
Journal of Automated Reasoning (2004) 33: 319–339 © Springer 2005

MPTP – Motivation, Implementation,
First Experiments

JOSEF URBAN
Dept. of Theoretical Computer Science, Charles University, Malostranske nam. 25, Praha,
Czech Republic. e-mail: urban@kti.ms.mff.cuni.cz

Abstract. We describe a number of new possibilities for current theorem provers that arise with the
existence of large integral bodies of formalized mathematics. Then we describe the implementation
of the MPTP system, which makes the largest existing corpus of formalized mathematics available to
theorem provers. MPTP (Mizar Problems for Theorem Proving) is a system for translating the Mizar
Mathematical Library (MML) into untyped first-order format suitable for automated theorem provers
and for generating theorem-proving problems corresponding to MML. The first version generates
about 30,000 problems from complete proofs of Mizar theorems and about 630,000 problems from
the simple (one-step) justifications done by the Mizar checker. We describe the design and structure
of the system, the main problems encountered in this kind of system, their solutions, current limi-
tations, and planned extensions. We present results of first experiments with re-proving the MPTP
problems with theorem provers. We also describe first implementation of the Mizar Proof Advisor
(MPA) used for selecting suitable axioms from the large library for an arbitrary problem and, again,
present first results of this combined MPA/ATP architecture on MPTP.

Key words: ATP, Mizar, MPA, MPTP.

1. Motivation

1.1. THEOREM PROVERS, ASSISTANTS, AND MATHEMATICAL LIBRARIES

The situation in the fields of theorem provers, proof assistants, and formalization
projects is at the moment roughly the following.

Otter-style automated theorem provers (ATPs) are actively being developed,
usually working in untyped first-order predicate calculus and usable in automatic
mode for all kinds of problems that are “simple enough.” These provers are being
constantly improved, both by devising new theoretical approaches (e.g., the super-
position calculus recently, various decision procedures for various fragments of the
logic), and by more “practical” implementation techniques, such as special-purpose
indexing techniques. Obviously, an important factor in the growing usability of
ATP systems is also Moore’s law. The proof of the Robbins conjecture found by
EQP (McCune, 1997) can be used as an evidence that current ATP systems are
already capable of solving much more than just simple toy problems.

Proof assistants (Wiedijk, 2003) are used to help the creation of computer-
checked proofs and usually include wider functionality, ranging from proof pre-



320 JOSEF URBAN

sentation solutions, library browsing, and searching tools to actual proof checkers
or tactical provers. The underlying logic used in such systems is usually more com-
plicated than just simple untyped predicate calculus and often uses type systems to
provide early error checking and some notion of type “obviousness” (people do not
want to prove all the time that a natural number is also a real number). The tactical
provers used there usually implement smaller proof steps that can often be used
as building blocks of more complex user-programmed tactics. Sometimes even
full-strength automated theorem-proving tactics are thus available, but they are
usually very simple and inefficient in comparison with ATP systems and sometimes
sacrifice the more complicated aspects of the logic (e.g., the type system) to get a
simpler implementation.

Some proof assistants are mainly used and designed for the task of the formal-
ization of pure mathematics, building large libraries (similar in certain aspects to
large software libraries) of theorems and definitions, reusable in more and more
advanced theories. The largest of such libraries is the Mizar Mathematical Library
(MML) built with the Mizar system (Rudnicki, 1992). It is also the most “purely
mathematical” library when assessing the contents; and unlike some other libraries,
its foundations (Tarski–Grothendieck set theory) are very close to ZFC, used as a
foundation for most of the current mainstream mathematics.

The main objective of such formalization efforts is usually the formalization
itself (e.g., providing computer-checked proof of the fundamental theorem of al-
gebra, Birkhoff’s variety theorem or Jordan curve theorem), but this also serves
the long-term dream of formalizers, that with “battle-tested,” fine-tuned, and user-
friendly systems and big libraries, the advantages of computer mathematics (proof
checking and assistance, reliable semantic searching, etc.) will eventually prevail
over the current mainstream brain-to-TEX way of authoring mathematics.

1.2. USING ATP SYSTEMS ON MATHEMATICAL LIBRARIES

So far, very little cross-fertilization has occurred between ATP systems and large
formalization projects. The reasons for this state are not clear to the author. One
reason can be the fact that really large formalized libraries have appeared only in
about the past ten years; another reason may be that the two scientific groups do
not much pay attention to each other; ATP people are the “strong AI” to whom
the formalization task may seem easy and theoretically uninteresting, while for-
malization people confronted with the complexity of this “easy” task may regard
ATP as rather theoretical and toy systems, used for toy problems, and not “real”
mathematics.

Attempts have been made to use ATP systems with software libraries
(Schumann, 2001), but the improvements to ATP systems are usually very general
and universally applicable nature (e.g., ordered resolution improves the general
resolution in a very general way). Such improvements are very good; however,
there might be other, more specific methods for improving ATP systems in various



MPTP – MOTIVATION, IMPLEMENTATION, FIRST EXPERIMENTS 321

mathematical domains. Recently, some ATP systems started to explore these possi-
bilities; the most advanced example is probably the E prover (Schulz, 2002, 2001),
which uses machine learning methods on several levels to optimize its behavior on
various classes of problems.

At this point, however, the problem of datasets usable for training of such sys-
tems appears. The standard TPTP (Sutcliffe and Suttner, 1998) library is good for
measuring the improvement in the general methods used by ATP systems, and
it can probably even be used to learn problem classifications, in notions such as
number of input clauses, their average weight, or number of symbols, to conjecture
best proving strategies on such problem classes. But it probably does not make too
much sense to try learning of domain specific optimizations on TPTP, for example,
considering whether the problem symbols are typical set-theoretical symbols or
typical algebraic symbols. This can be the reason why current learning methods
usually abstract from the symbol level, paying attention to the abstracted term
structure at best.

The situation is very different with large structured formalized ensembles such
as MML, where the symbols and relations among them are very stable and orga-
nized, and play decisive role for consistency and usability. Hence, machine learning
techniques going to the level of symbols (e.g., learning the best symbol and term
orderings in various domains) make much more sense here, while methods using
more abstract representations of terms or clauses obviously can be tried too, with
the additional possibility of using them to find new similarities between different
theories.

Another opportunity coming with large structured libraries is their structure. In
MML, very advanced theories are really developed from the ground (i.e., Tarski–
Grothendieck axioms). No other axioms are allowed in MML; all constructions
are really carried out. This means, for example, that consistent construction of
integers, rational numbers, and real numbers is done before any calculus takes
place, then going into more advanced fields such as Lebesgue measure theory in
a book-style presentation of the definitions and theorems. Currently, MML com-
prises almost 800 articles, building on each other. There are many intertwining
lines of development, one of the most cited being the project of formalization of the
book “Compendium of Continuous Lattices” (Bancerek, 2000), about 60 percent
of which has already been formalized.

This structure can be used for another kind of optimization of ATP systems. We
have the possibility to follow the proofs of theorems, expanding the lemmas and
references used in them to arbitrary level with their own proofs, thus creating a
hierarchy of increasingly difficult problems, where lemma conjecturing (perhaps
mostly expressed as splitting in current provers) is the key to success. The lemmas
introduced in MML proofs can then be used as a vast repository of examples usable
for improving this capability of theorem provers by machine learning methods,
maybe even suggesting some new domain-independent approaches.



322 JOSEF URBAN

A similar opportunity comes with the rich structure of MML definitions. Nearly
8,000 definitions are introduced in MML. Humans introduce definitions to simplify
the problem they are solving, effectively hiding some part of it in the definition.
This method probably has not even been used so far in ATP systems,� which are
just at the point of exploring the rules for unfolding the definitions already present.
Adding such methods to ATP systems would be a very significant step, taking them
from purely deductive tools to a more combined inductive/deductive architecture,
closing the gap between them and more inductive systems such as AM (Lenat,
1979, 1982), and providing a new approximation to the ideal of a “universal AI
system.”

A big challenge is the type system used in the libraries. There are fast type-
inferencing and type-checking mechanisms implemented in proof checkers. It is
a nontrivial problem to include similar mechanisms as parts of complete strate-
gies used in ATP systems; however, as some first experiments show, it may be
rewarding.

More generally, most proof assistants (even the nonprogrammable ones, such as
Mizar) have some level of automation. Apart from the type-inferencing, this may,
for example, include some efficient decision or evaluation procedures (e.g., simple
arithmetical evaluation in Mizar). It is also a big challenge to try to deal with such
problems efficiently, within the frame of the complete methods used by theorem
provers.

However, probably the most pressing new task and field of research – which
can appear only when a rich and consistent set of notions has been developed and
many facts have been proved about them – is the problem of choosing premises.
This arises when a user of the library asks the simple question “Is assertion X
valid?” It would probably be very difficult for current provers, for example, to use
all theorems from the library for indiscriminate proof search for X or its negation,
since it is in the nature of resolution proving that redundant premises make the task
harder. Thus, the problem is to find the smallest relevant set of premises available
in the library, while keeping the chance of success (i.e., completeness) sufficiently
high. Again, statistical and machine learning methods using previous experience
from the library are likely to be used for such tasks; however, also adding more
structure to provers’ clause databases could complement this, for instance with
strategies like “add the next most promising external premise, when the prover
runs for too long.”

Let us finish this enumeration of some new possibilities with a note on ATP-
based theorem discovery over such libraries. Current refutational provers work by
saturating the given theory, with the hope of finding contradiction, caused by the
negated conjecture added to the premises. During the search process, subsumption
is usually used to keep only the strongest versions of clauses generated by the
saturation. However, the prover can also be used to saturate some initial theory

� Actually, some advanced Skolemization techniques used in FLOTTER (Nonnengart and
Weidenbach, 2001) already introduce new definitions to simplify problem representations.



MPTP – MOTIVATION, IMPLEMENTATION, FIRST EXPERIMENTS 323

to certain level, that is, without any explicit negated conjecture. Inspecting the
kept (i.e., unsubsumed) clauses after some time of such saturation run, checking
them for subsumption with the whole library (e.g., with systems such as MoMM
(MoMM, 2004; Urban, 2004), and possibly filtering them with some other criteria
(e.g., weight) might be used for adding new useful clauses to the library. It would be
interesting to see how good (e.g., in comparison with the human-designed library)
are the facts derived in this way and, again, to try some optimizations (e.g., with
respect to the initial set of theorems or prover settings) or even try to combine this
with the possibility of introducing definitions, mentioned above, again attempting
more general “theory exploring” AI systems.

So much for the ideas and arguments for closer cooperation between ATP sys-
tems and large formalization projects. In the next part of the article we describe the
first version of the MPTP system, which is designed exactly with the aim to enable
such cooperation between ATP systems and MML.

2. Mizar Problems for Theorem Proving

MPTP is available online at http://alioth.uwb.edu.pl/twiki/bin/view/
Mizar/MpTP. The main packed distribution has about 70 MB and unpacks to about
100 MB. It is possible to download only the basic distribution (about 300 kB)
without libraries and to build the main (possibly customized) libraries from the
Mizar system.

2.1. OVERVIEW OF MPTP

MPTP 0.1, at the time this description was written, consisted of the following parts:

− The main Mizar-to-ATP translation tool (fo_tool).
− Makefiles and some very simple scripts creating the translated library from

fo_tool’s output.
− The translated library, accessible both as Prolog files and as Berkeley DB files.
− Perl scripts accessing the library as Berkeley DB files, generating proof prob-

lems and providing other important functionality, such as signature filtering
or results parsing.

− The generated proof problems.

Additionally, an SQL (MySQL) database of results with Web interface is used
for collecting and analysis of prover results. This is not included in the system
distribution.

2.2. MIZAR-TO-ATP TRANSLATION TOOL

The main Mizar-to-ATP translation tool (fo_tool) is a standalone program, based
on the Mizar implementation (written in objective Pascal). Since the Pascal sources



324 JOSEF URBAN

of the Mizar system are available only to members of the Association of the Mizar
Users, we distribute only a Linux binary, executable on x86 architectures. This
limitation is important only for those who want to build the translated library
for themselves from the Mizar distribution. MPTP is distributed with the library
already built, so fo_tool is not necessary for its normal use.

The tool is similar to the Mizar “exporter” program, which is used to put the
exportable parts of Mizar articles (theorems, definitions, etc.) into the internal
Mizar database.� fo_tool takes a Mizar article as input and produces several files
containing the translated information about various Mizar constructors, theorems,
definitions, and clusters exported from the article. This functionality corresponds
closely to the Mizar exporter.

Additionally, fo_tool also collects information about complete proofs of ex-
ported Mizar theorems, which covers some statistics about the proof (its length
expressed as the length of the list of all references,�� including local references and
repeated occurrences as they appeared in the proof) and the set of all external refer-
ences used in the proof. The set of external references later serves as the smallest set
of premises from which the theorem should be provable. However, almost always
it has to be enlarged by adding some implicit context (background) information
(e.g., type rules) that the Mizar checker uses for checking the inferences.

Even though we are taking only the smallest set of formulas necessary for
proving the task, these tasks can be quite difficult for ATP systems, since proofs
of Mizar theorems are usually quite long and provers are not capable of using
the necessary background information (e.g., type rules) as efficiently as the Mizar
checker. So, to have a more simple group of problems, fo_tool also exports all
Mizar “Simple Justification” problems, that is, the simplest Mizar inference steps
that usually look like

then a∗a <=a∗b & a∗b < b∗b by A1,AXIOMS:25,REAL_1:70;

which tells Mizar that the fact “a∗a <= a∗b & a∗b < b∗b” should be directly
provable (keyword “by”) from the previous formula (keyword “then”), which here
was “0 < b & a <= b”, from the private reference A1, which here was “0 <= a
& a < b” and from Theorem 25 in the article AXIOMS and Theorem 70 in the
article REAL_1. The Mizar checker negates the conjecture and employs a number
of methods‡ to try to derive a contradiction from the negated conjecture and the
referenced premises.

� While MML denotes the collection of all Mizar articles, created by humans, the internal Mizar
database is another part of the system, used for efficient storage and fast access to those parts of
Mizar articles, that can be reused in other articles.

�� Inference steps in Mizar are usually justified by giving labels of other formulas from which the
new inferred fact should follow. These formulas are either inferred locally earlier in the proof (private
references) or taken from MML (library references).

‡ Probably the most detailed available description of the methods used by the Mizar checker is in
(Wiedijk, 2000); some specific methods are also discussed in (Naumowicz and Byliński, 2002).



MPTP – MOTIVATION, IMPLEMENTATION, FIRST EXPERIMENTS 325

The Mizar checker is not a complete theorem prover, since speed is also im-
portant for proof assistants� and it is not desirable from the point of the legibility
of the proofs (important, e.g., when generalizing some theory or for some future
educational applications (Dahn, 2001)) to have the checker too strong. Hence, the
exported checker (Simple Justification) problems should generally be quite easy
for ATP systems, though exceptions to this might occur, again because of efficient
handling of the background information in the checker or because of its quite strong
congruence-closure-based equality handling.

We do not go here into the details of the translation of various Mizar con-
structs, and of the more complicated logical framework, into untyped first-order
format suitable for ATP systems. These are explained in examples from MML in
(Urban, 2003). We note here, however, that direct translation into the DFG format
(Hähnle et al., 1996) used by the SPASS prover (Weidenbach, 2001) was chosen
for the first MPTP version. We realize that the TPTP format (Sutcliffe and Sut-
tner, 1998) is probably most widely used today, and in fact its support is already
built into fo_tool because it shares some code with the MoMM project, which
uses the TPTP format. But the SPASS prover seems to perform best on the trans-
lated problems��, probably because of its autodetection of sort theories and use
of semantic blocking (Ganzinger et al., 1997) of ill-typed inferences, which can
often efficiently approximate the fast Mizar handling of its large type and cluster
background theories. As mentioned above, designing the translation and making
it work are nontrivial, and we need the best prover available for testing, and we
want to minimize the number of translation layers, at least in the beginning. The
dfg2tptp tool (available in SPASS distribution) can be used now to translate DFG
tasks to TPTP format, but in the future we may make TPTP (or rather the newly
suggested TSTP (Sutcliffe et al., 2003)) the default format or support more than
one output format.

2.3. THE EXPORTED LIBRARY

Most current ATP formats (including the commonly used subset of DFG syn-
tax) are Prolog-based. This is advantageous because problem inputs or databases
can be quickly analyzed by loading them into one’s favorite Prolog system. One
of the goals in the design of the translated library is to maintain this possibil-
ity.

However, we also have to think about fast and memory-efficient access to vari-
ous parts of the library, since the number of creatable problems is very large (about

� The complete MML has now about 60 MB, and its complete processing takes less than 1 hour
on 2 GHz Pentium 4, which is quite important for doing large-scale revisions of MML.

�� In the initial experiments we compared SPASS 2.0 with E 0.7 using a very low (4-second)
timelimit and SPASS solved 1,000 problems more (8,727 against 7,737). Geoff Sutcliffe has recently
tried the Vampire prover with a 300-second timelimit and proved 12,828 problems; however, this
result is hard to compare with the SPASS results given in the Results section because different
hardware was used.



326 JOSEF URBAN

30,000 for theorem problems and about 630,000 for checker problems), and for
problem creation, we want to be able to implement efficiently some advanced func-
tions, such as signature filtering. Such functions require indexing, which together
with the need for memory efficiency call for a database (e.g., SQL) approach to
the library. Such an approach was previously used for handling translated MML
in the ILF system (Dahn and Wernhard, 1997), from which MPTP takes much
inspiration.

The problem with such an approach is that tables in database systems are usually
stored in some internal binary format, definitely not Prolog parsable. This can be
solved by various means, and the approach we have chosen is again motivated by
the effort to have the system as simple and transparent as possible.

The library is now a collection of several files, usually containing formulas
in DFG format, expressing some part of the translated MML structure. Thus, all
translated theorems are in one file, all definitions in another, and so on, and these
files are Prolog readable (though sometimes quite big). We keep a small index
file (also in Prolog format), telling for each library file F and each Mizar article
A at which point of F the translated items from A are placed. Since most Mizar
items (e.g., theorems, definitions, constructors) are already numbered by the Mizar
system (e.g., REAL_1:70 is 70th theorem in the article REAL_1), and the naming
scheme used by our translation respects this numbering (again, the naming scheme
is dealt with in more detail in Urban, 2003), computing the position of some item
in a library file is usually very simple and fast (constant time).

This approach now takes care of most of the indexing problems, necessary for
fast access into the library files. The memory efficiency is solved by accessing the
library files as simple Berkeley DB databases of the RECNO (record number) type.
Berkeley DB is capable of working directly with the normal text format for this
kind of database, so there is no need for any other internal binary versions of the
library files. This has the additional advantage that Berkeley DB is today a standard
part of most Unix-like systems or distributions, used by many applications, so users
do not have to go through additional installation process, which would be the case
for SQL systems or Prolog implementations.

The creation of the library is automated by using a large Makefile, which is
parametrized by a list of Mizar articles that should be processed. This is usually
just the list of all Mizar articles in their MML processing order; however, using
just some initial segment of this list (e.g., the first 100 articles) is possible for
creating smaller versions of the translated library. It takes about two hours on a 2
GHz Pentium 4 to create the complete libraries from a Mizar distribution, most of
the time being taken by fo_tool.

Additionally, the library contains input files for checker problems, again in a
Prolog format. Because of the number of checker problems, these files can be quite
large (several megabytes) even for a single article and would occupy about 1 GB if
not compressed. Hence, for space efficiency, we keep them compressed in a special



MPTP – MOTIVATION, IMPLEMENTATION, FIRST EXPERIMENTS 327

directory. Decompression and cleanup of these files are handled by the problem
generating scripts.

2.4. PROBLEM-GENERATING SCRIPTS

Problems creation and other MPTP functions are implemented in about 5,000 lines
of documented Perl modules and scripts that use the standard DB_File Perl module
for interfacing Berkeley DB files. The architecture is designed to be simple and
extensible.

The basic MPTP utilities (Perl module MPTPUtils.pm) provide database access
to the translated library; functions for creating the basic background theory for
articles, based on their environment directives; and functions for problem printing.

As the results of our initial experiments confirm, an important part of the system
is the default signature-filtering module (Perl module MPTPSgnFilter.pm), based
on reasonings about the Mizar checker. Signature-filtering functions get the explicit
premises for some problem and the basic background theory created for the prob-
lem’s article (i.e., formulas encoding type, cluster, and other information available
in the article); and starting only with the explicit premises, they try to cut off
all unnecessary background formulas. Specifically, they watch the set of symbols
present in the problem and add the necessary type, cluster, or other formulas when
certain criteria are met, proceeding in a fixpoint manner. Graphs are built from
symbols to their background formulas before the fixpoint computation starts. The
criteria for adding new background formulas are derived from close inspection of
the Mizar checker’s work with this information, which is quite a nontrivial matter.�

However, the number of background formulas cut in this way from the problem is
usually fairly high: the average size of an unfiltered theorem problem is about 570
formulas, which shrinks to about 73 formulas after filtering. This alone improves
the provers’ chances significantly.

The filtering algorithm now comprises several parameters, allowing more or less
restrictive versions. Moreover, the interface to the filtering module is simple, so
that users can experiment with their own versions. This capability is perhaps not so
important when re-proving the MML theorems exactly (because then the necessary
amount of filtering can be to great extent derived from the Mizar checker), but it is
useful for proving new theorems or finding new proofs for MML theorems.

The top-level problem creating script (Perl script mkproblem.pl) can be used
to create theorem and checker problems corresponding to the MML (re-proving),
as well as to create new problems by specifying arbitrary MPTP formulas as ax-
ioms for proving another MPTP formula. The latter possibility can be used for all
kinds of experiments; for example, the experiments with the Mizar Proof Advisor

� Explanation of the internal workings of the Mizar checker and its use of the background
information is beyond the scope of this article. For more details, interested readers can look
at the source code of the filtering module, as well as at the articles (Wiedijk, 2000) and
(Naumowicz and Byliński, 2002).



328 JOSEF URBAN

described in the Results section already make use of this possibility. The growing
number of options guiding the problem generation, signature filtering, and so forth
is described in the mkproblem’s manual page.

Even though all the theorem problems can take (depending on the filtering
method, etc.) from 500 MB to about 3 GB, the problem generation is usually
quite fast (5–15 minutes on a 2 GHz Intel Pentium 4), allowing fast rebuilding
of the problems when experimenting with different options. Producing all checker
problems takes about 10 GB.

Because of these sizes and the speed of problem generation, we decided not
to distribute the generated problems with MPTP. This approach resembles a bit
the approach used in the TPTP library, where only the generic format of problems
is included (and, indeed, users preferring other formats than DFG will have to
perform similar problem translation work with tools such as dfg2tptp or FLOTTER
anyway). It is also motivated by the fact that additional functionality is planned,
which will increase the number of creatable problems even more.

2.5. DATABASE OF RESULTS

To facilitate the analysis of the results of provers run on MPTP, we have set up an
experimental SQL (MySQL) database. The database is currently restricted to the
theorem problems, mainly because of server limitations. Its detailed SQL structure
is published at (MPTPResults). It now contains four tables: probleminfo, proved,
proof, and unproved. The probleminfo table contains information about the prob-
lems, independent of any prover runs. These are now entries such as the length of
the Mizar proof, number of problem formulas, or information about the symbols
occurring in the problem. The “proved” table contains statistics from successful
provers’ runs on the problems, while “unproved” contains statistics from unsuc-
cessful runs. The “proof” table contains just the complete proofs corresponding to
the “proved” table and is kept separately from that table only because of its size and
assumed limited use. A Web interface to the database allowing arbitrary SQL se-
lects is at http://lipa.ms.mff.cuni.cz/phpMyAdmin-2.4.0. This is now used
mainly to look for suspicious spots in the translation, for example, by comparing
the length of a Mizar proof, with the length of the proof found by a theorem prover.

We encourage MPTP users to contribute their results to the database; however,
we caution that the structure of the database may still change a lot in the early
versions. We will probably also have to find some “interestingness” criteria for
including results into the database.

3. Problems, Limitations, and Future Extensions

Using MPTP currently presents several problems and limitations. Up-to-date de-
scriptions and suggested workarounds are in the files README_MPTP.txt and
MPTPFAQ.txt distributed with the system.



MPTP – MOTIVATION, IMPLEMENTATION, FIRST EXPERIMENTS 329

Several problems are caused by the infinite axiomatization (Tarski–Grothendieck
set theory) used by Mizar, which leads to allowing second-order “schemes” in the
language. The language also allows use of the Fraenkel (“setof”) operator. Because
of the very restricted usage of the schemes, this problem can be solved in future
versions by instantiating them whenever they appear. Similarly, the Fraenkel terms
can be “explained out” by adding axioms such as

x in {F(x1,...,xn): P[x1,...,xn]} iff
ex x1,...,xn st x = F(x1,...,xn) & P[x1,...,xn]

(together with the Extensionality axiom, if it is not already part of the problem)
which is exactly how the Mizar checker handles them.

We now do not keep track of the arithmetical evaluations (e.g., 6 = (8 + 10)/3)
performed by the Mizar checker. Some experiments have been done with using
numeral encoding and some axioms of arithmetics to handle these, but it usually
makes the problems much harder, with explosion of derivations of arithmetical
facts. Our preferred way will be to watch these inferences directly in the Mizar
checker and add them as axioms (e.g., 18 = 8 + 10) whenever necessary. We see
the long-term solution of this problem in including efficient decision and evaluation
procedures directly in ATP systems. However, this is a nontrivial task.

Similarly, for the theorem problems, we need to get from the Mizar verifier in-
formation about its implicit unfolding of definitions inside proofs. Such unfoldings
are controlled by the Mizar “definitions” environment directive, and the used defin-
itions do not appear among the proof references. Again, adding all definitions made
accessible by the “definitions” directive seems to make the problems significantly
harder. Another solution is to try to use the signature filtering to cut the space of
all accessible definitions. Several options for this are already implemented in the
development version of MPTP scripts.

Signature filtering seems to be working quite well now, especially for the checker
problems. We use it for theorem problems, too; however, the current version may
in some cases be too strong (i.e., prune too much). The problem is that we use only
the external proof references to create the initial symbol set that is used for the
fixpoint computation. This approach is sound for checker problems, but there may
be additional lemmas in the theorem problems, containing additional symbols, and
hence additional background formulas about those symbols might be needed. The
solution that we plan to use is to collect not only all external references appearing in
proofs but also all symbols present in the proofs and use them as the initial symbol
set for signature filtering. We estimate, however, that approximating this by the
symbols from external references should work well for most theorem problems in
the first version.

Another problem is that, on the contrary, the background theory can be too
strong because it is computed for full articles and contains all background items
introduced in them, which can possibly be used to justify some theorem in the



330 JOSEF URBAN

article before them. This can be solved later, for example by tagging all database
items with their positions in Mizar articles.

We also note that exact Mizar-like signature filtering is important only for exact
re-proving of MML theorems, which is not the only goal of the MPTP system
(however important it is, e.g., for testing the quality of the translation). For proving
theorems in new ways or for proving new theorems, efficient signature filtering
over such a large library can, in most cases, be only heuristical, as it is a special
version of the general problem of finding the most suitable lemmas from the library
for proving an arbitrary new formula.

Probably the largest future extension that we plan is to export the structure of
Mizar proofs, too. This will allow all kinds of experiments with lemma conjec-
turing or theory development. Right now, the library already makes it possible
to do experiments with replacing theorem references with the references used in
their proofs to arbitrary level, thus creating harder and harder problems. However,
the problem-generating scripts do not implement this option yet (though there is
nothing difficult about it), and we may choose to wait until the full proof structure
is available, and implement it more generally then.

Another line of development is to take into account that most ATP systems
do the main work on the clause level.� As of now, we have the integrity of the
translated library on formula level, but Skolem symbols are introduced during CNF
translations done by provers, causing inconsistencies across various CNF problem
inputs and the resulting proofs. Hence, it would be good to have also a direct export
of the library into CNF, introducing Skolem symbols consistently.

We also might experiment further with efficient encoding of the type informa-
tion. We discuss this in (Urban, 2003), where the inclusion-operator encoding of
types suggested in (Dahn, 1998) is also mentioned. A lot of experience in this area
has been gained recently from the implementation of the MoMM project, where
efficient (though incomplete) type handling is crucial. However, as long as we are
using SPASS with its efficient bottom-up sort mechanism, this matter is probably
not pressing.

Finally, it would be nice to have more functions for comparing ATP proofs with
Mizar proofs, or even some tools for at least semiautomatic translation of ATP
proofs into Mizar. These would be useful for integrating well trained ATP sys-
tems as advice for Mizar authors. Providing such functions, however, is a complex
task because of the very different proof formats, level of detail, and complicated
structure of the Mizar language.

When speaking about all these possible improvements we also note that the
preferred goal is to have at least one theorem prover that would be optimized for
the Mizar problems (e.g., even by implementing some efficient Mizar-like type
handling algorithms directly), because that might in turn boost the usability of

� The OSCAR (Pollock, 1996) prover (or rather AI system) is a notable exception from this rule.
Also, the “lazy” clausification implemented in the Saturate system (Ganzinger and Stuber, 2003) is
interesting from this point of view.



MPTP – MOTIVATION, IMPLEMENTATION, FIRST EXPERIMENTS 331

the Mizar system and ease of formalization. Hence, we prefer to implement the
features that go “in depth” rather than, for example, spending time on providing
support for as many provers as possible. The reason for keeping the structure of
the system simple, transparent, and documented is also to make it easy for others
to cooperate, and to allow them to implement easily the features that they need.

4. First Results

MPTP 0.1 is based on MML 3.44.763, so all results refer to this version. There are
37,617 theorem numbers in that MML, of which 4,090 are canceled (i.e., unused
in MML, but occupying the namespace, for the sake of continuity of the theo-
rem numeration). So there are 33,527 usable theorems in MML. Three of them
are, in fact, set theory axioms from the article TARSKI and hence without any
proof. Proofs of 6,078 of these theorems contain references that are not handled by
MPTP 0.1 (either schemes or top-level nontheorem assertions in Mizar articles),
so these problems are not eligible for re-proving (though they are eligible, e.g., for
experimenting with finding new proofs). So for re-proving, we are left with 27,449
theorems (the 3 axioms are not worth taking special care of).

For all experiments we use the SPASS prover version 2.1, with a 200 MB
memory limit. The hardware is a cluster of computers with 700 MHz Intel Pentium-
III processors running Debian GNU/Linux. Each problem is always assigned to a
single processor.

4.1. RE-PROVING

4.1.1. Re-Proving Filtered Problems

The first basic experiment consisted in re-proving the 27,449 MML theorems in
as advantageous a setting as possible. This was done also in order to have some
benchmark for other experiments.

When creating the problems, we applied the default checker-based signature
filtering. Each problem was tried with a 300-second timelimit. Table I shows the
results, and Figure 2 shows how much time was needed to prove percentages of all
the 11,222 provable problems.

The average time for proving a provable problem is 14.12 s. As Figure 1 indi-
cates, about 90 percent of all provable problems have been solved within 40 sec-
onds, so after this “calibration” we decided to use for future experiments a 40-
second timelimit, to be able to conduct more experiments. The overall CPU time
needed for this full 300-second experiment was about 70 days.

Table I. Experiment 1.

Proved Completion Found Timeout Out of Memory Unknown Total

11222 625 15149 352 101 27449



332 JOSEF URBAN

Figure 1. Time (in seconds) needed to solve percentage of problems in Experiment 1.

Table II. Experiment 2.

Proved Completion Found Timeout Out of Memory Unknown Total

3984 11 23447 2 16 27449

The completions (i.e., those 625 problems for which SPASS found that the
negated conjecture is not in contradiction with the axioms) can usually be explained
by some of the reasons described in the Problems section – it can be lack of implicit
definitions, arithmetical evaluations, or the like. On the other hand, some of the
proved problems are sure to be proved in a MML-incorrect manner, for example,
as noted above, by having too strong a background theory.

4.1.2. Re-Proving Nonfiltered Problems

To have some measure of how good the signature filtering is, we also tried to prove
the nonfiltered versions of the 27,449 MML theorems. As noted above, only the
40-second timelimit was used, so comparisons should be done with 0.9 ∗ 11222 =
10100 proved problems from the previous experiment.

Table II shows the results, and Figure 2 shows how much time is needed to
prove percentages of all the 3,984 provable problems.

The average time for proving a provable problem was 6.54 s. As already noted,
the nonfiltered problems are much larger than the filtered versions, and within the
same time, only about 40 percent of the amount for filtered versions is solved.
Only for 191 problems is it the case that the nonfiltered version was solved while
the filtered version was not, so running the nonfiltered versions is going to improve
our knowledge in only about 2 percent of filtered-provable cases.

4.2. MIZAR PROOF ADVISOR

The first results are quite encouraging, especially if we realize that all are produced
in a “push-button” manner. There are still a lot of possibilities for improvement, for



MPTP – MOTIVATION, IMPLEMENTATION, FIRST EXPERIMENTS 333

Figure 2. Time (in seconds) needed to solve percentage of problems in Experiment 2.

example with optimizing ATP performance by tuning many of their parameters and
learning optimal orderings for various domains.

Given these results, the logical next step is to try to employ ATP systems to
assist Mizar authors with writing their formalized articles. To be able to do this, we
have to turn attention to the practical and pressing problem of choosing premises
for a proof of an arbitrary formula, mentioned in the Motivation section.

One obvious answer to this problem is to try using previous proof experience
extracted from MML to suggest a limited number of premises that are most likely to
be useful for proving an arbitrary formula. This idea is quite distant from the world
of exact automated theorem proving, where completeness (though obviously very
theoretical in view of available resources) is one of the main issues, but we believe
that it is an important aspect in humans’ superiority over current ATPs when doing
mathematics in large domains.

There are many possible machine learning and statistical approaches to the task
of extracting and using proof experience from a corpus like MML, and some of
them might even lead to interesting inductive/deductive architectures. For the be-
ginning, however, we decided to use a straightforward and well-known machine
learning method, for which tools are already available and that could also serve as
a benchmark for further more sophisticated approaches.

The setting we chose for the first attempt is the following. We use a feature
(attribute)-based machine learning framework in which the symbols (or, rather,
constructors) present in formulas are the features that characterize them. This can
be later improved, for example, by encoding parts of the formula structure as new
features or by switching to first-order learning systems. The output that we want
from the system is MML theorems ordered by their chance to be useful in the
proof. This leads to the simple setting in which there are many targets (MML the-
orems) characterized by their features (symbols occurring in them). Additionally,
if theorem T , containing symbols C1, . . . , Cn was in MML proved by theorems or
definitions (shortly references) R1, . . . , Rm, we also want our system to notice not



334 JOSEF URBAN

only that T might be useful for proving something containing C1, . . . , Cn but also
that its references R1, . . . , Rm could be useful.

This idea might be recursively expanded (to include references of references,
etc.), and further improved, for example, by using lower weights for more indirect
references, but we have postponed such tuning experiments for a later time.

We have a very large number of features and targets, since there are about
40,000 targets (references) and about 7,000 features (constructors) and also quite
a large number of training examples – about 33,000 proved theorems. After some
experimenting with various machine learning tools, we chose for the learning the
SNoW (Sparse Network of Winnows) learning architecture (Carlson et al., 1999),
used mainly for natural language processing tasks. It is designed to work efficiently
in domains with very large numbers of features and targets.

SNoW implements several learning algorithms, from which the naive Bayes
seems to work best on our data.

The option to run the trained system in a server mode is already implemented
in SNoW. Thus, regardless of the theorem-proving experiments, it was easy to set
up a server� that is already now providing hints to Mizar authors.

Evaluation

In the first experiment, we used the standard tenfold cross-validation to test the
prediction capability of SNoW trained on our data. The 33,527 examples were
randomly split into ten equally large sets. In ten runs, SNoW was trained on the
nine sets and evaluated against the missing set.

In the testing mode, SNoW outputs for each example the list of hints (ref-
erences) that it evaluates as useful for the example, ordered by their expected
utility. We are interested in how good such predictions are, and in this case, the
information is measured by looking at the example’s real references, and counting
their ratio among the hints given by SNoW, as the hint limit is increased. This is
measured on the scale ranging from 1 to 100 hints. We decided to modify this ratio
at the beginning, so that if we, for example, require only one hint and that hint
is correct (i.e., it is among the real references), the success ratio is 1 instead of
1/(number of real references), which we think corresponds more closely to the
intuitive idea of “success” of the prediction. The number of real references is
usually much lower than 100 (about 10 on average), so this modification affects
only the very beginning of the scale, and at numbers larger than 20 it is already
quite correct to interpret the ratio also as the coverage of the real references among
the SNoW hints. Figure 3 shows this value, averaged across the 10 leave-one-out
SNoW evaluations.

The drop at the beginning of the graph is caused exactly by our modified def-
inition of “success.” The final value of 0.7 for 100 hints means that on previously

� http://lipa.ms.mff.cuni.cz/~urban\posdemo.html



MPTP – MOTIVATION, IMPLEMENTATION, FIRST EXPERIMENTS 335

Figure 3. Ratio of necessary references in SNoW hints.

Figure 4. Ratio of necessary references in SNoW hints 2.

unknown formulas, about 70 percent of references needed for their proof will be
present among the first 100 hints.

We note that needed references is not exactly the correct expression here; the
exact meaning is references used for the MML proof. It is possible that the SNoW
hints will lead to an alternative proof of the formula, and we plan to do experiments
using this difference to try to find other proofs for MML theorems.

One could suggest that even though we do the testing on unknown data, the
tenfold cross-validation does not exactly correspond to the setting in which SNoW
will be used most often. The typical situation is that all of MML is already known
and the author is writing a new article that will be appended to MML. In more
detail, SNoW could also be trained on the theorems proved so far in the article
written by the author.

That’s why we run another evaluation, corresponding to this setting. SNoW is
incrementally trained on the MML examples in the MML processing order, each
time having complete information about the preceding articles and theorems, and
having no information about the subsequent articles and theorems. Obviously, in
this setting, it makes sense to ask from SNoW only the proof references of the



336 JOSEF URBAN

Figure 5. Hint ratio for limit 100 as the MML grows, smoothing = 1000.

Figure 6. Hint ratio for limit 100 as the MML grows, smoothing = 100.

tested theorem as hints; the theorem itself cannot be hinted, as it was not yet seen
by the system. Figure 4 shows the results of such evaluation.

It is also interesting to see how the ratio changes as the MML grows, which is
for the limit value 100 shown in Figures 5 and 6. Since the discrete graphs rang-
ing across all 33,000 MML theorems are poorly readable, the first graph applies
smoothing across the previous 1,000 values, and the second applies smoothing
across the previous 100 values.

4.3. PROVING NEW THEOREMS USING THE ADVISOR

Having prepared both MPTP and the Proof Advisor, we can finally conduct the
experiment with proving previously unknown formulas. For that task, we use the
hints provided by the incremental training and testing on growing MML, described
in the previous section. As noted, it means that at each point, the theorem we are
trying to prove is the most recent addition to the MML; it was never seen before,
nor could it be used as a reference for another theorem.

We have to choose our policy for selecting the number of hints for constructing
the proof problems. Choosing too many hints creates the danger of “suffocating”
the prover, as in the case of using the nonfiltered background knowledge; and



MPTP – MOTIVATION, IMPLEMENTATION, FIRST EXPERIMENTS 337

Table III. Experiment 7.

Proved Completion Found Timeout Out of Memory Unknown Total

4825 7 28580 69 46 33527

choosing too few hints few leads into the risk of incompleteness. Looking at the
hint ratio graph from the incremental training, we decided to use for this first
experiment the value of 30 hints, which on average guarantees about 50 percent
of the original MML proof references. Since the SNoW system also outputs the
prediction strengths, when it evaluates the targets, a more reasonable option for
future experiments could be selecting the number of hints selectively, according to
their prediction strength, rather than uniformly with one limit for all.

We apply the standard signature filtering to the problems, although as noted,
it is (mostly) guaranteed to preserve completeness only for re-proving tasks. The
Advisor-like approach could be in the future extended to handle also background
creation. All problems are again run with a 40-second timelimit, all other settings
being the same as for the re-proving experiments, with the exception of the number
of problems attempted – unlike in re-proving, where problems with unexported
references were discarded, we attempted all 33,527 MML problems, since SNoW
provides only valid references as hints. The results are shown in Table III.

Hence, even with a straightforward implementation of the Proof Advisor, var-
ious completeness issues still involved in the first version of MPTP, and some
quite arbitrary choices, such as the number of hints used, and practically no ATP
optimizations, it is already possible to automatically prove within 40 seconds about
every seventh newly attempted Mizar theorem.

One might argue that there are more and less difficult theorems in MML, and
that, for instance, in terms of number of lines written by Mizar authors, proofs of
these theorems will probably be shorter, so the amount of work saved to Mizar
authors will be less than this ratio. The obvious answer is that ATPs can be in
this mode applied to any Mizar formula, not just top-level theorems, so even the
proofs of hard theorems can thus be made significantly simpler for the formalizers,
by applying ATPs to the lemmas that occur during writing the proofs. As noted,
we hope to include the full proof structure into the next MPTP release, which will
enable us to quantify to what extent this really applies to the current MML. Finally,
to put these results into a proper context, we note that in (Wiedijk, 2002), the cost
of creating the MML library is estimated to about 90 man-years.

5. The Second Goal of this Article

The main goal of this article was to provide a description of the MPTP system
and an overview of its first results. However, we also have a secondary goal: to
persuade the readers (especially those working in ATP and formalization projects)
that cooperation between ATP systems and large formalization efforts is useful for
them.



338 JOSEF URBAN

This may seem trivial, but experience gained during implementing MPTP indi-
cates that it is not, and a considerable part of such effort is spent on persuading.
Even with essentially first-order systems like Mizar, a number of features make the
translation to ATP formats and efficient use of ATP systems on translated problems
difficult. Even though ATP-friendly implementation of such features is in most
cases possible, it usually has low priority, as the formalization people usually look
quite skeptically at the possibility of having some real benefits from ATP systems.
Similarly, ATP systems today are quite firmly seated in the simple unrepeated-
axioms-conjecture paradigm for problems formulation and solving. It is frowned
on if an ATP system has some built-in domain optimizations, and it is even difficult
to do trivial changes to common ATP input formats that would allow to expressing
previous knowledge as hints to the provers. It is good to have provers that perform
well on artificial problems, but it is even better to have domain-optimized provers
being of some use in real mathematics.

We hope that the presented experimental results show that cooperation is useful
and worth supporting by more than just words.

Acknowledgments

As already noted, a lot of ideas come from the previous integration of MML into the
ILF project. Thanks to Ingo Dahn, Christoph Wernhard, and Czesław Byliński for
making that work available to me. Thanks to the team developing Mizar, naming at
least Andrzej Trybulec, for continuous in-depth discussions of the system. Finally,
thanks to my supervisor, Prof. Petr Štěpánek, for more general advice when dealing
with various problems, and for continuous support.

The final version of this article contains numerous improvements suggested by
the anonymous referees. I appreciate very much both their effort to improve the
quality of this article and their suggestions and comments on the MPTP system.

References

Bancerek, G. (2000) Development of the theory of continuous lattices in Mizar, in M. Kerber and M.
Kohlhase (eds.), Symbolic Computation and Automated Reasoning, The CALCULEMUS-2000
Symposium, A. K. Peters, Natick, MA, pp. 65–80.

Carlson, A. J., Cumby, C. M., Rosen, J. L. and Roth, D. (1999) SNoW user’s guide, UIUC Tech
Report UIUC-DCS-R-99-210.

Dahn, I. and Wernhard, C. (1997) First order proof problems extracted from an article in the MIZAR
mathematical library, in Proceedings of the International Workshop on First Order Theorem
Proving, RISC-Linz Report Series, No. 97-50, Johannes Kepler Universität Linz.

Dahn, I. (1998) Interpretation of a Mizar-like logic in first order logic, in Proceedings of FTP 1998,
pp. 137–151.

Dahn, I. (2001) Slicing book technology – Providing online support for textbooks, in Proc. ICDE
2001, International Conference on Distant Education, Düsseldorf.

Ganzinger, H., Meyer, C. and Weidenbach, C. (1997) Soft typing for ordered resolution, in Proc.
CADE-14, Springer, pp. 321–335.



MPTP – MOTIVATION, IMPLEMENTATION, FIRST EXPERIMENTS 339

Ganzinger, H. and Stuber, J. (2003) Superposition with equivalence reasoning and delayed clause
normal form transformation, in Proc. 19th Int. Conf. on Automated Deduction (CADE-19),
Miami, Florida, LNAI 2741, Springer, pp. 335–349.

Hähnle, R., Kerber, M. and Weidenbach, C. (1996) Common syntax of the DFGSchwerpunktpro-
gramm deduction, Technical Report TR 10/96, Fakultät für Informatik, Universität Karlsruhe,
Karlsruhe, Germany.

Lenat, D. B. (1979) On automated scientific theory formation: A case study using the AM program,
in J. Hayes, D. Michie and L. I. Mikulich (eds.), Machine Intelligence 9, Halstead, New York,
1979, pp. 251–283.

Lenat, D. B. (1982) The nature of heuristics, Artificial Intelligence 19(2) 189–249.
McCune, W. W. (1997) Solution of the Robbins problem, J. Automated Reasoning 19(3), 263–276.
MoMM (2004) The MoMM interreduction system by Josef Urban, available online at http:

//alioth.uwb.edu.pl/twiki/bin/view/Mizar/MoMM.
MPTPResults.sql – SQL structure of the MPTP result database, published online at http://alioth.

uwb.edu.pl/twiki/bin/view/Mizar/MpTP.
Naumowicz, A. and Byliński, C. (2002) Basic elements of computer algebra in MIZAR, Mechanized

Mathematics and Its Applications 2(1), 9–16.
Nonnengart, A. and Weidenbach, C. (2001) Computing small clause normal forms, in A. Robinson

and A. Voronkov (eds.), Handbook of Automated Reasoning, Vol. 1, Elsevier, Chapter 6, pp.
335–367.

Pollock, J. L. (1996) OSCAR: A general purpose defeasible reasoner, J. Appl. Non-Classical Logics
6, 89–113.

Rudnicki, P. (1992) An overview of the Mizar project, in Proceedings of the 1992 Workshop on Types
for Proofs and Programs, Chalmers University of Technology, Bastad.

Schulz, S. (2002) E – A brainiac theorem prover, J. AI Comm. 15, 111–126.
Schulz, S. (2001) Learning search control knowledge for equational theorem proving, in F. Baader,

G. Brewka and T. Eiter (eds.), Proceedings of the Joint German/Austrian Conference on Artificial
Intelligence (KI-2001), LNAI 2174, Springer, pp. 320–334.

Schumann, J. M. (2001) Automated Theorem-Proving in Software Engineering, Springer-Verlag.
Sutcliffe, G. and Suttner, C. B. (1998) The TPTP problem library: CNF release v1.2.1, J. Automated

Reasoning 21(2), 177–203.
Sutcliffe, G., Zimmer, J. and Schulz, S. (2003) Communication formalisms for automated theorem

proving tools, in V. Sorge, S. Colton, M. Fisher and J. Gow (eds.), Proceedings of the IJCAI-18
Workshop on Agents and Automated Reasoning, pp. 53–58.

Urban, J. (2003) Translating Mizar for first order theorem provers, in A. Asperti, B. Buchberger and
J. Davenport (eds.), Mathematical Knowledge Management, Proceedings of MKM 2003, LNCS
2594.

Urban, J. (2004) MoMM – Fast interreduction and retrieval in large libraries of formalized math-
ematics, in G. Sutcliffe, S. Schultz and T. Tammit (eds.), Proceedings of the IJCAR 2004
Workshop on Empirically Successful First Order Reasoning, ENTCS, accepted. Available online
at http://ktiml.mff.cuni.cz/~urban/MoMM/momm.ps

Weidenbach, C. (2001) SPASS: Combining superposition, sorts and splitting, in A. Robinson and A.
Voronkov (eds.), Handbook of Automated Reasoning, Vol. II, Elsevier Science and MIT Press,
Chapter 27, pp. 1965–2013.

Wiedijk, F. (2000) CHECKER – Notes on the basic inference step in Mizar, available at http:
//www.cs.kun.nl/~freek/mizar/by.dvi

Wiedijk, F. (2002) Estimating the cost of a standard library for a mathematical proof checker, http:
//www.cs.kun.nl/~freek/notes

Wiedijk, F. (2003) Comparing mathematical provers, in A. Asperti, B. Buchberger and J. Daven-
port (eds.), Mathematical Knowledge Management, Proceedings of MKM 2003, LNCS 2594,
pp. 188–202.


