI :=
{
(p, τ (p, g)) ∈ �I × VMI | tail(p) = a

b
and g ∈ feat(a)

}
, g ∈ NC0,T

cF .

Note that, by definition, gI is functional for every g ∈ NcF. In order to show that I is
a model of C0 and T , we require one more claim.

Claim 4 For all s ∈ �I and C ∈ sub(C0,T), if tail(s) = a
b and C ∈ L(a), then s ∈ CI .

Proof We prove the claim by structural induction on C. Let s ∈ �I , tail(s) = a
b , and

C ∈ L(a). In the following, we will implicitly use the fact that, by construction of
Paths, a is not blocked in S. We make a case distinction according to the topmost
operator in C:

1. C is a concept name. By construction of I , we have s ∈ CI .
2. C = ¬D. Since C is in NNF, D is a concept name. Clash-freeness of S implies

D �∈ L(a). The construction of I implies s �∈ DI , which yields s ∈ (¬D)I .
3. C = D � E. The completeness of S implies {D, E} ⊆ L(a). The induction hy-

pothesis yields s ∈ DI and s ∈ EI ; therefore s ∈ (D � E)I .
4. C = D � E. The completeness of S implies {D, E} ∩ L(a) �= ∅. By the induction

hypothesis it holds that s ∈ DI or s ∈ EI , and therefore s ∈ (D � E)I .
5. C = ∃R.D. Since the R∃ rule is not applicable, a has an R-successor c such that

D ∈ L(c). By definition of I , there is a t = s · d
c ∈ �I such that either c = d or c

is blocked by d in S. Since L(c) ⊆ L(d) in both cases, we have that D ∈ L(d). By
induction, it holds that t ∈ DI . By definition of I , we have (s, t) ∈ RI and this
implies s ∈ CI .

6. C = ∀R.D. Let (s, t) ∈ RI . By construction of I , t = s · d
c such that c is an R-

successor of a. Since R∀ is not applicable, we have that D ∈ L(c). Since L(c) ⊆
L(d) (as in the previous case), we have C ∈ L(d), and by induction t ∈ CI . Since
this holds independently of the choice of t, we obtain s ∈ CI .

248 J Autom Reasoning (2007) 38:227–259

7. C = ∃U1, U2.(r1 ∨ · · · ∨ rk). Since C is in PNF, Ui is either a concrete feature or
of the form Rg, for each i ∈ {1, 2}. We consider only the case U1 = R1g1, U2 =
R2g2, as the remaining cases are similar but easier. Since the R∃c rule is not
applicable, there exists an R j-successor c j of a and a g j-successor y j of c j for
j = 1, 2 such that (y1 ri y2) ∈ N for some 1 ≤ i ≤ k. Then ((c1, g1) ri (c2, g2)) ∈
N c. Moreover, there is a t j = s · d j

c j
∈ �I such that c j = d j or c j is blocked by d j,

j = 1, 2. By definition of RI
j , we have that (s, t j) ∈ RI

j , j = 1, 2. Moreover, since
a is not blocked and c1 and c2 are its successors, there is a p ∈ Hooks such that t1
and t2 are p-companions and repp(t1) = c1, repp(t2) = c2. Thus, by definition of
N we obtain ((t1, g1) ri (t2, g2)) ∈ N, implying (τ (t1, g1) ri τ(t2, g2)) ∈ MI . Since
gI1 (t1) = τ(t1, g1) and gI2 (t2) = τ(t2, g2), we obtain that s ∈ CI .

8. C = ∀U1, U2.(r1 ∨ · · · ∨ rk). As in the previous case, we assume that U1 and U2

are of the form U1=Rg1, U2=R2g2. Let t1, t2 be such that (s, t j)∈RI
j and

gIj (t j) is defined, j = 1, 2. By definition of I , we have that t j = s · d j

c j
∈ �I

such that c j is an R j-successor of a, j = 1, 2. Moreover, there is a g j-successor
y j of c j for j = 1, 2. Since R∀c is inapplicable, ∀U1, U2.(r1 ∨ · · · ∨ rk) ∈ L(a)

implies that (y1 ri y2) ∈ N for some 1 ≤ i ≤ k. Thus, ((c1, g1) r (c2, g2)) ∈ N c.
Moreover, since a is unblocked, there is a p ∈ Hooks such that t1 and t2 are p-
companions and repp(t1) = c1, repp(t2) = c2. Thus, by definition of N, we have
that ((t1, g1) ri (t2, g2)) ∈ N, which implies (τ (t1, g1) ri τ(t2, g2)) ∈ MI . Thus,
s ∈ CI .

This finishes the proof of Claim 4.
Since C0 ∈ L(root) and root

root ∈ �I , Claim 4 implies that I is a model of C0. Finally,
let us show that I is a model of the input TBox T = {� � CT }. Choose an s ∈ �I .
Let tail(s) = a

b . Since S is complete, Rtbox is not applicable, and thus CT ∈ L(a). By
Claim 4 we have that s ∈ CI

T . Since this holds independently of the choice of s, we
have CI = �I as required. ��

Lemma 5 (Completeness) If the input concept C0 is satisfiable w.r.t. the input TBox
T , then the algorithm returns satisfiable.

Proof Let C0 be satisfiable w.r.t. T , I = (�I, ·I , MI) a common model of C0 and
T , and a0 ∈ �I such that a0 ∈ CI

0 . We use I to guide (the nondeterministic parts of)
the algorithm such that it constructs a complete and clash-free completion system.
A completion system S = (T,N) with T = (Va,Vc, E,L) is called I-compatible if
there exist mappings π : Va → �I and τ : Vc → VMI (i.e., to the variables used in
MI) such that

(Ca) C ∈ L(a) ⇒ π(a) ∈ CI;
(Cb) b is an R-successor of a ⇒ (π(a), π(b)) ∈ RI;
(Cc) x is a g-successor of a ⇒ gI(π(a)) = τ(x);
(Cd) (x r y) ∈ N ⇒ (τ (x) r τ(y)) ∈ MI .

We first show the following.

Claim 1 If a completion system S is I-compatible and a rule R is applicable to S, then
R can be applied such that an I-compatible completion system S′ is obtained.

J Autom Reasoning (2007) 38:227–259 249

Proof Let S = (T,N) be an I-compatible completion system with T = (Va,
Vc, E,L), let π and τ be functions satisfying (Ca) to (Cd), and let R be a completion
rule applicable to S. We make a case distinction according to the type of R.

R� The rule is applied to a concept C1 � C2 ∈ L(a). By (Ca), C1 � C2 ∈ L(a)

implies π(a) ∈ (C1 � C2)
I and hence π(a) ∈ CI

1 and π(a) ∈ CI
2 . Since the

rule adds C1 and C2 to L(a), it yields a completion system that is I-
compatible via π and τ .

R� The rule is applied to C1 � C2 ∈ L(a). C1 � C2 ∈ L(a) implies π(a) ∈ CI
1 or

π(a) ∈ CI
2 . Since the rule adds either C1 or C2 to L(a), it can be applied such

that it yields a completion system that is I-compatible via π and τ .
R∃ The rule is applied to ∃R.C ∈ L(a). By (Ca), π(a) ∈ (∃R.C)I and hence

there exists a d ∈ �I such that (π(a), d) ∈ RI and d ∈ CI . By definition
of R∃ and the “⊕” operation, rule application either (1) adds a new R-
successor b of a and sets L(b) = {C}; or (2) re-uses an existing R-successor,
renames it to b in T and sets L(b) = L(b) ∪ {C}. Extend π by setting
π(b) = d. The resulting completion system is I-compatible via the extended
π and the original τ .

R∀ The rule is applied to ∀R.C ∈ L(a), and it adds C to the label L(b) of
an existing R-successor of a. By (Ca), π(a) ∈ (∀R.C)I and by (Cb), (π(a),

π(b)) ∈ RI . Therefore, π(b) ∈ CI , and the resulting completion system is
I-compatible via π and τ .

R∃c The rule is applied to a concept ∃U1, U2.(r1 ∨ · · · ∨ rk) ∈ L(a). We assume
that U1 = R1g1 and U2 = R2g2. The case where one or both of U1, U2 are
only concrete features is similar, but easier. The rule application generates
new abstract nodes b 1 and b 2 and concrete nodes x1 and x2 (or reuses
existing ones and renames them) such that

– bj is an R j-successor of a and
– x j is a g j-successor of bj for j = 1, 2.

By (Ca), we have π(a) ∈ (∃U1, U2.(r1 ∨ · · · ∨ rk))
I . Thus, there exist d1, d2 ∈

�I , v1, v2 ∈ VMI and an i with 1 ≤ i ≤ k such that

– (π(a), d j) ∈ RI
j ,

– gIj (d j) = v j for j = 1, 2, and
– (v1 ri v2) ∈ MI .

Thus, the rule can be guided such that it adds (x1 ri x2) to N . Extend π by
setting π(bj) := d j, and extend τ by setting τ(x j) := v j for j = 1, 2. It is easily
seen that the resulting completion system is I-compatible via the extended
π and τ .

R∀c The rule is applied to an abstract node a with ∀U1, U2.(r1 ∨ · · · ∨ rk) ∈ L(a)

such that there are x1, x2 ∈ Vc with xi a Ui-successor of a, for i = 1, 2.
By (Ca), π(a) ∈ (∀U1, U2.(r1 ∨ · · · ∨ rk))

I . By (Cb) and (Cc), we have
(π(a), τ (x1)) ∈ UI

1 and (π(a), τ (x2)) ∈ UI
2 . By the semantics, it follows that

there is an i with 1 ≤ i ≤ k such that (τ (x1) ri τ(x2)) ∈ MI . The application
rule can be guided such that it adds (x1 ri x2) to N . Thus, the resulting
completion system is I-compatible via π and τ .

250 J Autom Reasoning (2007) 38:227–259

Rnet The rule is applied to an abstract node a such that a is potentially blocked
by an abstract node b and N (a) is not complete (the symmetric case is
analogous). The rule application guesses a completion N ′ of N (a), and sets
N := N ∪N ′. Define

N ′ :=
{
(x r y) | x is a g-successor of a,

y is a g′-successor of a, and(τ (x) r τ(y)) ∈ MI
}
.

By definition of N (a), we have VN (a) = VN ′ . By (Cd), we have N (a) ⊆ N ′.
Since MI is complete, N ′ is complete. Finally, τ witnesses that MI is a
model of N ′, and thus N ′ is satisfiable. It follows that N ′ is a completion of
N (a). Apply Rnet such that N ′ is guessed. Then, the resulting completion
system is I-compatible via π and τ .

Rtbox The rule application adds CT to L(a), for some a ∈ Va. Since I is a model
of T , we have π(a) ∈ CI

T . Thus, the resulting completion system is I-
compatible via π and τ .

We now show that I-compatibility implies clash-freeness.

Claim 2 Every I-compatible completion system is clash-free.

Proof Let S = (T,N) be an I-compatible completion system with T = (Va,Vc,
E,L). Consider the two kinds of a clash:

– From (Ca), a clash of the form {A,¬A} ∈ L(a) contradicts the semantics.
– Property (Cd) implies that MI is a model of N . Thus, N is satisfiable.

We can now describe the “guidance” of the tableau algorithm by the model I : we
ensure that, at all times, the considered completion systems are I-compatible. This
condition obviously holds for the initial completion system. By Claim 1, we can guide
the rule applications such that only I-compatible completion systems are obtained.
By Lemma 3, the algorithm always terminates, hence also when guided in this way.
Since, by Claim 2, we will not find a clash, the algorithm returns satisfiable. ��

As an immediate consequence of Lemmas 3, 4, and 5, we get the following
theorem.

Theorem 1 If C is an ω-admissible constraint system, the tableau algorithm decides
satisfiability of ALC(C) concepts w.r.t. general TBoxes.

5 Practicability

With Theorem 1, we have achieved the main aim of this paper: providing a general
decidability result for description logics with both general TBoxes and concrete
domains. Our second aim is to identify an algorithm that is more practicable than
the existing approaches based on automata [20, 24], that is, that can be implemented
such that an acceptable runtime behavior is observed on realistic inputs. Since we

J Autom Reasoning (2007) 38:227–259 251

have not yet implemented our algorithm,5 an empirical evaluation is out of reach. In
the following, we discuss the practicability on a general level.

Regarding an efficient implementation, the main difficulties of our algorithm
compared with successfully implemented tableau algorithms such as the ones in
[16, 32] are the following:

– Our algorithm requires satisfiability checks of the network N constructed as part
of the completion system. The problem is that such checks involve the whole
network N rather than only small parts of it. In practice, the constructed com-
pletion systems (and associated networks) are often too large to be considered
as a whole.

– The rules R∃c, R∀c, and Rnet introduce additional nondeterminism. In imple-
mentations, this nondeterminism induces backtracking.

These difficulties possibly can be overcome by developing appropriate heuristics and
optimization techniques. However, there exists also an easy way around them. In
the following, we argue that there is a fragment of our language that still provides
interesting expressive power and in which the implementation difficulties discussed
above are nonexistent.

The fragment of ALC(C) that we consider is obtained by making the following
assumptions:

– There is only a single concrete feature g. Note that this is acceptable with con-
straint systems such as RCC8R2 and AllenR, where g could be has-extension and
has-lifetime, respectively.

– There are no paths of length greater than 2; that is, Clause 3 is eliminated from
Definition 6. This is necessary because we need to introduce additional concrete
features to establish path normal form if Clause 3 is present. We believe that
paths of length three or more are needed only in exceptional cases, anyway.

– There exists a unique equality predicate eq in C; that is, for all models N ∈ M

and all v ∈ VN , we have (v eq v) ∈ N.

Going to this fragment of ALC(C) allows the following simplification of our tableau
algorithm.

1. The nondeterministic Rnet rule can simply be dropped because, for each abstract
node a, the network N (a) either is empty or consists of a single node that is
related to itself via eq. Thus, every potential blocking situation is an actual
blocking situation.

2. We can localize the satisfiability check of the network N as follows. For a ∈ Va,
let N̂ (a) denote the restriction of N to the g-successor of a and the g-successors
of all abstract successors of a. Instead of checking the whole network N for
satisfiability, we separately check, for each a ∈ Va, satisfiability of N̂ (a). It can
be seen as follows that this is equivalent to a global check. First, C has the
patchwork property. Second, because there is only a single concrete feature g,
the networks N̂ (a) overlap at single nodes only. Because of the presence of
the equality predicate eq, the overlapping part of two such networks is thus

5This is a nontrivial task because a large number of sophisticated optimization techniques are
required; see [15].

252 J Autom Reasoning (2007) 38:227–259

complete. Third, it is easy to see that the patchwork property implies a more
general version of itself where only the overlapping part of the two involved
networks is complete, but the networks themselves are not.

Hence, the only difficulty that remains is the nondeterminism of the rules R∃c

and R∀c. However, we believe that this nondeterminism is not too difficult to deal
with. Observe that the nondeterministic choices made by these rules have only a
very local impact: they influence the outcome of the satisfiability check only of the
relevant local network N̂ (a). Therefore, it does not seem necessary to implement
a complex backtracking/backjumping machinery. If the concrete domain reasoner
used for deciding C-satisfiability supports disjunctions, it is even possible to push the
nondeterminism out of the tableau algorithm into the reasoner for C-satisfiability.
Roughly, one would need to allow disjunctions in the constraint network N and pass
these on to the reasoner for C.

6 Conclusion

We have proved decidability of ALC with ω-admissible constraint systems and gen-
eral TBoxes. A close inspection of our algorithm shows that it runs in 2-NExpTime
if C-satisfiability is in NP. We conjecture that, by mixing the techniques from the
current paper with those from [20, 24], it is possible to prove ExpTime-completeness
of satisfiability in ALC(C) provided that satisfiability in C can be decided in ExpTime.
Various language extensions such as transitive roles and number restrictions should
also be possible in a straightforward way.

We also have exhibited the first tableau algorithm for DLs with concrete domains
and general TBoxes in which the concrete domain constructors are not limited to
concrete features. The algorithm has some aspects that are likely to have a negative
impact on practicability unless addressed by dedicated optimization techniques. In
Section 5, however, we have identified a useful fragment of ALC(C) in which these
impairing aspects of the algorithm can be avoided.

While we have proved that ω-admissibility of C is a sufficient condition for
decidability of ALC(C), it is not clear whether this condition is also necessary.
We leave this question open, conjecturing that ω-admissibility is not a necessary
condition.

Appendix A: Properties of RCC8

We show that RCC8R2 has the patchwork property and the compactness property.
To this end, we consider a different variant of the constraint system RCC8R2 . To
introduce it, we need a couple of definitions. A fork F is a structure 〈WF , RF , πF〉,
where

– WF is a set {bF , rF , �F} of cardinality three,
– RF is the reflexive closure of {(bF , rF), (bF , �F)}, and
– πF : Var→ 2WF is a valuation such that, for each x ∈ Var, we have

bF ∈ πF(x) iff�F ∈ πF(x) or rF ∈ πF(x).

J Autom Reasoning (2007) 38:227–259 253

A fork model M is a (finite or infinite) disjoint union of forks F0, F1, We write
WM for

⋃
i≥0 WFi , RM for

⋃
i≥0 RFi , and πM(x) for

⋃
i≥0 πFi(x). We may interpret the

RCC8 relations on a fork model M by associating a topological space TM with M:
define an interior operator IM by setting, for all X ⊆ WM,

IM X :=
{

x ∈
⋃
i≥0

WM | ∀y (xRM y → y ∈ X)

}

(and thus CM X = {x ∈ WM | ∃y (xRM y ∧ y ∈ X)}). Let RSM denote the set of non-
empty regular closed subsets of WM. We now define the constraint system

RCC8Fork := 〈RCC8,MFork〉
by setting MFork :=

{
NM | M a fork model

}
, where NM is defined by fixing a variable

vX ∈ Var for every X ∈ RSM and setting

NM :=
{
(vX r vX ′) | r ∈ RCC8, X, X ′ ∈ RSM, and(X, X ′) ∈ rTM

}
.

Renz and Nebel showed that satisfiability of finite constraint networks in RCC8R2

coincides with satisfiability in RCC8Fork [30]. This was extended to infinite networks
in [27].

Theorem 2 An RCC8-network is satisfiable in RCC8R2 iff it is satisfiable in RCC8Fork.

From Theorem 2, it suffices to prove the patchwork property and compactness for
RCC8Fork. This is what we do in the following. Our proof of the patchwork property
is based on a result of Gabbay et al. [11]. To formulate it, we need to introduce the
standard translation [6, 30] of RCC8-networks to the modal logic S4u, that is, Lewis’
(uni-modal) S4 enriched with the universal modality. We refrain from giving the
syntax and semantics of S4u and refer, for example, to [11] for more information.
Note, however, that formulas of S4u can be interpreted in fork models.

We use I to denote the S4 box operator, �u to denote the universal box, and
write ♦uϕ for ¬�u¬ϕ as usual. Given an RCC8-constraint (x r y), we define a
corresponding S4u-formula (x r y)� as follows.

(x eq y)� = �u(x ↔ y)

(xdc y)� = �u(¬x ∨ ¬y)

(xec y)� = ♦u(x ∧ y) ∧ �u(¬Ix ∨ ¬Iy)

(x po y)� = ♦u(Ix ∧ Iy) ∧ ♦u(x ∧ ¬y) ∧ ♦u(¬x ∧ y)

(x tpp y)� = �u(x → y) ∧ ♦u(x ∧ ¬Iy) ∧ ♦u(¬x ∧ y)

(x ntpp y)� = �u(x → Iy) ∧ ♦u(¬x ∧ y)

Constraints (x tppi y) and (x ntppi y) are converted into (y tpp x) and (yntpp x),
respectively, and then translated as above. Observe that variables of the network are
translated into propositional variables of S4u. For every RCC8-constraint network
N, we define a corresponding set of S4u formulas N� by setting N� := {(x r y)� |
(x r y) ∈ N}. The most important property of the translation ·� is the following, as
established in [30].

254 J Autom Reasoning (2007) 38:227–259

Theorem 3 Let N be a finite RCC8-network. Then N is satisfiable in RCC8Fork iff the
set of S4u formulas N� is satisfiable in a fork model.

For a constraint (x r y), we use (x r y)∀ to denote the formula obtained from
(x r y)� by dropping all conjuncts starting with ♦u (assuming that (x r y)∀ is the
constant true if all conjuncts are dropped), and likewise for (x r y)∃ and �u. For
networks, the notions N∀ and N∃ are defined in the obvious way.

For what follows, it will be important to identify a particular class of forks induced
by a constraint network. Intuitively, this class of forks can be viewed as a canonical
model for the inducing network if this network is satisfiable. For N an RCC8-
network, we set

ForkN :=
{

F a fork | F satisfies N∀
}
.

We say that two forks F and F ′ are V-equivalent, for V a set of variables, when
for all x ∈ V, we have that (1) rF ∈ πF(x) iff rF ′ ∈ πF ′(x) and (2) �F ∈ πF(x) iff �F ′ ∈
πF ′(x) (recall that by definition of forks, the value of bF is determined by those of rF

and �F). The following theorem forms the basis for our proof that RCC8Fork has the
patchwork property. It is a reformulation of Theorem 16.17 in [11]. For r ∈ RCC8,
we use Inv(r) to denote the inverse of the relation r, for example, Inv(po) = po.

Theorem 4 (Gabbay et al.) Let N be a finite, complete, satisfiable RCC8-network,
x /∈ VN, and

N′ = N ∪
{
(x ry y), (y Inv(ry) x) | y ∈ VN

}

for some family of relations (ry)y∈VN , such that N′ is satisfiable. Then, for each F ∈
ForkN, there exists an F ′ ∈ ForkN′ such that F and F ′ are VN-equivalent.

The following corollary is easily proved by induction on the cardinality of VM \ VN .

Corollary 1 Let N and M be two finite complete satisfiable RCC8-networks, such
that N ⊆ M. Then, for each F ∈ ForkN , there exists an F ′ ∈ ForkM such that F and
F ′ are VN-equivalent.

We may now establish the patchwork property.

Lemma 6 RCC8R2 has the patchwork property.

Proof By Theorem 2, it suffices to show that RCC8Fork has the patchwork property.
Let N and M be finite and complete RCC8-networks that are satisfiable in RCC8Fork
and whose intersection parts IN,M and IM,N (as defined in Definition 3) are identical.
We have to prove that N ∪ M is also satisfiable inRCC8Fork. By Theorem 3, it suffices
to show that (N ∪ M)� is satisfiable in a fork model. We show that a satisfying model
is provided by FN,M := ForkN ∩ ForkM. We distinguish between the universal and
existential part of (N ∪ M)� .

J Autom Reasoning (2007) 38:227–259 255

(1) FN,M satisfies (N ∪ M)∀ = N∀ ∪ M∀. It suffices to show that every F ∈ FN,M

satisfies N∀ and M∀. The former is an immediate consequence of FN,M ⊆ ForkN

and the definition of ForkN . The argument for the latter is analogous.
(2) FN,M satisfies (N ∪ M)∃ = N∃ ∪ M∃. To show this, we need only to show that

(a) for every F ∈ ForkN , there is an F ′ ∈ FM,N that is VN-equivalent to F
and (b) for every F ∈ ForkM, there is an F ′ ∈ FM,N that is VM-equivalent to
F. Then, since ForkN satisfies N� , all ♦uϕ ∈ N∃ will be satisfied by FM,N ,
and likewise for M. We show only (a), as (b) is analogous. For brevity, let I
denote IN,M (=IM,N). Take an F ∈ ForkN . Clearly, since I ⊆ N, we have that
F ∈ ForkI . Moreover, I is finite, complete, and satisfiable because N and M
are. Thus, by Corollary 1 there exists an F ′ ∈ ForkM that is VI-equivalent to F.
Now define a fork F ′′ = (WF ′′ , RF ′′ , πF ′′) as follows.

πF ′′(x) :=
{

πF(x) if x ∈ VN

πF ′(x) otherwise

It is not difficult to see that F ′′ is VN-equivalent to F and VM-equivalent to
F ′. Since VN is clearly closed under VN-equivalence (and likewise for VM), this
yields F ′′ ∈ ForkN ∩ ForkM = FM,N . ��

It remains to treat compactness.

Lemma 7 RCC8R2 has the compactness property.

Proof It is easily seen that satisfiability of an infinite RCC8-network N implies
satisfiability of N|V , for every finite V ⊆ VN . To show the converse, we give a
satisfiability preserving translation of RCC8-networks N to a set
(N) of first-
order sentences in the following signature: a binary predicate R representing the
partial order in fork frames and unary predicates (Px)x∈Var for variables. We then
use compactness of first-order logic to deduce that RCC8Fork has the compactness
property. By Theorem 2, it follows thatRCC8R2 has the compactness property. Let N
be a (possibly infinite) RCC8-network. The set of first-order sentences
(N) consists
of the following:

– A formula stating that R is a disjoint union of forks:

∀w∃x, y, z(xRx ∧ yRy ∧ zRz ∧ xRy ∧ xRz∧
∀u(xRu → (u = x ∨ u = y ∨ u = z))∧
∀u(yRu → u = y)∧
∀u(zRu → u = z)∧
∀u(uRx → u = x)∧
∀u(uRy → (u = x ∨ u = y))∧
∀u(uRz → (u = x ∨ u = z))∧
x �= y ∧ x �= z ∧ y �= z∧
(w = x ∨ w = y ∨ w = z))

– The following formula, which we add to ensure the restriction that is imposed on
valuations of fork models, for each unary predicate P:

∀x(root(x) → (P(x) ↔ ∃y(xRy ∧ x �= y ∧ P(y)))),

256 J Autom Reasoning (2007) 38:227–259

where root(x) := ∀y(yRx → x = y) expresses that x is the root of a fork.
– The translation of each constraint in N. We treat only the case (x ec y) explicitly:

∃z(Px(z) ∧ Py(z)) ∧ ¬∃z(Intx(z) ∧ Inty(z)),

where Intx(z) := Px(z) ∧ ∀z′(zRz′ → Py(z′)) describes the interior points of Px

(to see this, consider the way in which fork frames induce topologies). The other
cases are easily obtained by referring to the semantics of the RCC8 relations.

Now let N be an infinite RCC8-network such that N|V is satisfiable in RCC8Fork for
every finite V ⊆ VN . We have to show that N is satisfiable. Let � be a finite subset
of
(N), and let N′ be the fragment of N that contains precisely those constraints
whose translation is in �. By Theorem 3, N′ has a model that is the topology of a
fork model M. Define a first-order structure M with domain WM by setting RM :=
RM and PM

x := πM(x) for all x ∈ V. It is readily checked that M is a model of �.
Thus, every finite subset of
(N) is satisfiable and compactness of first-oder logic
implies that
(N) is satisfiable. Take a model N of
(N) with domain A. Clearly,
M′ = (A, RN, {x �→ PN

x }) is a fork model. It is readily checked that the topology TM′

is a model of N. ��

Appendix B: Properties of Allen

We prove that the constraint system AllenR has both the patchwork property and the
compactness property.

Lemma 8 AllenR has the patchwork property.

Proof Let N and M be finite complete Allen-networks that are satisfiable in AllenR

and whose intersection parts IN,M and IM,N (defined as in Definition 3) are identical.
We have to prove that N ∪ M is also satisfiable. Satisfiability of N means that there
exists a mapping τN : VN → IntR such that (x r y) ∈ N implies (τN(x), τN(y)) ∈ r�,
and an analogous mapping τM for M. Define

SN :=
{
(x, L, r) | x ∈ VIN,M and τN(v) = [r, r′] for somer′ ∈ R

}
∪

{
(x, R, r) | x ∈ VIN,M and τN(v) = [r′, r] for somer′ ∈ R

}
.

Now arrange the elements of SN in a sequence (v0, D0, r0), . . . , (vk, Dk, rk) such
that i < j implies ri ≤ r j. Define a corresponding sequence (v0, D0, r′0), . . . , (vk,

Dk, r′k) for M by setting, for i ≤ k,

r′i :=
{

r if Di = L and τM(xi) = (r, r′) for some r′ ∈ R

r if Di = R and τM(xi) = (r′, r) for some r′ ∈ R.

Since IN,M = IM,N , we have that i < j implies r′i ≤ r′j. Fix, for each i < k, a
bijection πi from the interval [r′i, r′i+1) to the interval [ri, ri+1) that is an isomorphism
w.r.t. “<”. Moreover, fix additional isomorphisms π∗ : (−∞, r′0) to (−∞, r0) and

J Autom Reasoning (2007) 38:227–259 257

π† : [r′k,∞) to [rk,∞). For r ∈ R, set

π(r) :=

⎧⎪⎨
⎪⎩

π∗(r) if r < r′0
πi(r) if ri ≤ r < r′i+1

π†(r) if r ≥ rk

Now define a mapping τ ′
M : VM → Int� by setting τ ′

M(x) := [π(r), π(r′)] if τM(x) =
[r, r′]. It is readily checked that τN and τ ′

M agree on VIN,M , and that τN ∪ τ ′
M witnesses

satisfaction of N ∪ M in AllenR. ��

Lemma 9 AllenR has the compactness property.

Proof As in the case of RCC8, it is easily seen that satisfiability of an infinite
Allen-network N implies satisfiability of N|V , for every finite V ⊆ VN . To show the
converse, we give a satisfiability preserving translation of Allen-networks N to a
set
(N) of first-order sentences in the following signature: a binary predicate <

representing the ordering on R, and constants (b x)x∈Var and (ex)x∈Var denoting the
begin and end points of intervals. Let N be a (possibly infinite) constraint network.
The set of first-order sentences
(N) consists of the following.

– One sentence for each constraint in N. The translation is easily read off from the
definition of the Allen relations. For example, (x m y) translates to ex = b y.

– For each x ∈ VN , a sentence ensuring the correct ordering of endpoints: b x < ex.

It is easily seen that each finite or infinite Allen-network N is satisfiable in AllenR

iff
(N) is satisfiable in a structure (R, <, PM
1 , PM

2 , . . .). Thus, compactness of first-
order logic on such structures implies that AllenR has the compactness property. ��

References

1. Allen, J.: Maintaining knowledge about temporal intervals. Commun. ACM 26(11), 832–843
(1983)

2. Baader, F., Hanschke, P.: A scheme for integrating concrete domains into concept languages. In:
Proceedings of the 12th International Joint Conference on Artificial Intelligence, IJCAI-91, pp.
452–457. Sydney, Australia (1991)

3. Baader, F., Horrocks, I., Sattler, U.: Description logics as ontology languages for the semantic
web. In: Hutter, D., Stephan, W. (eds.) Festschrift in Honor of Jörg Siekmann (2003a)

4. Baader, F., McGuiness, D.L., Nardi, D., Patel-Schneider, P.: The Description Logic Handbook:
Theory, Implementation and Applications. Cambridge University Press, Cambridge, UK (2003b)

5. Balbiani, P., Condotta, J.-F.: Computational complexity of propositional linear temporal logics
based on qualitative spatial or temporal reasoning. In: Frontiers of Combining Systems (FroCoS),
pp. 162–176 (2002)

6. Bennett, B.: Modal logics for qualitative spatial reasoning. J. Interest Group in Pure and Applied
Logic 4(1), 1–20 (1997)

7. Calvanese, D.: Reasoning with inclusion axioms in description logics: algorithms and complex-
ity. In: Proceedings of the Twelfth European Conference on Artificial Intelligence (ECAI-96),
pp. 303–307 (1996)

8. Calvanese, D., Lenzerini, M., Nardi, D.: Description logics for conceptual data modeling.
In: Chomicki, J., Saake, G. (eds.) Logics for Databases and Information Systems, Chap. 8,
pp. 229–263. Kluwer, Norwell, MA (1998)

9. Egenhofer, M.J., Franzosa, R.: Point-set topological spatial relations. Int. J. Geogr. Inf. Syst. 5(2),
161–174 (1991)

258 J Autom Reasoning (2007) 38:227–259

10. Frank, A.: Qualitative spatial reasoning: cardinal directions as an example. Int. J. Geogr. Inf.
Syst. 10(3), 269–290 (1996)

11. Gabbay, D.M., Kurucz, A., Wolter, F., Zakharyaschev, M.: Many-dimensional Modal Logics:
Theory and Applications, No. 148 in Studies in Logic and the Foundations of Mathematics.
Elsevier, Amsterdam, The Netherlands (2003)

12. Haarslev, V., Möller, R.,: RACER system description. In: Goré, R., Leitsch, A., Nipkow,
T. (eds.) Proceedings of the First International Joint Conference on Automated Reasoning
(IJCAR’01), pp. 701–705 (2001)

13. Haarslev, V., Möller, R., Wessel, M.: The description logic ALCNHR+ extended with concrete
domains: a practically motivated approach. In: Goré, R., Leitsch, A., Nipkow, T. (eds.) Proceed-
ings of the First International Joint Conference on Automated Reasoning IJCAR’01, pp. 29–44
(2001)

14. Horrocks, I.: Using an expressive description logic: fact or fiction? In: Proceedings of the Sixth In-
ternational Conference on the Principles of Knowledge Representation and Reasoning (KR98),
pp. 636–647 (1998)

15. Horrocks, I., Patel-Schneider, P.F.: Optimising description logic subsumption. J. Log. Comput.
9(3), 267–293 (1999)

16. Horrocks, I., Sattler, U.: A description logic with transitive and inverse roles and role hierarchies.
J. Log. Comput. 9(3) (1999)

17. Horrocks, I., Sattler, U.: Ontology reasoning in the SHOQ(D) description logic. In: Nebel, B.
(ed.) Proceedings of the Seventeenth International Joint Conference on Artificial Intelligence
(IJCAI’01), pp. 199–204 (2001)

18. Horrocks, I., Sattler, U., Tobies, S.: Practical reasoning for expressive description logics. In:
Ganzinger, H., McAllester, D., Voronkov, A. (eds.) Proceedings of the 6th International Con-
ference on Logic for Programming and Automated Reasoning (LPAR’99), pp. 161–180 (1999)

19. Lutz, C.: Complexity of terminological reasoning revisited. In: Ganzinger, H., McAllester, D.,
Voronkov, A. (eds.) Proceedings of the 6th International Conference on Logic for Programming
and Automated Reasoning (LPAR’99), pp. 181–200 (1999)

20. Lutz, C.: Adding numbers to the SHIQ description logic—first results. In: Proceedings of the
Eighth International Conference on Principles of Knowledge Representation and Reasoning
(KR2002), pp. 191–202 (2002a)

21. Lutz, C.: PSpace reasoning with the description logic ALCF(D). Log. J. IGPL 10(5), 535–568
(2002b)

22. Lutz, C.: Reasoning about entity relationship diagrams with complex attribute dependencies. In:
Horrocks, I., Tessaris, S. (eds.) Proceedings of the International Workshop in Description Logics
2002 (DL2002), pp. 185–194 (2002c)

23. Lutz, C.: Description logics with concrete domains—a survey. In: Advances in Modal Logics
Volume 4, pp. 265–296 (2003)

24. Lutz, C.: Combining interval-based temporal reasoning with general TBoxes. Artif. Intell. 152(2),
235–274 (2004a)

25. Lutz, C.: NExpTime-complete description logics with concrete domains. ACM Trans. Comput.
Log. 5(4), 669–705 (2004b)

26. Lutz, C., Milicic, M.: A tableau algorithm for description logics with concrete domains and GCIs.
In: Proceedings of the 14th International Conference on Automated Reasoning with Analytic
Tableaux and Related Methods TABLEAUX 2005. Koblenz, Germany, pp. 201–216 (2005)

27. Lutz, C., Wolter, F.: Modal logics of topological relations. In: Proceedings of Advances in Modal
Logics, 2004

28. Nebel, B., Bürckert, H.-J.: Reasoning about temporal relations: a maximal tractable subclass of
Allen’s interval algebra. Journal of the ACM 42(1), 43–66 (1995)

29. Randell, D.A., Cui, Z., Cohn, A.G.: A spatial logic based on regions and connection. In: Nebel,
B., Rich, C., Swartout, W. (eds.) Proceedings of the Third International Conference on Principles
of Knowledge Representation and Reasoning (KR’92), pp. 165–176 (1992)

30. Renz, J., Nebel, B.: On the complexity of qualitative spatial reasoning: a maximal tractable
fragment of the region connection calculus. Artif. Intell. 108(1–2), 69–123 (1999)

31. Russell, S.J., Norvig, P.: Artificial Intelligence: A Modern Approach. Prentice Hall, Upper
Saddle River, NJ (1995)

32. Schmidt-Schauß, M., Smolka, G.: Attributive concept descriptions with complements. Artif.
Intell. 48(1), 1–26 (1991)

J Autom Reasoning (2007) 38:227–259 259

33. Vilain, M., Kautz, H.: Constraint propagation algorithms for temporal reasoning. In: Na-
tional Conference on Artificial Intelligence of the American Association for AI (AAAI 86),
pp. 377–382 (1986)

34. Vilain, M., Kautz, H., van Beek, P.: Constraint propagation algorithms for temporal reasoning: a
revised report. In: Readings in qualitative reasoning about physical systems. Morgan Kaufmann,
San Francisco, CA, pp. 373–381 (1990)

	A Tableau Algorithm for Description Logics with Concrete Domains and General TBoxes
	Abstract
	Introduction
	Constraint Systems
	RCC8
	Allen's Relations
	Properties of Constraint Systems

	Syntax and Semantics
	A Tableau Algorithm for ALC (C)
	Normal Forms
	Data Structures
	The Tableau Algorithm
	Correctness

	Practicability
	Conclusion
	Appendix A: Properties of RCC8
	Appendix B: Properties of Allen
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for journal articles and eBooks for online presentation. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

