
Symbolic Techniques in Satisfiability Solvingj

GUOQIANG PAN and MOSHE Y. VARDI
Department of Computer Science, Rice University, Houston, TX, USA.
e-mail: {gqpan, vardi}@cs.rice.edu

Abstract. Recent work has shown how to use binary decision diagrams for satisfiability solving.

The idea of this approach, which we call symbolic quantifier elimination, is to view an instance of

propositional satisfiability as an existentially quantified proposition formula. Satisfiability solving

then amounts to quantifier elimination; once all quantifiers have been eliminated, we are left with

either 1 or 0. Our goal in this work is to study the effectiveness of symbolic quantifier elimination

as an approach to satisfiability solving. To that end, we conduct a direct comparison with the

DPLL-based ZChaff, as well as evaluate a variety of optimization techniques for the symbolic

approach. In comparing the symbolic approach to ZChaff, we evaluate scalability across a variety

of classes of formulas. We find that no approach dominates across all classes. While ZChaff

dominates for many classes of formulas, the symbolic approach is superior for other classes of

formulas. Once we have demonstrated the viability of the symbolic approach, we focus on

optimization techniques for this approach. We study techniques from constraint satisfaction for

finding a good plan for performing the symbolic operations of conjunction and of existential

quantification. We also study various variable-ordering heuristics, finding that while no heuristic

seems to dominate across all classes of formulas, the maximum-cardinality search heuristic seems

to offer the best overall performance.

Key words: satisfiability, binary decision diagram, symbolic decision procedure.

1. Introduction

Propositional-satisfiability solving has been an active area of research throughout

the past 40 years, starting from the resolution-based algorithm in [24] and the

search-based algorithm in [23]. The latter approach, referred to as the DPLL

approach, has since been the method of choice for satisfiability solving. In the

past ten years, much progress has been made in developing highly optimized

DPLL solvers, leading to efficient solvers such as ZChaff [45] and BerkMin [33],

all of which use advanced heuristics in choosing variable splitting order, in

performing efficient Boolean constraint propagation, and in conflict-driven

learning to prune unnecessary search branches. These solvers are so effective

that they are used as generic problem solvers, where problems such as bounded

j A preliminary version of the paper was presented in SAT’04. Supported in part by NSF

grants CCR-9988322, CCR-0124077, CCR-0311326, IIS-9908435, IIS-9978135, EIA-0086264,

ANI-0216467, and by BSF grant 9800096.

Journal of Automated Reasoning (2005) 35: 25Y50

DOI: 10.1007/s10817-005-9009-7

Springer 2005

model checking [8], planning [39], and scheduling [20] are typically solved by

reducing them to satisfiability problems.

Another successful approach to propositional reasoning is that of decision

diagrams, which are used to represent propositional functions. An instance of the

approach is that of ordered binary decision diagrams (BDDs) [12], which are used

successfully in model checking [14] and planning [17]. A BDD representation

also enables easy satisfiability checking, which amounts to deciding whether it is

different from the empty BDD [12]. Since decision diagrams usually represent

the set of all satisfying truth assignments, they incur a significant overhead over

search techniques that focus on finding a single satisfying assignment [19]. Thus,

published comparisons between search and BDD techniques [40, 55] used search

to enumerate all satisfying assignments. The conclusion of that comparison is

that no approach dominates; for certain classes of formulas search is superior,

and for other classes of formulas BDDs are superior.

Recent work has shown how to use BDDs for satisfiability solving rather than

enumeration [50]. The idea of this approach, which we call symbolic quantifier
elimination, is to view an instance of propositional satisfiability as an

existentially quantified propositional formula. Satisfiability solving then amounts

to quantifier elimination; once all quantifiers have been eliminated, we are left

with either 1 or 0. This enables us to apply ideas about existential quantifier

elimination from model checking [49] and constraint satisfaction [26]. The focus

in [50] is on expected behavior on random instances of 3-SAT rather than on

efficiency. In particular, only a minimal effort is made to optimize the approach,

and no comparison to search methods is reported. Nevertheless, the results in

[50] show that BDD-based algorithms behave quite differently from search-based

algorithms, which makes them worthy of further investigation. (Other recent

approaches reported using decision diagrams in satisfiability solving [15, 22, 29,

46]. We discuss these works later).

Our goal in this paper is to study the effectiveness of symbolic quantifier

elimination as an approach to satisfiability solving. To that end, we conduct a

direct comparison with the DPLL-based ZChaff, as well as evaluate a variety of

optimization techniques for the symbolic approach. In comparing the symbolic

approach to ZChaff we use a variety of classes of formulas. Unlike, however, the

standard practice of comparing solver preformance on benchmark suites [42], we

focus here on scalability. That is, we focus on scalable classes of formulas and

evaluate how performance scales with formula size. As in [55] we find that no

approach dominates across all classes. While ZChaff dominates for many classes

of formulas, the symbolic approach is superior for other classes of formulas.

Once we have demonstrated the viability of the symbolic approach, we focus on

optimization techniques. The key idea underlying [50] is that evaluating an

existentially quantified propositional formula in conjunctive-normal form

requires performing several instances of conjunction and of existential

quantification. The goal is to find a good plan for these operations. We study

26 GUOQIANG PAN AND MOSHE Y. VARDI

two approaches to this problem. The first is Bouquet’s method (BM) of [50], and

the second is the bucket-elimination (BE) approach of [26]. BE aims at reducing

the size of the support set of the generated BDDs through quantifier elimination.

It has the theoretical advantage of being, in principle, able to attain optimal

support set size, which is the treewidth of the input formula [28]. Nevertheless,

we find that for certain classes of formulas, BM is superior to BE.

The key to good performance in both BM and BE is in choosing a good

variable order for quantification and BDD order. Finding an optimal order is by

itself a difficult problem (computing the treewidth of a given grah is NP-hard

[4]), so one has to resort to various heuristics; cf. [41]. No heuristic seems to

dominate across all classes of formulas, but the maximal-cardinality search

(MCS) heuristic seems to offer the best overall performance.

We contrast our symbolic solvers with two other solvers, using the MCS

variable order. We reimplemented ZRes, the ZDD-based multiresolution aproach

of [15], and ZChaff, the DPLL-based solver of [45] to use the MCS variable

order. The goal is to have a comparison of the different techniques, using the

same variable order. See further discussion below.

We start the paper with a description of symbolic quantifier elimination as well

as the BM approach in Section 2. We then describe the experimental setup in

Section 3. In Section 4 we compare ZChaff with BM and show that no approach

dominates across all classes of formulas. In Section 5 we compare BM with BE

and study the impact of various variable-ordering heuristics. In Section 6 we

compare our BDD-based algorithm with a ZDD-based algorithm based on ZRes

[15] and compare the dynamic variable decision order used in ZChaff with a

structural-guided static variable order. We conclude with a discussion in Section 7.

2. Background

A binary decision diagram is a rooted directed acyclic graph that has only two

terminal nodes, labeled 0 and 1. Every nonterminal node is labeled with a

Boolean variable and has two outgoing edges labeled 0 and 1. An ordered binary

decision diagram (BDD) is a BDD with the constraint that the input variables are

ordered and every path in BDD visits the variables in ascending order. We

assume that all BDDs are reduced, which means that every node represents a

distinct logic function. BDDs constitute an efficient way to represent and

manipulate Boolean functions [12], in particular, for a given variable order,

BDDs offer a canonical representation. Checking whether a BDD is satisfiable

is also easy; it requires checking that it differs from the predefined constant 0

(the empty BDD). We used the CUDD package for managing BDDs [53]. The

support set of a BDD is the set of variables labeling its internal nodes.

In [19, 55], BDDs are used to construct a compact representation of the set of

all satisfying truth assignments of CNF formulas. The input formula ’ is a

conjunction c1^ . . . ^cm of clauses. The algorithm constructs BDD Ai for each

SYMBOLIC TECHNIQUES IN SATISFIABILITY SOLVING 27

clause ci. (Since a clause excludes only one assignment to its variables, Ai is of

linear size.) A BDD for the set of satisfying truth assignments is then constructed

incrementally; B1 is A1, while Bi +1 is the result of APPLY (Bi, Ai, ^), where APPLY

(A, B,)) is the result of applying a Boolean operator) to two BDDs A and B.

The resulting BDD Bm represents all satisfying assignments of the input formula.

We can apply existential quantification to a BDD B:

9xð ÞB ¼ APPLY B x 1;j B x 0;j _ð Þ;

where Bªx@ c restricts B to truth assignments that assign the value c to the

variable x. Note that quantifying x existentially eliminates it from the support set

of B. The satisfiability problem is to determine whether a given formula c1^ . . .
^cm, is satisfiable. In other words, the problem is to determine whether the

existential formula (9x1) . . . (9xn) (c1^ . . . ^cm) is true. Since checking whether

the final BDD Bm is equal to 0 can be done by CUDD in constant time, it makes

little sense to apply existential quantification to Bm. Suppose, however, that a

variable xj does not occur in the clauses ci+1 , . . . , cm. Then the existential fomula

can be rewritten as

9x1ð Þ . . . 9xj�1

� �
9xjþ1

� �
. . . 9xnð Þ 9xj

� �
c1 ^ . . . ^ c1ð Þ ^ ciþ1 ^ . . . ^ cmð Þ

� �
:

Pursuing this rewriting strategy as aggressively as possible, we process the

clauses in the order c1, . . . ,cn, quantifying variables existentially as soon as

possible (that is, a variable is quantified as soon as it does not occur anymore in

the unprocessed clauses). We refer to this as early quantification of variables.

Note that different clause orders may induce different orders of variable

quantification. Finding a good clause order is a major focus of this paper.

This motivates the following change in the earlier BDD-based satisfiability-

solving algorithm [50]: after constructing the BDD Bi, quantify existentially

variables that do not occur in the clauses ci+ 1 , . . . , cm. In this case we say that the

quantifier 9x has been eliminated. The computational advantage of quantifier

elimination stems from the fact that reducing the size of the support set of a BDD

typically (though not necessarily) results in a reduction of its size; that is, the size

of (9x)B is typically smaller than that of B. In a nutshell, this method, which we

describe as symbolic quantifier elimination, eliminates all quantifiers until we are

left with the constant BDD 1 or 0. Symbolic quantifier elimination was first

applied to SAT solving in [34] (under the name of hiding functions) and tried on

random 3-SAT instances. The work in [50] studies this method further, and

considered various optimizations. The main interest here, however, is in the

behavior of the method on random 3-SAT instances, rather in its comparison to

DPLL-based methods.j

j Note that symbolic quantifier elimination provides pure satisfiability solving; the

algorithm returns 0 or 1. To find a satisfying truth assignment when the formula is satisfiable,
one can use the technique of self-reducibility; cf. [5].

28 GUOQIANG PAN AND MOSHE Y. VARDI

So far we have processed the clauses of the input formula in a linear fashion.

Since the main point of quantifier elimination is to eliminate variables as early as

possible, reordering the clauses may enable us to do more aggressive quan-

tification. That is, instead of processing the clauses in the order c1, . . . , cm, we can

apply a permutation p and process the clauses in the order cp(1), . . . , cp(m). the

permutation p should be chosen so as to minimize the number of variables in the

support sets of the intermediate BDDs. This observation was first made in the

context of symbolic model checking; cf [9, 13, 32, 36]. Unfortunately, finding an

optimal permutation p is by itself a difficult optimization problem, motivating

heuristic approaches.

A particular heuristic proposed in the context of symbolic model checking in

[49] was that of clustering. In this approach, the clauses are not processed one at

a time; instead, several clauses are first partitioned into several clusters. For each

cluster C we first apply conjunction to all the BDDs of the clauses in the C to

obtain a BDD BC. The clusters are then combined, together with quantifier

elimination, as described earlier. Heuristics are required both for clustering the

clauses and for ordering the clusters. Bouquet proposed the following heuristics in

[11] (the focus there is on enumerating prime implicants). Consider some order

of the variables. Let the rank (form 1 to n) of a variable x be rank(x), let the rank

rank(‘) of a literal ‘ be the rank of its underlying variable, and let the rank

rank(c) of a clause c be the maximum rank of its literals. The clusters are the

equivalence classes of the relation õ defined by: c õ c0 iff rank(c) = rank(c0).
The rank of a cluster is the rank of its clauses. The clusters are then ordered

according to increasing rank. For example, given the set of clauses {x1 ¦ Kx2, x1

¦ x3, Kx2 ¦ x3, x3 ¦ x4}, the clusters are C1 = {}, C2 = {x1 ¦ Kx2}, C3 = {x1 ¦

x3, Kx2 ¦ x3}, and C4 = {x3 ¦ x4}.

Satisfiability solving using symbolic quantifier elimination is a combination of

clustering and early quantification. We keep a set of active variables as we

conjoin clusters in order C1, . . . , Cn. Starting from an empty set, after each cluster

Ci is processed, we add all the variables that occur in Ci to the active set. Then, a

variable that does not occur in all Cjs, where j > i, can be removed from the

active set and eliminated by means of early quantification. Hence, we are

computing 9Xn . . . (9X2(((9X1)C1) ^ C2) . . . ^Cn), where the quantified variable

set Xi consists of the active variables that can be quantified early after Ci is

processed. (CUDD allows quantifying several variables in function call.) When

we use Bouquet’s clustering, the method is referred to in [50] as Bouquet’s
method, which we abbreviate here as BM. For the example above, the BM

quantification schedule is 9x3x4((9x1x2((C1 ^ C2) ^ C3)) ^ C4).

We still have to choose a variable order. An order that is often used in

constraint satisfaction [25] is the Bmaximum cardinality search^ (MCS) order of

[54], which is based on the graph-theoretic structure of the formula. The graph

associated with a CNF formula ’ =^ ici is G’ ¼ V;Eð Þ, where V is the set of

variables in ’ and an edge {xi, xj} is in E if there exists a clause ck such that xi

SYMBOLIC TECHNIQUES IN SATISFIABILITY SOLVING 29

and xj occur in ck. We refer to G’ as the Gaifman graph of ’. MCS ranks the

vertices from 1 to n in the following way: as the next vertex to rank, select the

vertex adjacent to the largest number of previously ranked vertices (ties can be

broken in various ways). The variable order used for the BDDs in the

comparisons unless otherwise mentioned is the inverse of the MCS orderj

(see Section 5.2 for exceptions).

3. Experimental Setup

We compare symbolic quantifier elimination to ZChaff across a variety of classes

of formulas. Unlike the standard practice of comparing solver performance on

benchmark suites [42], our focus here is not on simple time comparison, but

rather on scalability. That is, we focus on scalable classes of formulas and

evaluate how performance scales with formula size. We are interested in seeing

which method scales better, that is, polynomial vs. exponential scalability, or

different degrees of exponential scalability. Our test includes both random and

non-random formulas (for random formulas we took 60 samples per case and

reported median time). Experiments were performed by using x86 emulation on

the Rice Terascale Cluster,jj which is a large Linux cluster of Itanium II

processors with 4 GB of memory each.

Our test suite includes the following classes of formulas:

Y Random 3-CNF: We choose uniformly k 3-clauses over n variables. The

density of an instance is defined as k/n. We generate instances at densities

1.5, 6, 10, and 15, with up to 200 variables, to allow comparison for both

under-constrained and over-constrained cases. (it is known that the

satisfiability threshold of such formulas is around 4.25 [52]).
Y Random affine 3-CNF: Affine-3-CNF formulas belongs to a polynomial

class as classified by Schaefer [51]. Here, they are generated in the same

way as random 3-CNF formulas except that the constraints are not 3-

clauses but are parity equations in the form of l1 � l2 � l3 = 1.- Each

constraint is then converted into four clauses, l1 ¦ l2 ¦ l3, Kl1 ¦ Kl2 ¦ l3,

Kl1 ¦ l2 ¦ Kl3, and l1 ¦ Kl2 ¦ Kl3, yielding CNF formulas. The

satisfiability threshold of such formula is found empirically to be around

density (number of equations divided by number of variables) 0.95. We

generate instances of density 0.5 and 1.5, with up to 400 variables.
Y Random biconditionals: Biconditional formulas, also known as Urquhart

formulas, form a class of affine formulas that have provably exponential

j Using the MCS order or its inverse as the BDD variable order exhibits little

performance difference, so the inverse is preferred because the BE approach presented in
Section 5.1 is easier to implement on the inverse order.
jj http://www.citi.rice.edu/rtc/

- This is equivalent to just choosing three variables and generating x1 � x2 � x3 = p where
p = 0 or p = 1 with equal probability.

30 GUOQIANG PAN AND MOSHE Y. VARDI

resolution proofs. A biconditional formula has the form l1 $ (l2 $
(. . . (lkj1 $ lk). . .)), where each li is a positive literal. Such a formula is

valid if either all variables occur an even number of times or all variables

occur an odd number of times [56]. We generate valid formulas with up to

100 variables, where each variable occurs three times on average.
Y Random chains: The classes described so far all have an essentially

uniform random Gaifman graph, with no underlying structure. To extend

our comparison to structured formulas, we generate random chains [27]. In

a random chain, we form a long chain of random 3-CNF formulas, called

subtheories. (The chain structure is reminiscent of the structure typically

seen in satisfiability instances obtained from bounded model checking [8]

and planning [39]). We use similar generation parameters as in [27], where

there are 5 variables per subtheory and 5Y23 clauses per subtheory, but we

generate instances with a much bigger number of subtheories, scaling up to

>20,000 variables and >4,000 subtheories.
Y Nonrandom formulas: As in [55], we considered a variety of formulas with

very specific scalable structure:

� The n-Rooks problem (satisfiable).
� The n-Queens problem (satisfiable for n > 3).
� The pigeon-hole problem with n + 1 pigeons and n holes (unsatisfiable).
� The mutilated-checkerboard problem, where an n � n board with two

diagonal corner tiles removed is to be tiled with 1 � 2 tiles

(unsatisfiable).

4. Symbolic vs. Search Approaches

Our goal in this section is to address the viability of symbolic quantifier

elimination. To that end we compare the performance of BM against ZChaff,j a

Figure 1. Random 3-CNF.

j ZChaff version 2004.5.13.

SYMBOLIC TECHNIQUES IN SATISFIABILITY SOLVING 31

leading DPLL-based solver across the classes of formulas described above, with

a focus on scalability. For now, we use the MCS variable order.

In Figure 1A and B, we can see that BM is not very competitive for random 3-

CNF formulas. At density 1.5, ZChaff scales polynomially, while BM scales

exponentially. At density 6.0 and at higher densities, both methods scale

exponentially, but ZChaff scales exponentially better. (Note that above density

6.0 both methods scale better as the density increases. This is consistent with the

experimental results in [19] and [50].) A similar pattern emerges for random

affine formulas; see Figure 2. Again, ZChaff scales exponentially better than

BM. (Note that both methods scale exponentially at the higher density, while it is

known that affine satisfiability can be determined in polytime by using Gaussian

elimination [51]).

The picture changes for biconditional formulas, as shown in Figure 3A.

Again, both methods are exponential, but BM scales exponentially better than

ZChaff. (This result is consistent with the finding in [15], which compares

search-based methods methods to ZDD-based multiresolution).

For random chains, see Figure 3B, which uses a logYlog scale. Both methods

scale polynomially on random chains. (Because density for the most difficult

Figure 2. Random 3-Affine.

Figure 3. A) Random Biconditionals, B) Random Chains.

32 GUOQIANG PAN AND MOSHE Y. VARDI

problems changes as the size of the chains scales, we selected here the hardest

density for each problem size.) Here BM scales polynomially better than ZChaff.

Note that for smaller instances ZChaff outperforms BM, thereby justifying our

focus on scalability rather than on straightforward benchmarking.

In addition, we compare BM with ZChaff on the nonrandom formulas of [55].

The n-Rooks problem is a simpler version of n-Queens problem, where the

diagonal constraints are not used. For n-Rooks, the results are as in Figure 4A.

This problem has the property of being globally consistent; that is, any consistent

partial solution can be extended to a solution [25]. Thus, the problem is trivial for

search-based solvers because no backtracking is needed. In contrast BM scales

exponentially on this problem. For n-Queens (see Figure 4B), BM scales

exponentially in n2, while ZChaff seems to have better scalability. Again, a

different picture emerges when we consider the pigeon-hole problem and the

mutilated-checkerboard problem; see Figure 5A and B. On both problems both

BM and ZChaff sclae exponentially, but BM scales exponentially better than

ZChaff.

Figure 4. A) n-Rooks B) n-Queens.

Figure 5. A) Pigeon-Hole, B) Mutilated Checkerboard.

SYMBOLIC TECHNIQUES IN SATISFIABILITY SOLVING 33

As in [55], where BDDs and DPLL are compared for solution enumeration,

we find that no approach dominates across all classes. While ZChaff dominates

for many classes of formulas, the symbolic approach is superior for other classes

of formulas. This result suggests that the symbolic quantifier elimination is a

viable approach and deserves further study. In the next section we focus on

various optimization strategies for the symbolic approach.

5. Optimizations

So far we have described one approach to symbolic quantifier elimination.

However, one needs to make many choices to guide an implementation. The order

of variables is used to guide clustering and quantifier elimination, as well as to

order the variables in the underlying BDDs. Both clustering and cluster processing

can be performed in several ways. In this section, we investigate the impact of

choices in clustering, variable order, and quantifier elimination in the implemen-

tation of symbolic algorithms. Our focus here is on measuring the impact of

variable order on BDD-based SAT solving; thus, the running time for variable

ordering, which is polynomial for all algorithms, is not counted in our figures.

5.1. CLUSTER ORDERING

As argued earlier, the purpose of quantifier elimination is to reduce support-set

size of intermediate BDDs. What is the best reduction one can hope for? This

question has been studied in the context of constraint satisfaction. It turns out that

the optimal schedule of conjunctions and quantifier eliminations reduces the

support-set size to one plus the treewidth of the Gaifman graph of the input

formula [21]. The treewidth of a graph is a measure of how close this graph is to

being a tree [28]. Computing the treewidth of a graph is known to be NP-hard,

which is why heuristic approaches are employed [41]. It turns out that by

processing clusters in a different order we can attain the optimal support-set size.

Recall that BM processes the clusters in order of increasing ranks. Bucket
elimination (BE), on the other hand, processes clusters in order of decreasing

ranks [26]. Maximal support-size set of BE with respect to optimal variable order

is defined as the induced width of the input instance, and the induced width is

known to be equal to the treewidth [26, 30]. Thus, BE with respect to optimal

variable order is guaranteed to have polynomial running time for input instances

of logarithmic treewidth, since this guarantees a polynomial upper bound on

BDD size. For BE, since the maximum-ranked variable in each cluster cannot

occur in any lower-ranked clusters, computing a quantification schedule from the

contents of the clusters is not necessary. As each cluster is processed, the

maximum-ranked variable is eliminated. For example, for the formula presented

in Section 2, the quantification schedule would be 9x1((9x2((9x3((9x4C4) ^ C3))

^ C2)) ^ C1), with one variable eliminated per cluster processed. As shown,

34 GUOQIANG PAN AND MOSHE Y. VARDI

using the inverse of variable rank as the BDD variable order allows us to always

eliminate the top variable in the BDD.

We now compare BM and BE with respect to MCS variable order (MCS is

the preferred variable order also for BE).

The results for the comparison on random 3-CNF formulas are plotted in

Figure 6A and B. We see that the difference between BM and BE is density

dependent, where BE excels in the low-density cases, which have low treewidth,

and BM excels in the high-density cases, which have high treewidth. A similar

density-dependent behavior is shown for the affine case in Figure 7. The

difference of the two schemes on biconditional formulas is quite small, as shown

in Figure 8A. For chains, see Figure 8B. Because the number of variables for

these formulas is large, the cost of computing the quantification schedule gives

BE an edge over BM.

On most constructed formulas, the picture is similar to the high-density

random cases, where BM dominates, except for mutilated-checkerboard

formulas, where BE has a slight edge. (Note that treewidth for mutilated

checkerboard problems grows only at O(n), compared to O(n2) for other

constructed problems.) We plot the performance comparison for n-rook formulas

Figure 6. Clustering Algorithms Y Random 3-CNF.

Figure 7. Clustering Algorithms Y Random Affine.

SYMBOLIC TECHNIQUES IN SATISFIABILITY SOLVING 35

in Figure 9A, n-queens formulas in Figure 9B, pigeon-hole formulas in Figure

10A, and mutilated-checkerboard problems in Figure 10B.

To understand the difference in performance between BM and BE, we study

their effect on intermediate BDD size. BDD size for a random 3-CNF instance

depends crucially on both the number of variables and the density of the instance.

Thus, we compare the effect of BM and BE in terms of these measures for the

intermediate BDDs. We apply BM and BE to random 3-CNF formulas with 50

variables and densities 1.5 and 6.0. We then plot the density vs. the number of

variables for the intermediate BDDs generated by the two cluster-processing

schemes. The results are plotted in Figure 11A and B. Each plotted point

corresponds to an intermediate BDD, which reflects the clusters processed so far.

As can be noted from the figures, BM increases the density of intermediate

results much faster than does BE. This difference is quite dramatic for high-

density formulas. The relation between density of random 3-CNF instance and

BDD size has been studied in [19], where it is shown that BDD size peaks at

around density 2.0 and is lowest when the density is close to 0 or the satisfiability

threshold. This enables us to offer an possible explanation to the superiority of

Figure 8. Clustering Algorithms Y A) Random Biconditionals, B) Random Chains.

Figure 9. Clustering Algorithms Y A) n-Rooks, B) n-Queens.

36 GUOQIANG PAN AND MOSHE Y. VARDI

BE for low-density instances and the superiority of BM for high-density

instances. For formulas of density 1.5, the density of intermediate results is

smaller than 2.0, and BM’s increased density results in larger BDDs. For

formulas of density 6.0, BM crosses the threshold density 2.0 using a smaller

number of variables, and then BM’s increased density results in smaller BDDs.

The general superiority of BM over BE suggests that minimizing support-set

size ought not to be the dominant concern. BDD size is correlated with, but not

dependent on, support-set size. More work is required in order to understand the

good performance of BM. Our explanation argues that, as in [3], BM first deals

with the most constrained subproblems, therefore reducing BDD-size of

intermediate results. While the performance of BE can be understood in terms

of treewidth, however, we still lack a fundamental theory to explain the

performance of BM.

Figure 10. Clustering Algorithms Y A) Pigeon-Hole, B) Mutilated Checkerboard.

Figure 11. Clustering Algorithms A) Density = 1.5, B) Density = 6.0.

SYMBOLIC TECHNIQUES IN SATISFIABILITY SOLVING 37

5.2. VARIABLE ORDERING

In this section, we study the effects of the variable order on the performance of

symbolic algorithms. We present results only for BM because the picture is

similar for BE. The variable order for the BDD representation is again the

inverse of the variable order for clustering. As mentioned earlier, when selecting

variables, MCS has to break ties, a situation that happens quite often. One can

break ties by choosing (form those variables that have the maximum cardinality

to ranked variables as MCS requires) the variable with minimal degree to

unselected variables [50] or the variable with the maximal degree to unselected

variables [6]. (Another choice is to break ties uniformly at random, but this

choice is expensive to implement because it is difficult to choose an element

uniformly at random from a heap). We compare these two heuristics with an

arbitrary tie-breaking heuristic, in which we simply select the top variable in the

heap. The results are shown in Figure 12A for random 3-CNF formulas. For

high-density formulas, tie breaking makes no significant difference, but least-

degree tie breaking is markedly better for the low-density formulas. This

Figure 12. A) Variable Ordering Tie-Breakers B) Initial Variable Choice.

Figure 13. Vertex Order Heuristics: Random 3-CNF Y A) Density = 1.5, B) Density = 6.

38 GUOQIANG PAN AND MOSHE Y. VARDI

situation seems to be applicable across a variety of class of formulas and even for

different orders and algorithms.

MCS typically has many choices for the lowest-rank variable. In Koster et al.

[41], it is recommended to start from every vertex in the graph and choose the

variable order that leads to the lowest treewidth. This approach is easily done for

instances of small size, that is, random 3-CNF or affine problems; but for

structured problems, which could be much larger, the overhead is too expensive.

Since min-degree tie-breaking worked quite well, we used the same idea for

initial variable choice. In Figure 12B, we see that our assumption is well

founded; that is, the benefit of choosing the best initial variable compared to

choosing a min-degree variable is negligible. For larger problems like the chains

or the bigger constructed problems, the additional overhead of trying every initial

variable would be prohibitive, so we used the low-degree seed in all cases.

Algorithms for BDD variable ordering in the model-checking systems are

often based on circuit structures, for example, some form of circuit traversal [31,

43] or graph evaluation [16]. These techniques are not applicable here because

the formulas are provided in CNF and the original circuit structure is lost.

Figure 14. Vertex Order Heuristics Y A) Pigeon-Hole, B) Mutilated Checkerboard.

Figure 15. Quantifier Elimination-Random 3-CNF.

SYMBOLIC TECHNIQUES IN SATISFIABILITY SOLVING 39

MCS is just one possible vertex-ordering heuristics. Other heuristics have

been studied in the context of treewidth approximation. In [41] two other vertex-

ordering heuristics that are based on local search are studied: LEXP and LEXM.

Both LEXP and LEXM are based on lexicographic breadth-first search, where

candidate variables are lexicographically ordered with a set of labels, and the

labels are either the set of already chosen neighbors (LEXP) or the set of already

chosen vertices reachable through lower-ordered vertices (LEXM). Both

algorithms try to generate vertex orders where a triangulation would add a small

amount of edges, thus reducing treewidth. In [25], Dechter also studied heuristics

like min-induced-width (MIW) or min-fill (MF), which are greedy heuristics

based on choosing the vertex that have the least number of induced neighbors

(MIW) or the vertex that would add the least number of induced edges (MF).

In Figure 13A and B, we compare variable orders constructed from MCS,

LEXP, LEXM, MIW, and MF for random 3-CNF formulas. For high-density

cases, MCS is clearly superior. For low-density formulas, LEXP has a small

edge, although the difference is minimal. Across the other problem classes (for

example, pigeon-hole formulas as in Figure 14A and mutilated checkerboard as

in Figure 14B), MCS uniformly appears to be the best order, being the most

consistent and generally the top performer. Interesting, while other heuristics like

MF often yield better treewidth, MCS still yields better runtime performance.

This indicates that minimizing treewidth need not be the dominant concern; the

dominant concern is minimizing BDD size. (BDD size seems more closely

related to pathwidth [10], rather than treewidth. We speculate that MCS is a

better order for pathwidth minimization).

5.3. QUANTIFIER ELIMINATION

So far we have argued that quantifier elimination is the key to the performance of

the symbolic approach. In general, reducing support-set size does result in

Figure 16. Quantifier Elimination Y A) Pigeon-Hole, B) Mutilated Checkerboard.

40 GUOQIANG PAN AND MOSHE Y. VARDI

smaller BDDs. It is known, however, that quantifier elimination may incur

nonnegligible overhead and may not always reduce BDD size [12]. To

understand the role of quantifier elimination in the symbolic approach, we

reimplemented BM and BE without quantifier elimination. Thus, we do not

construct a BDD that represent all satisfying truth assignments, but we do that

according to the clustering and cluster processing order of BM and BE.

In Figures 15A and B, we plotted the running time of both BM and BE, with

and without quantifier elimination on random 3-CNF formulas. We see that there

is a trade-off between the cost and benefit of quantifier elimination. For low-

density instances, where there are many solutions, the improvement from

quantifier elimination is clear, but for high-density instances, quantifier elimina-

tion results in no improvement (while not reducing BDD size). For BE, where the

overhead of quantifier elimination is lower, quantifier elimination improves

performance very significantly at low density, although at high density there is a

slight slowdown. On the other hand, quantifier elimination is important for the

constructed formulas, for example, for the pigeon-hole formulas in Figure 16A and

the mutilated checkerboard formulas in Figure 16B.

6. Comparison with Other Approaches

In the previous section, we conducted a comprehensive comparison of the impact

of different parameters on the BDD-based symbolic approach. Next, we expand

our focus to other approaches, first by comparing the BDD-based symbolic

quantifier elimination with ZDD-based multiresolution, then by comparing the

structural variable order we used with the default dynamic variable order in the

context of ZChaff.

6.1. BDDS VS. ZDDS

So far we have used symbolically represented sets of truth assignments. An

alternative approach is to use decision diagrams to represent sets of clauses

instead of sets of assignments. ZRes [15] is a symbolic implementation of the

directional resolution alogrithm in [24, 27]. The approach is also referred to as

multiresolution because the algorithm carries out all resolutions over a variable

in one symbolic step. Since individual clauses are usually sparse with respect to

the set of variables, ZRes [15] used ZDDs [44], which typically offer a higher

compression ratio than BDDs for the sparse spaces. Each propositional literal ‘
is represented by a ZDD variable v‘ (thus a propositional variable can be

represented by two ZDD variables), and clause sets are represented as follows:

Y The empty clause e is represented by the terminal node 1.
Y The empty set ; is represented by the terminal node 0.

SYMBOLIC TECHNIQUES IN SATISFIABILITY SOLVING 41

Y Given a set C of clauses and a literal ‘ whose ZDD variable v‘ is lowest in

a given variable order, we split C into two subsets: C‘ ¼ cjc 2 C; ‘ 2 cf g
and C0 ¼ C� C‘. Given ZDDs representing C would be rooted at v‘ and

have ZDDs for C
0 0

and C
0

as its left and right children.

This representation is the dual of using ZDDs to represent irredundant sum of

products (ISOPs) of Boolean functions [44].

We use two set operations on sets of clauses: (1) � is the crossproduct

operator, where for two clause sets C and D, C � D={cª9c 0 Z C, 9c 00ZD, c = c 0

? c00}, and (2) + is subsumption-free union, so if both C and D are subsumption-

free, and c Z C + D, then there is no c 0 Z C + D where c0 Î c. Multiresolution

is implemented by using � on cofactors: given a ZDD f, fxþ (resp. fx�) is the

ZDDs corresponding to the positive cofactor on ZDD variable vx (resp. vKx, so

fxþ ¼ aja _ x 2 ff g and fx� ¼ aja _ :x 2 ff g. Now fxþ � fx� (after removing

tautologies) represents the set of all resolvents of f and x, which has to be

combined by using + with fx0 , which is the ZDD for the clauses not containing x.

ZRes eliminates variables by using multiresolution one by one until either the

Figure 17. Random 3-CNF.

Figure 18. Random 3-Affine.

42 GUOQIANG PAN AND MOSHE Y. VARDI

empty clause is generated, in which case the formula is unsatisfiable, or all

variables have been eliminated, in which case the formula is satisfiable.

To facilitate a fair comparison between ZRes and our BDD-based solver, we

used the multiresolution code used in [15] under our bucket elimination

framework and used the same variable and elimination order as the BDD-based

algorithms. This can be seen as a comparison of the compression capability of

ZDD-based clause sets versus BDD-based solutions sets representations, since at

comparable stages of the two algorithms (say, before variable xi, is eliminated),

the data structures represents the same Boolean function. As an optimization, a

simple form of unit preference is implemented for the ZDD-based multi-

resolution, since unit clauses can be easily detected in the ZDD-based clause set

representation and resolved out-of-order.

The results for the 3-CNF and affine satisfiability cases are plotted in Figures

17A,B, and 18. We see that the differences between the two approaches are again

density dependent. Just like the differences between BE and BM, ZDD-based

multiresolution is more efficient at low density and less efficient at high density.

This result can be related to the compression ratio achieved by the two

Figure 19. A) Random Biconditionals, B) Random Chains.

Figure 20. A) n-Rooks, B) n-Queens.

SYMBOLIC TECHNIQUES IN SATISFIABILITY SOLVING 43

representations at different densities, where the clause set representation is far

more efficient at low densities. For the high-density case, the clause set

representation starts to show its shortcomings. High-density problems typically

have a large number of clauses and few solutions: clause-set representation is

less efficient in this case. This is especially evident for the unsatisfiable case

where, if BDDs are used, unsatisfiability can be detected immediately, but if

clause sets are used, detection is delayed until an empty clause is generated.

Next we examine the other classes of formulas in Figure 19A,B, Figure

20A,B, Figure 21A, and B. In all cases, the BDD-based approach is superior to

the ZDD-based approach.j

An explanation for the superiority of the BDD-based approach can be

provided in terms of the cost of the quantifier-elimination operation. Complexity

of decision-diagram algorithms can be measured in the number of cache lookups

Figure 21. A) Pigeon-Hole, B) Multilated Checkerboard.

Figure 22. Variable Order Y Random 3-CNF (1).

j There exist other ZDD-based approaches for hard-for-resolution problems, for

example, CASSAT [46], which exhibits polynomial running time on pigeon-hole formulas
[47]. A comparison with these approaches would be a future direction of this research.

44 GUOQIANG PAN AND MOSHE Y. VARDI

that the algorithm performs. Quantifying out a single variable uses the BDD Bor^
operation, which has a proven O(n2) upper bound on the number of cache look-

ups [12]. The same cannot be said for the ZDD multiresolution operation used to

quantify out a single variable, where the number of cache look-ups can be

exponential in the width of the input ZDDs. Empirically, the number of cache

lookups can be 1Y2 orders of magnitude larger than the size of the output ZDD.

This is the main contribution to the performance hit taken by the ZDD-based

algorithm.

In [48] we compared BDD-based and ZDD-based approaches to QBF solving,

showing that ZDD-based multiresolution has a clear edge. Since QBF problems

are required to be underconstrained propositionally (otherwise they would be

easily unsatisfiable because of the unversal quantifiers), the extra compression of

the ZDD-based clause-set representation would apply, explaining the superiority

of the ZDD-based approach.

Figure 23. Variable Order Y Random 3-CNF (2).

Figure 24. Variable Order Y Random Affine.

SYMBOLIC TECHNIQUES IN SATISFIABILITY SOLVING 45

6.2. STRUCTURE-GUIDED VARIABLE ORDER FOR SEARCH

In Section 5, we showed that the choice of variable order is important to the

performance of BDD-based satisfiability solvers. We showed that MCS variable

order offers good algorithmic performance across a variety of input formulas. In

contrast, most search-based algorithms use a dynamic variable order, based on

the clauses visited or generated during the search procedure, for example, the

VSIDS heuristic used in ZChaff [45]. To offer a more direct comparison between

search-based and symbolic methods, we reimplemented ZChaff with the MCS

variable order and compared its performance with ZChaff and with the symbolic

solvers. (See [1, 37] for earlier work on structure-guided variable order for

search-based methods.) We compared here the performance of ZChaff with the

default (VSIDS) variable order, ZChaff with MCS variable order, and the BDD-

based sovers (for each formula class we chose the best solver between BM and

BE).

The results for random formulas are shown in Figure 22A,B, Figure 23A,B,

Figure 24A,B, Figure 25A and B, and the results for constructed formulas are

shown in Figures 26A,B, Figure 27A and B. In general, the structure-guided

Figure 25. Variable Order Y A) Random Biconditional, B) Random Chains.

Figure 26. Variable Order Y A) n-Rooks, B) n-Queens.

46 GUOQIANG PAN AND MOSHE Y. VARDI

variable order is inferior in terms of performance to dynamic variable order

(VSIDS). For easy problems, the overhead of precomputing the variable order is

quite significant. The performance loss should not be entirely attributed to the

overhead, though, since we also observed an increase in the number of impli-

cations performed. Thus, dynamic variable order is, in general, a better algo-

rithmic choice. Nevertheless, for most formulas, these is no exponential gap in

scaling between the two variable-order heuristics.

Also, replacing VSIDS by MCS did not change the relationship between

ZChaff and the BDD-based solvers. The difference in performance between

search-based and symbolic approaches is larger than the difference between static

and dynamic decision order for ZChaff. In none of the cases did the static vari-

able order change the relative picture between search and symbolic approaches.

This shows that the general superiority of search-based vs. symbolic techniques

cannot be attributed to the use of dynamic variable order.

7. Discussion

Satifiability solvers have made tremendous progress over the past few years,

partly driven by frequent competitions; cf. [42]. At the same time, our

understanding of why extant solvers perform so well is lagging. Our goal in

this paper is not to present a new competitive solver but rather to call for a

broader research agenda in satisfiability solving. We showed that a symbolic

approach can outperform a search-based approach in certain cases, but more

research is needed before we can have robust implementations of the symbolic

approach. Recent works have suggested other symbolic approaches to satisfi-

ability solving, for example, compressed BFS search in [46] and BDD

representation for non-CNF constraints in the framework of DPLL search in

[22, 29, 38]. These works bolster our call for a broader research agenda. Such an

agenda should build connections with two other successful areas of automated

reasoning, namely, model checking [18] and constraint satisfaction [25].

Figure 27. Variable Order Y A) Pigeon-Hole, B) Multi Checkerboard.

SYMBOLIC TECHNIQUES IN SATISFIABILITY SOLVING 47

Furthermore, such an agenda should explore hybrid approaches combining

search and symbolic techniques; cf. [22, 29, 35, 38, 46]. One hybrid approach

that has shown promise is that of the QBF solver Quantor [7], where quantifier

elimination is applied until the formula become propositional and then a search-

based solver takes olver.

As an extension to this work, we can experiment with other variable-order

heuristics, for example, MINCE [1], FORCE [2], or the ones proposed in [37], all

of which are also structurally based. Another direction for development is to take

a combination of density-dependent heuristics and structural heuristics and apply

them to hybrid BDD-based SAT solvers such as CirCUs [38] or the approach

presented in [22].

Acknowledgement

We thank Enrico Giunchiglia for proposing the experiments on structural-guided

variable order for search.

References

1. Aloul, F., Markov, I. and Sakallah, K.: MINCE: a static global variable-ordering for SAT and

BDD, in Proc. IEEE 10th International Workshop on Logic and Synthesis, 2001, pp.

281Y286.

2. Aloul, F., Markov, I. and Sakallah, K.: FORCE: a fast and easy-to-implement variable-

ordering heuristic, in Proc. of the 13th ACM Great Lakes Symposium on VLSI 2003, 2003, pp.

116Y119.

3. Amir, E. and McIlraith, S.: Solving satisfiability using decomposition and the most

constrained subproblem, in LICS Workshop on Theory and Applications of Satisfiability
Testing (SAT 2001), June 2001.

4. Arnborg, S., Corneil, D. and Proskurowski, A.: Complexity of finding embeddings in a k-tree,

SIAM J. Algebr. Discrete Math. 8 (1987), 277Y284.

5. Balcazar, J.: Self-reducibility, J. Comput. Syst. Sci. 41(3) (1990), 367Y388.

6. Beatty, D. and Bryant, R.: Formally verifying a microprocessor using a simulation

methodology, in Proc. 31st Design Automation Conference, 1994, pp. 596Y602.

7. Biere, A.: Resolve and expand, in: Proc. 7th Conf. on Theory and Applications of
Satisfiability Testing (SAT 2004), 2004, pp. 238Y246.

8. Biere, A., Clarke, C. A. E., Fujita, M. and Zhu, Y.: Symbolic model checking using SAT

procedures instead of BDD, in Proc. 36th Conf. on Design Automation, 1999, pp. 317Y320.

9. Block, M., Gröpl, C., Preuß, H., Proömel, H. L. and Srivastav, A.: Efficient ordering of state

variables and transition relation partitions in symbolic model checking. Technical report,

Institute of Informatics, Humboldt University of Berlin, 1997.

10. Bodlaender, H. and Kloks, T.: Efficient and constructive algorithms for the pathwidth and

treewidth of graphs, J. Alogorithms 21 (1996), 358Y402.

11. Bouquet, F.: Gestion de la dynamicite et enumeration d’implicants preniers, une approche

fondee sur les Diagrammes de Decision Binaire. Ph.D. thesis, Universite de Privence, France,

1999.

12. Bryant, R.: Graph-based algorithms for Boolean function manipulation, IEEE Trans. Comput,
C35(8) (1986), 677Y691.

48 GUOQIANG PAN AND MOSHE Y. VARDI

13. Burch, J., Clarke, E. and Long, D.: Symbolic model checking with partitioned transition

relations, in VLSI 91, Proc. IFIP TC10/WG 10.5 International Conference on Very Large
Scale Integration, Edinburgh, Scotland, 20Y22 August, 1991, pp. 49Y58

14. Burch, J., Clarke, E., McMillan, K., Dill, D. and Hwang, L.: Symbolic model checking: 1020

states and beyond, Inf. Comput. 98(2) (1992), 142Y170.

15. Chatalic, P. and Simon, L.: Multi-resolution on compressed sets of clauses, in Twelfth
International Conference on Tools with Artificial Intelligence (IXTAI’00), 2000, pp. 2Y10.

16. Chung, P., Hajj, I. and Patel, J.: Efficient variable ordering heuristics for shared ROBDD, in

Proc. 1993 IEEE Int. Symp. on Circuits and Systems (ISCA93), 1993, pp. 1690Y1693.

17. Cimatti, A. and Roveri, M.: Conformant planning via symbolic model checking, J. Artif.
Intell. Res. 13 (2000), 305Y338

18. Clarke, E., Grumberg, O. and Peled, D.: Model Checking, MIT Press, 1999.

19. Coarfa, C., Demopoulos, D. D., San Miguel Aguirre, A., Subramanian, D. and Vardi, M.:

Random 3-SAT: the plot thickens, Constraints (2003), 243Y261.

20. Crawford, J. and Baker, A.: Experimental results on the application of satisfiability

algorithms to scheduling problems, in Proc. 12th Nat. Conf. on Artificial Intelligence, Vol.

2, 1994, pp. 1092Y1097.

21. Dalmau, V., Kolaitis, P. and Vardi, M.: Constraint satisfaction, bounded treewidth, and finite-

variable logics, in Proceedings of 8th Int. Conf. on Principles and Practice of Constraint
Programming (CP 2002), 2002, pp. 310Y326.

22. Damiano, R. F. and Kukula, J. H.: Checking satisfiability of a conjunction of BDDs, in: Proc.
40th Design Automation Conference (DAC 2003), 2003, pp. 818Y823.

23. Davis, M., Logemann, G. and Loveland, D.: A machine program for theorem proving.

J. ACM 5 (1962), 394Y397.

24. Davis, S. and Putnam, M.: A computing procedure for quantification theory, J. ACM 7

(1960), 201Y215.

25. Dechter, R.: Constraint Processing, Morgan Kaufmann, 2003.

26. Dechter, R. and Pearl, J.: Network-based heuristics for constraint-satisfaction problems. Artif.
Intell. 34 (1987), 1Y38.

27. Dechter, R. and Rish, I.: Directional resolution: the DavisYPutnam procedure, revisited, in

KR’94: Principles of Knowledge Representation and Reasoning, 1994, pp. 134Y145.

28. Downery, R. and Fellows, M.: Paraetrized Complexity, Springer-Verlag, 1999.

29. Franco, J., Kouril, M., Schlipf, J., Ward, J., Weaver, S., Dransfield, M. and Vanfleet, W.:

SBSAT: a state-based, BDD-based satisfiability solver, in Proc. 6th Int. Conf. on Theory and
Applications of Satisfiability Testing (SAT 2003), 2003, pp. 398Y410.

30. Freuder, E.: Complexity of k-tree structured constraint satisfaction problems, in Proc. 8th
Nat. Conf. on Artificial Intelligence, 1990, pp. 4Y9.

31. Fujita, M., Fujisawa, H. and Kawato, N.: Evaluation and improvements of Boolean

comparison method based on binary decision disgrams, in Proc. IEEE/ACM Int. conf. on
Computer-Aided Design (ICCAD-88), 1988, pp. 2Y5.

32. Geist, D. and Beer, H.: Efficient model checking by automated ordering of transition relation

partitions, in Proc. 6th Int. Conf. on computer Aided Verification (CAV 1994), 1994, pp.

299Y310.

33. Goldberg, E. and Novikov, Y.: BerkMin: a fast and robust SAT solver, in Proc. Design
Automation and Test in Europe (DATE 2002), 2002, pp. 142Y149.

34. Groote, J. F.: Hiding propositional constants in BDDs, FMSD 8 (1996), 91Y96.

35. Gupta, A., Yang, Z., Ashar, P., Zhang, L. and Malik, S.: Partition-based decision heuristics

for image computation using SAT and BDDs, in: Proc. IEEE/ACM Int. Conf. on Computer-
Aided Design (ICCAD-01), 2001, pp. 286Y292.

SYMBOLIC TECHNIQUES IN SATISFIABILITY SOLVING 49

36. Hojati, R., Krishman, S.C. and Brayton, R.K.: Early quantification and partitioned transition

relations, in Proc. 1996 Int. Conf. on Computer Design (ICCD’96), 1996, pp. 12Y19.

37. Huang, J. and Darwiche, A.: A structure-based variable ordering heuristic for SAT, in Proc.
18th Int. Joint Conf. on Artificial Intelligence (IJCAI 2003), 2003, 1167Y1172.

38. Jon, H. and Somenzi, F.: CirCUs: hybrid satisfiability solver, in Proc. of the 7th Int. Conf. on
Theory and Applications of Satisfiability Testing (SAT 2004), 2004, pp. 47Y55.

39. Kautz, H. and Selman, B.: Planning as satisfiability, in Proc. 10th Eur. conf. on AI (ECAI 92),
1992, pp. 359Y363.

40. Khurshid, S., Marinov, D., Shlyyakhter, I. and Jackson, D.: A case for efficient solution

enumeration, in Proc. 6th Int. Conf. on Theory and Applications of Satisfiability Testing (SAT
2003), 2001, pp. 272Y286.

41. Koster, A., Bodlaender, H. and van Hoesel, S.: Treewidth: computational experiments.

Technical report, Konrad-Zuse-Zentrum für Informationstechnik Berlin.

42. Le Berre, D. and Simon, L.: The essentials of the SAT’03 competition, in Proc. 6th Int. Conf.
on Theory and Applications of Satisfiability Testing (SAT 2003), 2003, pp. 452Y467.

43. Malik, S., Wang, A., Brayton, R. and Sangiovanni Vincentelli, A.: Logic verification using

binary decision diagrams in a logic synthesis environment, in: Proc. IEEE/ACM Int. Conf. on
Computer-Aided Design (ICCAD-88), 1988, pp. 6Y9.

44. Minato, S.: Binary Decision Diagrams and Applications to VLSI CAD. Kluwer, 1996.

45. Moskewicz, M., Madigan, C., Zhao, Y., Zhang, L. and Malik, S.: Chaff: engineering an

efficient SAT solver, in Proc. of 39th Design Automation Conference (DAC 2001), 2001,

pp. 530Y535.

46. Motter, D.B. and Markov, I.L.: A compressed breadth-first search for satisfiability, in Proc.
4th Int. Workshop on Algorithm Engineering and Experiments (ALENEX 2002), Vol. 2409 of

Lecture Notes in Computer Science, 2002, pp. 29Y42.

47. Motter, D.B. and Markov, I.L.: On proof systems behind efficient SAT solvers, in Proc. of
5th Int. Symp. on the Theory and Applications of Satisfiability Testing (SAT 2002), 2002,

pp. 206Y213.

48. Pan, G. and Vardi, M.Y.: Symbolic decision procedures for QBF, in Proceedings of 10th Int.
Conf. on Principles and Practice of Constraint Programming (CP 2004), 2004, pp. 453Y467.

49. Ranjan, R., Aziz, A., Brayton, R., Plessier, B. and Pixley, C.: Efficient BDD algorithms for FSM

synthesis and verification, in Proc. of IEEE/ACM Int. Workshop on Logic Synthesis, 1995.

50. San Miguel Aguirre, A. and Vardi, M.Y.: Random 3-SAT and BDDs: the plot thickens

further, in Proc. of the 7th Int. Conf. Principles and Practice of Constraint Programming (CP
2001), 2001, pp. 121Y136.

51. Schaefer, T.: The Complexity of satisfiability problems, in Proc. of the 10th annual ACM
symposium on Theory of Computing (STOC’78), 1978, pp. 216Y226.

52. Selman, B., Mitchell, D. G. and Levesque, H. J.: Generating hard satisfiability problems,

Artif. Intell. 81(1Y2) (1996), 17Y29.

53. Somenzi, F.: FCUDD: CU Decision Diagram package_. http://vlsi.colorado.edu/~fabio/

CUDD/, 1998.

54. Tarjan, R. E. and Yannakakis, M.: Simple linear-time algorithms to test chordality of graphs,

tests acyclicity of hypergraphs, and selectively reduce acyclic hypergraphs, SIAM J. Comput.
13(3) (1984), 566Y579.

55. Uribe, T.E. and Stickel, M.E.: Ordered binary decision diagrams and the DavisYPutnam

procedure, in 1st Int. Conf. on Constraints in Computational Logics, 1994, pp. 34Y39.

56. Urquhart, A.: The complexity of propositional proofs, Bull. Symb. Log. 1 (1995), 425Y467.

50 GUOQIANG PAN AND MOSHE Y. VARDI

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AardvarkPSMT
 /AceBinghamSH
 /AddisonLibbySH
 /AGaramond-Italic
 /AGaramond-Regular
 /AkbarPlain
 /Albertus-Bold
 /AlbertusExtraBold-Regular
 /AlbertusMedium-Italic
 /AlbertusMedium-Regular
 /AlfonsoWhiteheadSH
 /Algerian
 /AllegroBT-Regular
 /AmarilloUSAF
 /AmazoneBT-Regular
 /AmeliaBT-Regular
 /AmerigoBT-BoldA
 /AmerTypewriterITCbyBT-Medium
 /AndaleMono
 /AndyMacarthurSH
 /Animals
 /AnneBoleynSH
 /Annifont
 /AntiqueOlive-Bold
 /AntiqueOliveCompact-Regular
 /AntiqueOlive-Italic
 /AntiqueOlive-Regular
 /AntonioMountbattenSH
 /ArabiaPSMT
 /AradLevelVI
 /ArchitecturePlain
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialMTBlack-Regular
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeLight
 /ArialUnicodeLight-Bold
 /ArialUnicodeLight-BoldItalic
 /ArialUnicodeLight-Italic
 /ArrowsAPlentySH
 /ArrusBT-Bold
 /ArrusBT-BoldItalic
 /ArrusBT-Italic
 /ArrusBT-Roman
 /Asiana
 /AssadSadatSH
 /AvalonPSMT
 /AvantGardeITCbyBT-Book
 /AvantGardeITCbyBT-BookOblique
 /AvantGardeITCbyBT-Demi
 /AvantGardeITCbyBT-DemiOblique
 /AvantGardeITCbyBT-Medium
 /AvantGardeITCbyBT-MediumOblique
 /BankGothicBT-Light
 /BankGothicBT-Medium
 /Baskerville-Bold
 /Baskerville-Normal
 /Baskerville-Normal-Italic
 /BaskOldFace
 /Bauhaus93
 /Bavand
 /BazookaRegular
 /BeauTerrySH
 /BECROSS
 /BedrockPlain
 /BeeskneesITC
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BenguiatITCbyBT-Bold
 /BenguiatITCbyBT-BoldItalic
 /BenguiatITCbyBT-Book
 /BenguiatITCbyBT-BookItalic
 /BennieGoetheSH
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BernhardBoldCondensedBT-Regular
 /BernhardFashionBT-Regular
 /BernhardModernBT-Bold
 /BernhardModernBT-BoldItalic
 /BernhardModernBT-Italic
 /BernhardModernBT-Roman
 /Bethel
 /BibiGodivaSH
 /BibiNehruSH
 /BKenwood-Regular
 /BlackadderITC-Regular
 /BlondieBurtonSH
 /BodoniBlack-Regular
 /Bodoni-Bold
 /Bodoni-BoldItalic
 /BodoniBT-Bold
 /BodoniBT-BoldItalic
 /BodoniBT-Italic
 /BodoniBT-Roman
 /Bodoni-Italic
 /BodoniMTPosterCompressed
 /Bodoni-Regular
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolFive
 /BookshelfSymbolFour
 /BookshelfSymbolOne-Regular
 /BookshelfSymbolThree-Regular
 /BookshelfSymbolTwo-Regular
 /BookwomanDemiItalicSH
 /BookwomanDemiSH
 /BookwomanExptLightSH
 /BookwomanLightItalicSH
 /BookwomanLightSH
 /BookwomanMonoLightSH
 /BookwomanSwashDemiSH
 /BookwomanSwashLightSH
 /BoulderRegular
 /BradleyHandITC
 /Braggadocio
 /BrailleSH
 /BRectangular
 /BremenBT-Bold
 /BritannicBold
 /Broadview
 /Broadway
 /BroadwayBT-Regular
 /BRubber
 /Brush445BT-Regular
 /BrushScriptMT
 /BSorbonna
 /BStranger
 /BTriumph
 /BuckyMerlinSH
 /BusoramaITCbyBT-Medium
 /Caesar
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /CalisMTBol
 /CalistoMT
 /CalistoMT-Italic
 /CalligrapherRegular
 /CameronStendahlSH
 /Candy
 /CandyCaneUnregistered
 /CankerSore
 /CarlTellerSH
 /CarrieCattSH
 /CaslonOpenfaceBT-Regular
 /CassTaylorSH
 /CDOT
 /Centaur
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturyOldStyle-BoldItalic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Cezanne
 /CGOmega-Bold
 /CGOmega-BoldItalic
 /CGOmega-Italic
 /CGOmega-Regular
 /CGTimes-Bold
 /CGTimes-BoldItalic
 /CGTimes-Italic
 /CGTimes-Regular
 /Charting
 /ChartreuseParsonsSH
 /ChaseCallasSH
 /ChasThirdSH
 /ChaucerRegular
 /CheltenhamITCbyBT-Bold
 /CheltenhamITCbyBT-BoldItalic
 /CheltenhamITCbyBT-Book
 /CheltenhamITCbyBT-BookItalic
 /ChildBonaparteSH
 /Chiller-Regular
 /ChuckWarrenChiselSH
 /ChuckWarrenDesignSH
 /CityBlueprint
 /Clarendon-Bold
 /Clarendon-Book
 /ClarendonCondensedBold
 /ClarendonCondensed-Bold
 /ClarendonExtended-Bold
 /ClassicalGaramondBT-Bold
 /ClassicalGaramondBT-BoldItalic
 /ClassicalGaramondBT-Italic
 /ClassicalGaramondBT-Roman
 /ClaudeCaesarSH
 /CLI
 /Clocks
 /ClosetoMe
 /CluKennedySH
 /CMBX10
 /CMBX5
 /CMBX7
 /CMEX10
 /CMMI10
 /CMMI5
 /CMMI7
 /CMMIB10
 /CMR10
 /CMR5
 /CMR7
 /CMSL10
 /CMSY10
 /CMSY5
 /CMSY7
 /CMTI10
 /CMTT10
 /CoffeeCamusInitialsSH
 /ColetteColeridgeSH
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CommercialPiBT-Regular
 /CommercialScriptBT-Regular
 /Complex
 /CooperBlack
 /CooperBT-BlackHeadline
 /CooperBT-BlackItalic
 /CooperBT-Bold
 /CooperBT-BoldItalic
 /CooperBT-Medium
 /CooperBT-MediumItalic
 /CooperPlanck2LightSH
 /CooperPlanck4SH
 /CooperPlanck6BoldSH
 /CopperplateGothicBT-Bold
 /CopperplateGothicBT-Roman
 /CopperplateGothicBT-RomanCond
 /CopticLS
 /Cornerstone
 /Coronet
 /CoronetItalic
 /Cotillion
 /CountryBlueprint
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /CSSubscript
 /CSSubscriptBold
 /CSSubscriptItalic
 /CSSuperscript
 /CSSuperscriptBold
 /Cuckoo
 /CurlzMT
 /CybilListzSH
 /CzarBold
 /CzarBoldItalic
 /CzarItalic
 /CzarNormal
 /DauphinPlain
 /DawnCastleBold
 /DawnCastlePlain
 /Dekker
 /DellaRobbiaBT-Bold
 /DellaRobbiaBT-Roman
 /Denmark
 /Desdemona
 /Diploma
 /DizzyDomingoSH
 /DizzyFeiningerSH
 /DocTermanBoldSH
 /DodgenburnA
 /DodoCasalsSH
 /DodoDiogenesSH
 /DomCasualBT-Regular
 /Durian-Republik
 /Dutch801BT-Bold
 /Dutch801BT-BoldItalic
 /Dutch801BT-ExtraBold
 /Dutch801BT-Italic
 /Dutch801BT-Roman
 /EBT's-cmbx10
 /EBT's-cmex10
 /EBT's-cmmi10
 /EBT's-cmmi5
 /EBT's-cmmi7
 /EBT's-cmr10
 /EBT's-cmr5
 /EBT's-cmr7
 /EBT's-cmsy10
 /EBT's-cmsy5
 /EBT's-cmsy7
 /EdithDaySH
 /Elephant-Italic
 /Elephant-Regular
 /EmGravesSH
 /EngelEinsteinSH
 /English111VivaceBT-Regular
 /English157BT-Regular
 /EngraversGothicBT-Regular
 /EngraversOldEnglishBT-Bold
 /EngraversOldEnglishBT-Regular
 /EngraversRomanBT-Bold
 /EngraversRomanBT-Regular
 /EnviroD
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /ErasITC-Ultra
 /ErnestBlochSH
 /EstrangeloEdessa
 /Euclid
 /Euclid-Bold
 /Euclid-BoldItalic
 /EuclidExtra
 /EuclidExtra-Bold
 /EuclidFraktur
 /EuclidFraktur-Bold
 /Euclid-Italic
 /EuclidMathOne
 /EuclidMathOne-Bold
 /EuclidMathTwo
 /EuclidMathTwo-Bold
 /EuclidSymbol
 /EuclidSymbol-Bold
 /EuclidSymbol-BoldItalic
 /EuclidSymbol-Italic
 /EuroRoman
 /EuroRomanOblique
 /ExxPresleySH
 /FencesPlain
 /Fences-Regular
 /FifthAvenue
 /FigurineCrrCB
 /FigurineCrrCBBold
 /FigurineCrrCBBoldItalic
 /FigurineCrrCBItalic
 /FigurineTmsCB
 /FigurineTmsCBBold
 /FigurineTmsCBBoldItalic
 /FigurineTmsCBItalic
 /FillmoreRegular
 /Fitzgerald
 /Flareserif821BT-Roman
 /FleurFordSH
 /Fontdinerdotcom
 /FontdinerdotcomSparkly
 /FootlightMTLight
 /ForefrontBookObliqueSH
 /ForefrontBookSH
 /ForefrontDemiObliqueSH
 /ForefrontDemiSH
 /Fortress
 /FractionsAPlentySH
 /FrakturPlain
 /Franciscan
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /FranklinUnic
 /FredFlahertySH
 /Freehand575BT-RegularB
 /Freehand591BT-RegularA
 /FreestyleScript-Regular
 /Frutiger-Roman
 /FTPMultinational
 /FTPMultinational-Bold
 /FujiyamaPSMT
 /FuturaBlackBT-Regular
 /FuturaBT-Bold
 /FuturaBT-BoldCondensed
 /FuturaBT-BoldItalic
 /FuturaBT-Book
 /FuturaBT-BookItalic
 /FuturaBT-ExtraBlack
 /FuturaBT-ExtraBlackCondensed
 /FuturaBT-ExtraBlackCondItalic
 /FuturaBT-ExtraBlackItalic
 /FuturaBT-Light
 /FuturaBT-LightItalic
 /FuturaBT-Medium
 /FuturaBT-MediumCondensed
 /FuturaBT-MediumItalic
 /GabbyGauguinSH
 /GalliardITCbyBT-Bold
 /GalliardITCbyBT-BoldItalic
 /GalliardITCbyBT-Italic
 /GalliardITCbyBT-Roman
 /Garamond
 /Garamond-Antiqua
 /Garamond-Bold
 /Garamond-Halbfett
 /Garamond-Italic
 /Garamond-Kursiv
 /Garamond-KursivHalbfett
 /Garcia
 /GarryMondrian3LightItalicSH
 /GarryMondrian3LightSH
 /GarryMondrian4BookItalicSH
 /GarryMondrian4BookSH
 /GarryMondrian5SBldItalicSH
 /GarryMondrian5SBldSH
 /GarryMondrian6BoldItalicSH
 /GarryMondrian6BoldSH
 /GarryMondrian7ExtraBoldSH
 /GarryMondrian8UltraSH
 /GarryMondrianCond3LightSH
 /GarryMondrianCond4BookSH
 /GarryMondrianCond5SBldSH
 /GarryMondrianCond6BoldSH
 /GarryMondrianCond7ExtraBoldSH
 /GarryMondrianCond8UltraSH
 /GarryMondrianExpt3LightSH
 /GarryMondrianExpt4BookSH
 /GarryMondrianExpt5SBldSH
 /GarryMondrianExpt6BoldSH
 /GarryMondrianSwashSH
 /Gaslight
 /GatineauPSMT
 /Gautami
 /GDT
 /Geometric231BT-BoldC
 /Geometric231BT-LightC
 /Geometric231BT-RomanC
 /GeometricSlab703BT-Bold
 /GeometricSlab703BT-BoldCond
 /GeometricSlab703BT-BoldItalic
 /GeometricSlab703BT-Light
 /GeometricSlab703BT-LightItalic
 /GeometricSlab703BT-Medium
 /GeometricSlab703BT-MediumCond
 /GeometricSlab703BT-MediumItalic
 /GeometricSlab703BT-XtraBold
 /GeorgeMelvilleSH
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Gigi-Regular
 /GillSansBC
 /GillSans-Bold
 /GillSans-BoldItalic
 /GillSansCondensed-Bold
 /GillSansCondensed-Regular
 /GillSansExtraBold-Regular
 /GillSans-Italic
 /GillSansLight-Italic
 /GillSansLight-Regular
 /GillSans-Regular
 /GoldMinePlain
 /Gonzo
 /GothicE
 /GothicG
 /GothicI
 /GoudyHandtooledBT-Regular
 /GoudyOldStyle-Bold
 /GoudyOldStyle-BoldItalic
 /GoudyOldStyleBT-Bold
 /GoudyOldStyleBT-BoldItalic
 /GoudyOldStyleBT-Italic
 /GoudyOldStyleBT-Roman
 /GoudyOldStyleExtrabold-Regular
 /GoudyOldStyle-Italic
 /GoudyOldStyle-Regular
 /GoudySansITCbyBT-Bold
 /GoudySansITCbyBT-BoldItalic
 /GoudySansITCbyBT-Medium
 /GoudySansITCbyBT-MediumItalic
 /GraceAdonisSH
 /Graeca
 /Graeca-Bold
 /Graeca-BoldItalic
 /Graeca-Italic
 /Graphos-Bold
 /Graphos-BoldItalic
 /Graphos-Italic
 /Graphos-Regular
 /GreekC
 /GreekS
 /GreekSans
 /GreekSans-Bold
 /GreekSans-BoldOblique
 /GreekSans-Oblique
 /Griffin
 /GrungeUpdate
 /Haettenschweiler
 /HankKhrushchevSH
 /HarlowSolid
 /HarpoonPlain
 /Harrington
 /HeatherRegular
 /Hebraica
 /HeleneHissBlackSH
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Narrow
 /Helvetica-Narrow-Bold
 /Helvetica-Narrow-BoldOblique
 /Helvetica-Narrow-Oblique
 /Helvetica-Oblique
 /HenryPatrickSH
 /Herald
 /HighTowerText-Italic
 /HighTowerText-Reg
 /HogBold-HMK
 /HogBook-HMK
 /HomePlanning
 /HomePlanning2
 /HomewardBoundPSMT
 /Humanist521BT-Bold
 /Humanist521BT-BoldCondensed
 /Humanist521BT-BoldItalic
 /Humanist521BT-Italic
 /Humanist521BT-Light
 /Humanist521BT-LightItalic
 /Humanist521BT-Roman
 /Humanist521BT-RomanCondensed
 /IBMPCDOS
 /IceAgeD
 /Impact
 /Incised901BT-Bold
 /Incised901BT-Light
 /Incised901BT-Roman
 /Industrial736BT-Italic
 /Informal011BT-Roman
 /InformalRoman-Regular
 /Intrepid
 /IntrepidBold
 /IntrepidOblique
 /Invitation
 /IPAExtras
 /IPAExtras-Bold
 /IPAHighLow
 /IPAHighLow-Bold
 /IPAKiel
 /IPAKiel-Bold
 /IPAKielSeven
 /IPAKielSeven-Bold
 /IPAsans
 /ISOCP
 /ISOCP2
 /ISOCP3
 /ISOCT
 /ISOCT2
 /ISOCT3
 /Italic
 /ItalicC
 /ItalicT
 /JesterRegular
 /Jokerman-Regular
 /JotMedium-HMK
 /JuiceITC-Regular
 /JupiterPSMT
 /KabelITCbyBT-Book
 /KabelITCbyBT-Ultra
 /KarlaJohnson5CursiveSH
 /KarlaJohnson5RegularSH
 /KarlaJohnson6BoldCursiveSH
 /KarlaJohnson6BoldSH
 /KarlaJohnson7ExtraBoldCursiveSH
 /KarlaJohnson7ExtraBoldSH
 /KarlKhayyamSH
 /Karnack
 /Kartika
 /Kashmir
 /KaufmannBT-Bold
 /KaufmannBT-Regular
 /KeplerStd-Black
 /KeplerStd-BlackIt
 /KeplerStd-Bold
 /KeplerStd-BoldIt
 /KeplerStd-Italic
 /KeplerStd-Light
 /KeplerStd-LightIt
 /KeplerStd-Medium
 /KeplerStd-MediumIt
 /KeplerStd-Regular
 /KeplerStd-Semibold
 /KeplerStd-SemiboldIt
 /KeystrokeNormal
 /Kidnap
 /KidsPlain
 /Kindergarten
 /KinoMT
 /KissMeKissMeKissMe
 /KoalaPSMT
 /KorinnaITCbyBT-Bold
 /KorinnaITCbyBT-KursivBold
 /KorinnaITCbyBT-KursivRegular
 /KorinnaITCbyBT-Regular
 /KristenITC-Regular
 /Kristin
 /KunstlerScript
 /KyotoSong
 /LainieDaySH
 /LandscapePlanning
 /Lapidary333BT-Bold
 /Lapidary333BT-BoldItalic
 /Lapidary333BT-Italic
 /Lapidary333BT-Roman
 /Latha
 /LatinoPal3LightItalicSH
 /LatinoPal3LightSH
 /LatinoPal4ItalicSH
 /LatinoPal4RomanSH
 /LatinoPal5DemiItalicSH
 /LatinoPal5DemiSH
 /LatinoPal6BoldItalicSH
 /LatinoPal6BoldSH
 /LatinoPal7ExtraBoldSH
 /LatinoPal8BlackSH
 /LatinoPalCond4RomanSH
 /LatinoPalCond5DemiSH
 /LatinoPalCond6BoldSH
 /LatinoPalExptRomanSH
 /LatinoPalSwashSH
 /LatinWidD
 /LatinWide
 /LeeToscanini3LightSH
 /LeeToscanini5RegularSH
 /LeeToscanini7BoldSH
 /LeeToscanini9BlackSH
 /LeeToscaniniInlineSH
 /LetterGothic12PitchBT-Bold
 /LetterGothic12PitchBT-BoldItal
 /LetterGothic12PitchBT-Italic
 /LetterGothic12PitchBT-Roman
 /LetterGothic-Bold
 /LetterGothic-BoldItalic
 /LetterGothic-Italic
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LetterGothic-Regular
 /LibrarianRegular
 /LinusPSMT
 /Lithograph-Bold
 /LithographLight
 /LongIsland
 /LubalinGraphMdITCTT
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSansUnicode
 /LydianCursiveBT-Regular
 /Magneto-Bold
 /Mangal-Regular
 /Map-Symbols
 /MarcusHobbesSH
 /Mariah
 /Marigold
 /MaritaMedium-HMK
 /MaritaScript-HMK
 /Market
 /MartinMaxxieSH
 /MathTypeMed
 /MatisseITC-Regular
 /MaturaMTScriptCapitals
 /MaudeMeadSH
 /MemorandumPSMT
 /Metro
 /Metrostyle-Bold
 /MetrostyleExtended-Bold
 /MetrostyleExtended-Regular
 /Metrostyle-Regular
 /MicrogrammaD-BoldExte
 /MicrosoftSansSerif
 /MikePicassoSH
 /MiniPicsLilEdibles
 /MiniPicsLilFolks
 /MiniPicsLilStuff
 /MischstabPopanz
 /MisterEarlBT-Regular
 /Mistral
 /ModerneDemi
 /ModerneDemiOblique
 /ModerneOblique
 /ModerneRegular
 /Modern-Regular
 /MonaLisaRecutITC-Normal
 /Monospace821BT-Bold
 /Monospace821BT-BoldItalic
 /Monospace821BT-Italic
 /Monospace821BT-Roman
 /Monotxt
 /MonotypeCorsiva
 /MonotypeSorts
 /MorrisonMedium
 /MorseCode
 /MotorPSMT
 /MSAM10
 /MSLineDrawPSMT
 /MS-Mincho
 /MSOutlook
 /MSReference1
 /MSReference2
 /MTEX
 /MTEXB
 /MTEXH
 /MT-Extra
 /MTGU
 /MTGUB
 /MTLS
 /MTLSB
 /MTMI
 /MTMIB
 /MTMIH
 /MTMS
 /MTMSB
 /MTMUB
 /MTMUH
 /MTSY
 /MTSYB
 /MTSYH
 /MT-Symbol
 /MTSYN
 /Music
 /MVBoli
 /MysticalPSMT
 /NagHammadiLS
 /NealCurieRuledSH
 /NealCurieSH
 /NebraskaPSMT
 /Neuropol-Medium
 /NevisonCasD
 /NewMilleniumSchlbkBoldItalicSH
 /NewMilleniumSchlbkBoldSH
 /NewMilleniumSchlbkExptSH
 /NewMilleniumSchlbkItalicSH
 /NewMilleniumSchlbkRomanSH
 /News702BT-Bold
 /News702BT-Italic
 /News702BT-Roman
 /Newton
 /NewZuricaBold
 /NewZuricaItalic
 /NewZuricaRegular
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NigelSadeSH
 /Nirvana
 /NuptialBT-Regular
 /OCRAbyBT-Regular
 /OfficePlanning
 /OldCentury
 /OldEnglishTextMT
 /Onyx
 /OnyxBT-Regular
 /OpenSymbol
 /OttawaPSMT
 /OttoMasonSH
 /OzHandicraftBT-Roman
 /OzzieBlack-Italic
 /OzzieBlack-Regular
 /PalatiaBold
 /PalatiaItalic
 /PalatiaRegular
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /PalmSpringsPSMT
 /Pamela
 /PanRoman
 /ParadisePSMT
 /ParagonPSMT
 /ParamountBold
 /ParamountItalic
 /ParamountRegular
 /Parchment-Regular
 /ParisianBT-Regular
 /ParkAvenueBT-Regular
 /Patrick
 /Patriot
 /PaulPutnamSH
 /PcEncodingLowerSH
 /PcEncodingSH
 /Pegasus
 /PenguinLightPSMT
 /PennSilvaSH
 /Percival
 /PerfectRegular
 /Pfn2BlackItalic
 /Phantom
 /PhilSimmonsSH
 /Pickwick
 /PipelinePlain
 /Playbill
 /PoorRichard-Regular
 /Poster
 /PosterBodoniBT-Italic
 /PosterBodoniBT-Roman
 /Pristina-Regular
 /Proxy1
 /Proxy2
 /Proxy3
 /Proxy4
 /Proxy5
 /Proxy6
 /Proxy7
 /Proxy8
 /Proxy9
 /Prx1
 /Prx2
 /Prx3
 /Prx4
 /Prx5
 /Prx6
 /Prx7
 /Prx8
 /Prx9
 /Pythagoras
 /Raavi
 /Ranegund
 /Ravie
 /Ribbon131BT-Bold
 /RMTMI
 /RMTMIB
 /RMTMIH
 /RMTMUB
 /RMTMUH
 /RobWebsterExtraBoldSH
 /Rockwell
 /Rockwell-Bold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /RomanC
 /RomanD
 /RomanS
 /RomanT
 /Romantic
 /RomanticBold
 /RomanticItalic
 /Sahara
 /SalTintorettoSH
 /SamBarberInitialsSH
 /SamPlimsollSH
 /SansSerif
 /SansSerifBold
 /SansSerifBoldOblique
 /SansSerifOblique
 /Sceptre
 /ScribbleRegular
 /ScriptC
 /ScriptHebrew
 /ScriptS
 /Semaphore
 /SerifaBT-Black
 /SerifaBT-Bold
 /SerifaBT-Italic
 /SerifaBT-Roman
 /SerifaBT-Thin
 /Sfn2Bold
 /Sfn3Italic
 /ShelleyAllegroBT-Regular
 /ShelleyVolanteBT-Regular
 /ShellyMarisSH
 /SherwoodRegular
 /ShlomoAleichemSH
 /ShotgunBT-Regular
 /ShowcardGothic-Reg
 /Shruti
 /SignatureRegular
 /Signboard
 /SignetRoundhandATT-Italic
 /SignetRoundhand-Italic
 /SignLanguage
 /Signs
 /Simplex
 /SissyRomeoSH
 /SlimStravinskySH
 /SnapITC-Regular
 /SnellBT-Bold
 /Socket
 /Sonate
 /SouvenirITCbyBT-Demi
 /SouvenirITCbyBT-DemiItalic
 /SouvenirITCbyBT-Light
 /SouvenirITCbyBT-LightItalic
 /SpruceByingtonSH
 /SPSFont1Medium
 /SPSFont2Medium
 /SPSFont3Medium
 /SpsFont4Medium
 /SPSFont4Medium
 /SPSFont5Normal
 /SPSScript
 /SRegular
 /Staccato222BT-Regular
 /StageCoachRegular
 /StandoutRegular
 /StarTrekNextBT-ExtraBold
 /StarTrekNextPiBT-Regular
 /SteamerRegular
 /Stencil
 /StencilBT-Regular
 /Stewardson
 /Stonehenge
 /StopD
 /Storybook
 /Strict
 /Strider-Regular
 /StuyvesantBT-Regular
 /StylusBT
 /StylusRegular
 /SubwayRegular
 /SueVermeer4LightItalicSH
 /SueVermeer4LightSH
 /SueVermeer5MedItalicSH
 /SueVermeer5MediumSH
 /SueVermeer6DemiItalicSH
 /SueVermeer6DemiSH
 /SueVermeer7BoldItalicSH
 /SueVermeer7BoldSH
 /SunYatsenSH
 /SuperFrench
 /SuzanneQuillSH
 /Swiss721-BlackObliqueSWA
 /Swiss721-BlackSWA
 /Swiss721BT-Black
 /Swiss721BT-BlackCondensed
 /Swiss721BT-BlackCondensedItalic
 /Swiss721BT-BlackExtended
 /Swiss721BT-BlackItalic
 /Swiss721BT-BlackOutline
 /Swiss721BT-Bold
 /Swiss721BT-BoldCondensed
 /Swiss721BT-BoldCondensedItalic
 /Swiss721BT-BoldCondensedOutline
 /Swiss721BT-BoldExtended
 /Swiss721BT-BoldItalic
 /Swiss721BT-BoldOutline
 /Swiss721BT-Italic
 /Swiss721BT-ItalicCondensed
 /Swiss721BT-Light
 /Swiss721BT-LightCondensed
 /Swiss721BT-LightCondensedItalic
 /Swiss721BT-LightExtended
 /Swiss721BT-LightItalic
 /Swiss721BT-Roman
 /Swiss721BT-RomanCondensed
 /Swiss721BT-RomanExtended
 /Swiss721BT-Thin
 /Swiss721-LightObliqueSWA
 /Swiss721-LightSWA
 /Swiss911BT-ExtraCompressed
 /Swiss921BT-RegularA
 /Syastro
 /Sylfaen
 /Symap
 /Symath
 /SymbolGreek
 /SymbolGreek-Bold
 /SymbolGreek-BoldItalic
 /SymbolGreek-Italic
 /SymbolGreekP
 /SymbolGreekP-Bold
 /SymbolGreekP-BoldItalic
 /SymbolGreekP-Italic
 /SymbolGreekPMono
 /SymbolMT
 /SymbolProportionalBT-Regular
 /SymbolsAPlentySH
 /Symeteo
 /Symusic
 /Tahoma
 /Tahoma-Bold
 /TahomaItalic
 /TamFlanahanSH
 /Technic
 /TechnicalItalic
 /TechnicalPlain
 /TechnicBold
 /TechnicLite
 /Tekton-Bold
 /Teletype
 /TempsExptBoldSH
 /TempsExptItalicSH
 /TempsExptRomanSH
 /TempsSwashSH
 /TempusSansITC
 /TessHoustonSH
 /TexCatlinObliqueSH
 /TexCatlinSH
 /Thrust
 /Times-Bold
 /Times-BoldItalic
 /Times-BoldOblique
 /Times-ExtraBold
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Oblique
 /Times-Roman
 /Times-Semibold
 /Times-SemiboldItalic
 /TimesUnic-Bold
 /TimesUnic-BoldItalic
 /TimesUnic-Italic
 /TimesUnic-Regular
 /TonyWhiteSH
 /TransCyrillic
 /TransCyrillic-Bold
 /TransCyrillic-BoldItalic
 /TransCyrillic-Italic
 /Transistor
 /Transitional521BT-BoldA
 /Transitional521BT-CursiveA
 /Transitional521BT-RomanA
 /TranslitLS
 /TranslitLS-Bold
 /TranslitLS-BoldItalic
 /TranslitLS-Italic
 /TransRoman
 /TransRoman-Bold
 /TransRoman-BoldItalic
 /TransRoman-Italic
 /TransSlavic
 /TransSlavic-Bold
 /TransSlavic-BoldItalic
 /TransSlavic-Italic
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /TribuneBold
 /TribuneItalic
 /TribuneRegular
 /Tristan
 /TrotsLight-HMK
 /TrotsMedium-HMK
 /TubularRegular
 /Tunga-Regular
 /Txt
 /TypoUprightBT-Regular
 /UmbraBT-Regular
 /UmbrellaPSMT
 /UncialLS
 /Unicorn
 /UnicornPSMT
 /Univers
 /UniversalMath1BT-Regular
 /Univers-Bold
 /Univers-BoldItalic
 /UniversCondensed
 /UniversCondensed-Bold
 /UniversCondensed-BoldItalic
 /UniversCondensed-Italic
 /UniversCondensed-Medium
 /UniversCondensed-MediumItalic
 /Univers-CondensedOblique
 /UniversExtended-Bold
 /UniversExtended-BoldItalic
 /UniversExtended-Medium
 /UniversExtended-MediumItalic
 /Univers-Italic
 /UniversityRomanBT-Regular
 /UniversLightCondensed-Italic
 /UniversLightCondensed-Regular
 /Univers-Medium
 /Univers-MediumItalic
 /URWWoodTypD
 /USABlackPSMT
 /USALightPSMT
 /Vagabond
 /Venetian301BT-Demi
 /Venetian301BT-DemiItalic
 /Venetian301BT-Italic
 /Venetian301BT-Roman
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /VinetaBT-Regular
 /Vivaldii
 /VladimirScript
 /VoguePSMT
 /Vrinda
 /WaldoIconsNormalA
 /WaltHarringtonSH
 /Webdings
 /Weiland
 /WesHollidaySH
 /Wingdings-Regular
 /WP-HebrewDavid
 /XavierPlatoSH
 /YuriKaySH
 /ZapfChanceryITCbyBT-Bold
 /ZapfChanceryITCbyBT-Medium
 /ZapfDingbatsITCbyBT-Regular
 /ZapfElliptical711BT-Bold
 /ZapfElliptical711BT-BoldItalic
 /ZapfElliptical711BT-Italic
 /ZapfElliptical711BT-Roman
 /ZapfHumanist601BT-Bold
 /ZapfHumanist601BT-BoldItalic
 /ZapfHumanist601BT-Italic
 /ZapfHumanist601BT-Roman
 /ZappedChancellorMedItalicSH
 /ZurichBT-BlackExtended
 /ZurichBT-Bold
 /ZurichBT-BoldCondensed
 /ZurichBT-BoldCondensedItalic
 /ZurichBT-BoldItalic
 /ZurichBT-ExtraCondensed
 /ZurichBT-Italic
 /ZurichBT-ItalicCondensed
 /ZurichBT-Light
 /ZurichBT-LightCondensed
 /ZurichBT-Roman
 /ZurichBT-RomanCondensed
 /ZurichBT-RomanExtended
 /ZurichBT-UltraBlackExtended
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e00640065002f007000640066002f000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

