
Journal of Automated Reasoning 33: 29–49, 2004.
© 2004 Kluwer Academic Publishers. Printed in the Netherlands.

29

Organizing Numerical Theories Using Axiomatic
Type Classes

LAWRENCE C. PAULSON
Computer Laboratory, University of Cambridge, J.J. Thompson Avenue, Cambridge CB3 0FD,
England. e-mail: lcp@cl.cam.ac.uk

(Received: 19 March 2004; accepted: 16 July 2004)

Abstract. Mathematical reasoning may involve several arithmetic types, including those of the
natural, integer, rational, real, and complex numbers. These types satisfy many of the same algebraic
laws. These laws need to be made available to users, uniformly and preferably without repetition, but
with due account for the peculiarities of each type. Subtyping, where a type inherits properties from a
supertype, can eliminate repetition only for a fixed type hierarchy set up in advance by implementors.
The approach recently adopted for Isabelle uses axiomatic type classes, an established approach to
overloading. Abstractions such as semirings, rings, fields, and their ordered counterparts are de-
fined, and theorems are proved algebraically. Types that meet the abstractions inherit the appropriate
theorems.

Key words: arithmetic, axiomatic type classes, Isabelle, overloading, polymorphism.

1. Introduction

Theorem-proving tools typically deal with many different types of numbers. The
natural numbers are appropriate for foundational proofs relying on induction. The
integers and the rational numbers can be appropriate for modeling computer arith-
metic. The real and complex numbers are appropriate for developing a theory of
mathematical analysis. In the formalization of mathematics, it is common to see
several different numeric types involved in a single theorem statement.

There are many different arithmetic laws. Addition and multiplication are typi-
cally commutative and associative. Addition distributes over multiplication. Addi-
tion or multiplication by a common value can be cancelled under certain circum-
stances. Other laws relate to monotonicity and numerical signs. Still others concern
subtraction, division, absolute value, and so forth. A further complication is that
a mathematical law, when formalized in a theorem prover, often takes multiple
forms. A mathematician will apply a law such as k × (m + n) = k × m + k × n to
a term of the form (m + n) × k. Corollaries of a theorem – typically special cases
where certain variables are replaced by 0 or 1 – give rise to additional theorems.
The dozen or so laws in a textbook multiply into hundreds of lemmas in a theorem
prover.

30 LAWRENCE C. PAULSON

With several numerical types and hundreds of arithmetic lemmas, we face a
potential explosion: taking the obvious product will yield thousands of laws. The
standard method of avoiding this problem is subtyping. An example of subtyping is
to formalize the natural numbers as a subset of the reals, so that it inherits its laws
from those of the reals. Consider a slightly more complicated type hierarchy with
the natural numbers, the integers, the rationals, the reals, and the complex numbers:

N ⊆ Z ⊆ Q ⊆ R ⊆ C.

Subtyping in general is natural and useful, but using it to organize the arithmetic
types in a hierarchy has serious problems.

• It is inelegant, inverting the order of mathematical construction. Starting with
the natural numbers, we construct the integers, the rationals, the reals, and
finally the complex numbers. The properties of the complex numbers are
rightfully derived from those of the natural numbers, not the other way around.

• It is inflexible. Only implementors can define the linear hierarchy to avoid the
repetition of arithmetic facts. If we developed a theory of complex polynomi-
als, then we would have to rewrite the standard prelude to make type complex
a subtype of type complexpoly. Of course, nobody would want to regard the
complex numbers as a subset of the complex polynomials.

• It is confusing. Users expect the largest type to support the most operations.
Type complex includes all the other types as subsets, but it does not possess
an ordering. Properties involving orderings or signs, such as −a < −b ⇐⇒
b < a, have to be inherited from type real, while other properties are inher-
ited from type complex.

PVS uses subtyping to let theorems about the reals be reused for the rationals,
integers, and naturals, but it does not provide the complex numbers at all [11]. PVS
provides an abstract type, called number_field, which lies at the top of the arith-
metic type hierarchy. This type satisfies the axioms of a field, but not of an ordered
field. This allows development of, for example, complex numbers or nonstandard
reals as subtypes.

Abstract algebra offers a better approach to formalizing arithmetic types.
Roughly speaking, a field is a set equipped with the operations of addition, sub-
traction, multiplication, and division, satisfying all the familiar laws. The complex
numbers are a field. An ordered field is a field equipped with a linear ordering
that is preserved in the familiar way by addition and multiplication. The real and
the rational numbers are both ordered fields. A ring is similar to a field but does
not necessarily have division. Precise definitions of these concepts appear below.
Each one requires surprisingly few axioms, and they build on one another naturally,
yielding a lattice of concepts. Given such concepts, we can prove the familiar
arithmetic laws starting from a minimal set of axioms. Laws that hold for rings
will continue to hold for ordered rings and for fields. If we then define a type of
complex polynomials and prove that it forms a ring, it immediately inherits all the
properties proved for rings.

ORGANIZING NUMERICAL THEORIES USING AXIOMATIC TYPE CLASSES 31

Most logical formalisms can easily express such an axiomatic development.
Isabelle’s axiomatic type classes are particularly convenient [7, 13]. They provide
controlled polymorphism over a spectrum that ranges from traditional ML-style
polymorphism to overloading. Concepts such as ring, ordered ring, and field can be
formalized as axiomatic type classes. A type can be proved to belong to a type class,
gaining access to the theorems proved for that class. At the same time, definitions
of operators can be specific to each type: addition has separate definitions for the
natural numbers, integers, and rationals. Although the addition operator stands for
a different function for each arithmetic type, the abstract properties of addition are
inherited according to the axiomatic hierarchy.

This paper can be seen on two levels: first, as a suggestion for organizing nu-
merical theories in general, and second, as an example of the use of axiomatic
type classes in Isabelle. The paper introduces Isabelle and axiomatic type classes
(Section 2). It then describes the axiomatic type classes for arithmetic (Section 3).
It shows how axiomatic type classes support numeric literals (Section 4). It presents
a small example – the natural numbers extended with ∞ (Section 5) – and briefly
comments on the usefulness of axiomatic type classes (Section 6).

2. Isabelle and Axiomatic Type Classes

Isabelle [8] is an interactive theorem prover implementing a higher-order logical
framework. Isabelle supports a variety of formalisms; the most popular is higher-
order logic (Isabelle/HOL). Many large case studies have been done using Isabelle
concerning, for example, cryptographic protocols [10] and the Java Virtual Ma-
chine [6]. For the purposes of this paper, the most interesting aspect of Isabelle is
its type system: order-sorted polymorphism [7].

Polymorphism is found in a number of functional programming languages, such
as ML [9]. For example, the type of lists takes as an argument the type of the list
elements. The list reversal function is polymorphic: it reverses any list without
regard for the type of the list elements. ML assigns rev the following type:

rev : (’a list) -> (’a list)

The symbol ’a is a type variable, which ranges over all types. Here, we see that
rev returns a list of the same type as it is given. Moreover, it executes the same
algorithm (in practice, the same code) without regard for the type of the list ele-
ments. Polymorphism therefore differs from overloading, where a symbol such as
+ represents the concept of addition for both integers and reals but with separate
addition algorithms for the two types.

Polymorphism is as useful in logic as it is in programming. All versions of the
theorem prover HOL [4] use it, as does Isabelle. The formally defined list reversal
function is polymorphic, and so are the theorems proved about this function. For
example, the theorem rev (rev l) = l is true regardless of the type of the list l.
As in ML, polymorphism involves type variables: the variable l has type ’a. The

32 LAWRENCE C. PAULSON

rewriter can apply this theorem to simplify a term such as rev (rev [True]),
automatically matching ’a to the type bool and l to the term [True].

In traditional polymorphism, a type variable ranges over all possible types. Is-
abelle requires a more refined treatment of polymorphism because certain types
are part of the logical framework and are not available to users. This treatment
is based on Wadler and Blott’s type classes [12], which they introduced to support
overloading in the programming language Haskell [5]. Nipkow [7] transferred their
type system – a clean combination of overloading and polymorphism – into the
context of theorem proving. Later, Wenzel [13] worked out the logical foundations
of axiomatic type classes; he also produced an elegant implementation.

A type class denotes a collection of types; a sort is a list of type classes and
denotes their intersection. Each type variable has a sort and can be instantiated by
any type that belongs to all of the listed type classes. For example, Isabelle/HOL
introduces the type class zero as follows.

axclass zero ⊆ type

Then, Isabelle/HOL introduces the constant 0. (In Isabelle, the symbol :: means
“has type” as well as “has sort.”)

consts "0" :: "’a::zero"

This declaration makes 0 polymorphic but only over the type class zero. The two
declarations together define zero to be the class of all types that the constant 0 may
have. Next, we can declare a particular type, such as nat, to be a member of class
zero.

instance nat :: zero ..

This declaration informs Isabelle that we intend to use 0 as a constant of type nat.
Strictly speaking, 0 is not a single constant but a family of constants 0::τ for each
type τ . These constants can be defined independently of one another.

Isabelle/HOL declares several other constants to be polymorphic over dedicated
type classes. The type class one comprises the types that have the constant 1; the
type classes plus and times comprise the types that have the infix operators +
and *, respectively. Here are the definitions of the type class plus and the infix
operator +.

axclass plus ⊆ type
consts "+" :: "[’a::plus, ’a] => ’a" (infixl 65)

The definitions of the classes zero and times are similar to those presented above.
Now, the sort {zero,one,plus,times} denotes the intersection of the four named
type classes, comprising the types that possess all four of these constants. These
will include the standard arithmetic types, but they may include other types: we
have not yet specified the properties of these constants.

ORGANIZING NUMERICAL THEORIES USING AXIOMATIC TYPE CLASSES 33

An axiomatic type class is a type class augmented with axioms constraining the
constants. (Wadler and Blott [12] foresaw this possibility.) We can refer to these
axioms in proofs, obtaining theorems specific to the type class. To show that a
type τ is an instance of a particular axiomatic type class, we must prove that all
the axioms hold. Typically the axioms refer to overloaded constants, which we
define for type τ with the objective of satisfying the axioms. Verifying the axioms
for type τ makes all the theorems proved for the type class immediately available
for type τ . No further importation or instantiation is necessary.

The implementation burden for axiomatic type classes falls mainly on type
inference. Type checking determines whether a polymorphic theorem may be in-
stantiated with a specific type to draw conclusions about specific terms. Isabelle
combines theorems using higher-order unification; type classes complicate the pro-
cedure by requiring a treatment of order-sorted type variables. (Before the advent
of type classes, higher-order unification was monomorphic.) Nipkow [7] describes
the modifications. Wenzel [13] proves the soundness of axiomatic type classes
through a translation into pure higher-order logic, but his proof does not reflect the
implementation. As just stated, the mechanism for ensuring that rules are applied
correctly is type checking.

Isabelle’s axiomatic type classes provide excellent support for overloading, but
they are not a general abstraction mechanism. Any attempt to use them as such will
run into a number of difficulties:

• Names of constants are required to agree. A specification of monoids that
refers to 0 and + cannot be used to constrain 1 and *.

• A type can be an instance of a class in at most one way. This is inconvenient
when there are multiple possibilities, such as whether ≤ on lists should denote
the prefix ordering or lexicographic ordering. The same restriction rules out
duality arguments such as reversing the direction of a partial ordering.

Algebraic concepts such as rings and fields are easily defined as axiomatic type
classes. Unfortunately, this does not yield a useful environment for developing
ring theory. The carrier of a ring could only be a type, when realistic examples
frequently require the carrier to be an arbitrary set. Type instance declarations
cannot appear in the middle of a proof, nor can they be rescinded. Type classes for
rings and fields are useful, not for formalizing abstract algebra, but for organizing
libraries of theorems about arithmetic types. The type classes for rings and fields
are therefore oriented toward organizing arithmetic types and do not convey all the
detail found in abstract algebra. With the definitions given below, a ring is always
commutative and has a multiplicative unit (that is, 1).

Since this paper was first written, Steven Obua has greatly expanded the type
class hierarchy. He has introduced standard terminology – for example, a ring need
not be commutative – and added many new concepts. These improvements make
the hierarchy more general, and Obua has used it to formalize matrices. This paper
presents the original hierarchy in order to avoid complicating the presentation.

34 LAWRENCE C. PAULSON

3. Axiomatic Type Classes for Arithmetic

This section presents the definitions of the axiomatic type classes used (in Isabelle
2004) to organize the arithmetical theories. They form a hierarchy as new operators
are introduced, such as subtraction, division, and orderings, and as new axioms are
introduced. Because classes can always be combined to form a sort, the hierarchy
is a lattice, with ordered fields at the top and semirings at the bottom.

This hierarchy rests upon existing type classes for orderings. These appear be-
low, in simplified form. Type class ord comprises all types for which the infix
relations < and ≤ are defined.�

axclass ord ⊆ type
consts "<" :: "[’a:: ord, ’a] => bool" (infixl 50)
consts "≤" :: "[’a:: ord, ’a] => bool" (infixl 50)

Type class order comprises the partial orderings, which are reflexive, transitive,
and antisymmetric. This type class also specifies the relationship between < and ≤.

axclass order ⊆ ord
order_refl: "x ≤ x"
order_trans: "x ≤ y ⇒ y ≤ z ⇒ x ≤ z"
order_antisym: "x ≤ y ⇒ y ≤ x ⇒ x = y"
order_less_le: "(x < y) = (x ≤ y ∧ x �= y)"

Type class linorder further constrains the ordering to be linear. Of course, the
numeric types (other than complex) are linearly ordered.

axclass linorder ⊆ order
linorder_linear: "x ≤ y ∨ y ≤ x"

3.1. THE BASIC TYPE CLASS HIERARCHY

A semiring (for our purposes) is an algebraic structure with the constants 0 and 1
and the operators + and ×. The binary operators are commutative and associative,
and they satisfy the usual distributive law. Moreover, addition can be cancelled
from the left.

axclass semiring ⊆ zero, one, plus, times
add_assoc: "(a + b) + c = a + (b + c)"
add_commute: "a + b = b + a"
add_0: "0 + a = a"
add_left_imp_eq: "a + b = a + c ⇒ b=c"

� To avoid a multiplicity of trivial variants of theorems, Isabelle does not define > and ≥.

ORGANIZING NUMERICAL THEORIES USING AXIOMATIC TYPE CLASSES 35

mult_assoc: "(a * b) * c = a * (b * c)"
mult_commute: "a * b = b * a"
mult_1: "1 * a = a"

left_distrib: "(a + b) * c = a * c + b * c"
zero_neq_one: "0 �= 1"

The first line introduces the class semiring and places it in the sort hierarchy: it is
a subclass of zero, one, plus, and times and, therefore, of their intersection. The
class is further constrained by axioms.

A ring extends a semiring with unary minus and subtraction, which are related
to addition in the obvious way.

axclass ring ⊆ semiring, minus
left_minus: "- a + a = 0"
diff_minus: "a - b = a + (-b)"

A field extends a ring with a multiplicative inverse (reciprocal) and division,
which are related to multiplication in the obvious way.

axclass field ⊆ ring, inverse
left_inverse: "a �= 0 ⇒ inverse a * a = 1"
divide_inverse: "a / b = a * inverse b"

Next come ordered versions of these algebraic structures. The basic relation
symbol is ≤, but the strict “less than” relation (<) is also specified. Now, we can
define an ordered semiring to be a semiring that is also a linear ordering; it satisfies
three further axioms asserting that 0 < 1 and that addition and multiplication
preserve the ordering.

axclass ordered_semiring ⊆ semiring, linorder
zero_less_one: "0 < 1"
add_left_mono: "a ≤ b ⇒ c + a ≤ c + b"
mult_strict_left_mono: "a < b ⇒ 0 < c ⇒ c * a < c * b"

An ordered ring is both an ordered semiring and a ring. It must also have the
absolute value function (abs) defined according to the axiom below. Note that abs
a may also be written |a|.

axclass ordered_ring ⊆ ordered_semiring, ring
abs_if: "|a| = (if a < 0 then -a else a)"

An ordered field is any field that is also an ordered ring.

axclass ordered_field ⊆ ordered_ring, field

36 LAWRENCE C. PAULSON

An alternative treatment of absolute value would be to define the function abs
once and for all, using the equation shown above. The definition could be made
before types such as nat and int had been declared and before constants such
as 0 and < possessed any definitions. Theorems such as "|a+b| ≤ |a| + |b|"
could then be proved abstractly, from type class axioms. This approach would
be fine for numeric types. Unfortunately, it presupposes a linear ordering, which
is not compatible with other uses of absolute value in Isabelle. Constraining the
function abs by a type class axiom, as done here, is more flexible.

3.2. AVOIDING REDUNDANT AXIOMS BY TYPE CLASS INCLUSIONS

We can refine the definitions given above. One of the semiring axioms becomes
redundant when we move to rings: the cancellation of addition can be proved once
we have subtraction. Also, the axiom 0 < 1 of ordered semirings is no longer nec-
essary for ordered rings: it can be proved from the axiom 0 �= 1 and the sign laws of
multiplication. Redundant axioms are inelegant, and if they accumulate, they make
instance declarations needlessly long. The type class system allows us to avoid
introducing axioms that will become redundant. The method is best demonstrated
by an example. We abandon the declarations given above and instead declare a
type class almost_semiring, which includes all the axioms except cancellation of
addition.

axclass almost_semiring ⊆ zero, one, plus, times
add_assoc: "(a + b) + c = a + (b + c)"
add_commute: "a + b = b + a"
add_0: "0 + a = a"

mult_assoc: "(a * b) * c = a * (b * c)"
mult_commute: "a * b = b * a"
mult_1: "1 * a = a"

left_distrib: "(a + b) * c = a * c + b * c"
zero_neq_one: "0 �= 1"

We extend this type class in two different ways. By introducing subtraction, we
obtain rings, with no redundant axiom about cancellation of addition.

axclass ring ⊆ almost_semiring, minus
left_minus: "- a + a = 0"
diff_minus: "a - b = a + (-b)"

By assuming the axiom for cancellation of addition, we obtain semirings.

axclass semiring ⊆ almost_semiring
add_left_imp_eq: "a + b = a + c ⇒ b=c"

ORGANIZING NUMERICAL THEORIES USING AXIOMATIC TYPE CLASSES 37

To complete the development, we must prove that all rings are semirings, since it
is no longer true by construction. We do so as follows.

instance ring ⊆ semiring
proof

fix a b c :: ’a
assume "a + b = a + c"
hence "-a + a + b = -a + a + c"

by (simp only: add_assoc)
thus "b = c" by simp

qed

Isabelle demands a proof of the axiom for cancellation of addition. After this is
provided, Isabelle will regard all types that belong to class ring to be elements
of class semiring. Proofs of claims are given through the keyword by. After this
keyword comes a command, such as an invocation of the simplifier (simp), which
here refers to the axiom add_assoc.

The redundant axiom 0 < 1 is handled similarly. We declare a new type class,
almost_ordered_semiring.

axclass almost_ordered_semiring ⊆ semiring, linorder
add_left_mono: "a ≤ b ⇒ c + a ≤ c + b"
mult_strict_left_mono: "a < b ⇒ 0 < c ⇒ c * a < c * b"

Note that it extends semiring rather than almost_semiring. Its purpose is to
ensure that 0 < 1 is assumed for ordered_semiring but not for ordered_ring.
Then, we prove that every ordered ring is an ordered semiring by showing that it
satisfies 0 < 1.

instance ordered_ring ⊆ ordered_semiring
proof

have "(0::’a) ≤ 1*1" by (rule zero_le_square)
thus "(0::’a) < 1" by (simp add: order_le_less)

qed

Here, the command by (rule zero_le_square) is a reference to a previously
proved theorem about ordered rings. This proof of 0 < 1 uses 0 ≤ 1 × 1 as a
lemma.

Fields and ordered fields are then defined as before. Figure 1 is a diagram of the
hierarchy of type classes. The solid lines show inclusions that hold by construction,
while the dashed lines show inclusions that have been proved.

3.3. REASONING WITH TYPE CLASS AXIOMS

Now that we have defined some axiomatic type classes, let us use them. Any proof
may refer to the axioms of a type class. Such axioms are entirely different from

38 LAWRENCE C. PAULSON

Figure 1. Type classes for organizing arithmetic theories.

axioms asserted at top level: the latter must be taken on faith, while the former
will be proved later in instance declarations. If the axioms of a type class are
inconsistent, then no type can be an instance of it, but no other harm is done.
Isabelle keeps track of theorems whose proofs depend on type classes that are not
known to contain any types. Isabelle prints a warning when such theorems are
proved and does not permit their use in justifying other instance declarations.

Here is a trivial example of a proof. The type class almost_semiring has an
axiom that says that 0 is the left identity of addition. By the commutative law, it is
also a right identity. Here is the full proof text.

lemma add_0_right: "a + 0 = (a::’a::almost_semiring)"
proof -

have "a + 0 = 0 + a" by (simp only: add_commute)
also have "... = a" by simp
finally show ?thesis .

qed

In the top line is a reference to a type variable, namely, ’a, which is given
an explicit class, namely, almost_semiring. All the type classes that the proof
requires must be mentioned in this way; a type variable normally does not be-
long to any special type classes, preventing the use of type class axioms. The
given theorem statement allows the use of the axioms of almost_semiring. The
resulting theorem is specific to this class and to its descendants, such as ring
and ordered_field. Inclusion for type classes superficially resembles subtyping.
However, it is a deeper concept that reflects mathematical reasoning in its full
generality rather than just the subset relation.

The full theory of rings, fields, etc., comprises approximately 250 theorems.
They are general laws concerning 0, 1, +, −, ×, /, ≤, and <. To maximize general-

ORGANIZING NUMERICAL THEORIES USING AXIOMATIC TYPE CLASSES 39

ity, each law refers to the weakest type classes possible. For example, any theorem
involving subtraction requires at least a ring; but if it also involves the ordering,
then it requires an ordered ring. Very occasionally, a proof requires more axioms
than can be seen from the theorem statement alone. Here is an example, the law
a × b = 0 ⇐⇒ a = 0 ∨ b = 0.

lemma mult_eq_0_iff:
"(a*b = (0::’a::ordered_ring)) = (a=0 ∨ b=0)"

The proof, which is omitted, appeals to the ordering. The factors are positive, nega-
tive, or zero; the nonzero cases contradict the monotonicity of multiplication. This
property of multiplication fails in the ring of integers modulo 4, where 2 × 2 = 0;
it is a theorem only in ordered rings, even though the theorem statement does not
refer to an ordering. This property of multiplication also holds for fields, when the
availability of division eliminates the need for an ordering. Formally, these are two
different theorems.

lemma field_mult_eq_0_iff: "(a*b = (0::’a::field)) = (a=0 ∨ b=0)"

3.4. INSTANTIATING THE TYPE CLASSES TO SPECIFIC TYPES

Now, let us apply the definitions of type classes. Suppose that we have already
defined the type of natural numbers (nat) and the relevant operators (0, 1, addi-
tion, multiplication) and have proved their basic properties. Then we may make
the following declaration.

instance nat :: semiring
proof

fix i j k :: nat
show "(i+j)+k = i+(j+k)"

by (rule nat_add_assoc)
show "i+j = j+i"

by (rule nat_add_commute)
show "0+i = i"

by simp
show "(i*j)*k = i*(j*k)"

by (rule nat_mult_assoc)
show "i*j = j*i"

by (rule nat_mult_commute)
show "1*i = i"

by simp
show "(i+j) * k = i*k + j*k"

by (simp add: add_mult_distrib)
show "0 �= (1::nat)"

40 LAWRENCE C. PAULSON

by simp
assume "k+i = k+j" thus "i=j" by simp

qed

Here we assert that type nat belongs to the type class semiring. Isabelle checks
what it already knows about this type and then asks us to prove all the axioms
given in the definition of classes almost_semiring and semiring. In this ex-
ample, the axioms are verified by reference to theorems already been proved for
the natural numbers, such as nat_add_assoc. We could instead have proved each
axiom from first principles. Such details are not important. The essential points
are that Isabelle keeps track of (1) which axioms must be proved and (2) which
theorems now become available for type nat. The first of the two theorems proved
above, add_0_right, becomes available because it holds for all semirings. The
second, mult_eq_0_iff, does not: it requires an ordered ring. This property of
multiplication can still be proved from definitions specific to type nat.

Now, we can prove that the natural numbers are an ordered semiring. This step
requires proving that type nat is linearly ordered (for a suitable definition of ≤)
and that addition and multiplication to respect this ordering. If we have already
proved that the type belongs to classes semiring and linorder, then only three
additional axioms will require proofs.

instance nat :: ordered_semiring
proof

fix i j k :: nat
show "0 < (1::nat)"

by simp
show "i ≤ j ⇒ k+i ≤ k+j"

by simp
show "i<j ⇒ 0<k ⇒ k*i < k*j"

by (simp add: mult_less_mono2)
qed

The treatment of other types is similar. Type int is shown to be a ring as follows.

instance int :: ring
proof

fix i j k :: int
show "(i+j)+k = i+(j+k)"

by (simp add: zadd_assoc)
show "i+j = j+i"

by (simp add: zadd_commute)
show "0+i = i"

by simp
show "- i + i = 0"

by simp

ORGANIZING NUMERICAL THEORIES USING AXIOMATIC TYPE CLASSES 41

show "i - j = i + (-j)"
by (simp add: zdiff_def)

show "(i*j)*k = i*(j*k)"
by (rule zmult_assoc)

show "i*j = j*i"
by (rule zmult_commute)

show "1*i = i"
by simp

show "(i+j) * k = i*k + j*k"
by (simp add: int_distrib)

show "0 �= (1::int)"
by (simp only: Zero_int_def

One_int_def One_nat_def int_int_eq)
qed

Here Isabelle requires proofs of the axioms for the type classes almost_semi-
ring, semiring, and ring. We could have split this instance declaration into
smaller parts, but there is no reason to do so. It is good to separate the declarations
for the type classes ring and ordered_ring: the theorems for ring can be used to
help develop the theory of ≤ for integers.

Our concept of ordered ring requires a definition of the absolute value function;
recall the discussion at the end of Section 3.1. Isabelle specifies the function abs to
be overloaded for all types that admit unary minus. (The type class minus governs
the constants for unary minus, subtraction, and absolute value. We could have
defined separate type classes for each of these constants.) Now, as specified by
the axiom given in the definition of an ordered ring, we must define the absolute
value function for the integers.

zabs_def: "|i::int| == if i < 0 then -i else i"

Given this definition, we can show type int to be an ordered ring.

instance int :: ordered_ring
proof

fix i j k :: int
show "i ≤ j ⇒ k+i ≤ k+j"

by (rule zadd_left_mono)
show "i<j ⇒ 0< ⇒ k*i < k*j"

by (rule zmult_zless_mono2)
show "|i| = (if i<0 then -i else i)"

by (simp only: zabs_def)
qed

The proof of the absolute value axiom merely checks that it has been defined in the
specified manner.

42 LAWRENCE C. PAULSON

3.5. A TYPE CLASS FOR POWERS

All arithmetic types allow a number to be raised to a nonnegative power. This ex-
ponentiation operation is meaningful for any type that possesses the number 1 and
multiplication and, therefore, for any semiring. We could include exponentiation in
the definition of a semiring, just as abs is included in the definition of an ordered
ring. However, it is more modular to introduce many simple type classes rather
than a few complicated ones. We can always combine type classes to form sorts.

axclass recpower ⊆ semiring, power
power_0: "a ˆ 0 = 1"
power_Suc: "a ˆ (Suc n) = a * (a ˆ n)"

In this declaration, the type class power simply denotes the class of all types
for which the power function may be used, without constraining its definition.
Nonarithmetic types may use the power operator differently: to denote the n-fold
composition of a relation, for example. Because relational composition does not
satisfy basic algebraic properties such as those of a semiring, no single polymor-
phic definition of powers can suffice: this operator must be overloaded. The new
class, recpower, extends the classes semiring and power with two axioms rep-
resenting the primitive recursive definition of exponentiation. Many well-known
results can be proved in this abstract setting.

lemma power_one: "1ˆn = (1::’a::recpower)"
lemma power_one_right: "(a::’a::recpower) ˆ 1 = a"
lemma power_add: "(a::’a::recpower) ˆ (m+n) = (aˆm) * (aˆn)"
lemma power_mult: "(a::’a::recpower) ˆ (m*n) = (aˆm) ˆ n"
lemma power_mult_distrib:

"((a::’a::recpower)*b) ˆn = (aˆn)*(bˆn)"
To instantiate this type class, we need only make an equivalent definition for the

type of interest. Let us define exponentiation for type nat:

primrec (power)
"p ˆ 0 = 1"
"p ˆ (Suc n) = (p::nat) * (p ˆ n)"

Now, we can demonstrate that nat belongs to class recpower.

instance nat :: recpower
proof

fix z n :: nat
show "zˆ0 = 1" by simp
show "zˆ(Suc n) = z * (zˆn)" by simp

qed

ORGANIZING NUMERICAL THEORIES USING AXIOMATIC TYPE CLASSES 43

Lemmas such as power_add now become available for type nat.
Another benefit of the type class approach is uniform simplification. Any lem-

mas can be declared as default simplification rules, which makes them automat-
ically available to all simplifier invocations. Isabelle/HOL declares many general
arithmetic lemmas, such as power_one_right and mult_eq_0_iff, as default sim-
plification rules. Rewrites such as a × b = 0 ⇔ a = 0 ∨ b = 0 and a1 = a will be
performed for all types in the appropriate type classes, ensuring that simplification
behaves similarly for all the arithmetic types.

4. The Treatment of Numeric Literals

Some proofs require the use of literal constants such as 1024, which obviously
must not be expanded to unary notation. In Isabelle, literal constants abbreviate
terms of a data structure that corresponds to two’s complement binary arithmetic.
Operations such as addition, subtraction, multiplication, division, and comparisons
are performed by rewriting on this data structure. Important, all this takes place
within the logic: these computations are not hard-wired into Isabelle. They are
reasonably efficient: the computation 1359 × −2468 = −3354012 takes only a
tenth of a second.

Bit strings are defined to be a recursive datatype:

datatype
bin = Pls

| Min
| Bit bin bool (infixl "BIT" 90)

The constructor pls denotes the value 0, while the constructor min denotes the
value −1; these both terminate the recursion. The third, infix, constructor extends
a binary number with the least significant bit, coded as True = 1 and False = 0.
Addition, negation, and multiplication can be defined straightforwardly in terms of
this data structure. The two’s complement representation avoids ugly case analyses
on the signs of operands.

The type class number denotes all types for which numerals can be defined. The
overloaded function number_of maps bit strings to values of some particular type
of that class.

axclass number ⊆ type
consts number_of :: "bin ⇒ ’a::number"

These definitions let us make separate definitions of number_of for each numeric
type. (If type nat did not require special treatment, then one polymorphic definition
of number_of would have worked for all types.) Each definition requires a separate
proof that the binary arithmetic operations – defined by primitive recursion on bit
strings – agree with numerical arithmetic. Once again, type classes allow us to
avoid repeating the proofs for all the arithmetic types. A new type class specifies

44 LAWRENCE C. PAULSON

just one function, number_of. All of the agreement proofs refer to the definition of
this valuation function.

Because the binary representation includes negative numbers, we cannot use
semirings. The type class for binary arithmetic is based on rings:

axclass number_ring ⊆ number, ring
number_of_Pls: "number_of bin.Pls = 0"
number_of_Min: "number_of bin.Min = - 1"
number_of_BIT: "number_of(w BIT x) = (if x then 1 else 0) +

number_of w + number_of w"

Now, in order to install literal constants for any type that is at least a ring,
it is necessary only to define the function number_of using exactly the recursion
specified above. It remains to set up literal constants for the natural numbers, which
form only a semiring. We cannot prove that type nat belongs to class number_ring
– which is why it requires special treatment – but we can enter the type into the
trivial class type number.

instance nat :: number ..

This declaration allows us to define the constant number_of for type nat. To eval-
uate a bit string as a natural number, we begin by evaluating it as an integer. Then,
we apply the coercion function nat, which maps negative integers to zero and the
others to the corresponding natural numbers. We arrive at the following definition:

nat_number_of_def:
"(number_of :: bin ⇒ nat) v ==
nat ((number_of :: bin ⇒ int) v)"

Theorems expressing agreement between the binary arithmetic operations and true
natural number arithmetic are proved by case analysis on the signs of the underly-
ing integers. Notice that number_of for type nat is defined in terms of number_of
for type int. This situation is common with overloading. For instance, the complex
number zero is defined in terms of the real number zero.

The final step in the implementation of new numeric type is to install Isabelle’s
decision procedure for linear arithmetic. This procedure works by deduction within
the logic, just as constant arithmetic does, using theorems to simplify terms and to
deduce contradictions involving inequalities. Using axiomatic type classes, nearly
all of the necessary theorems must be proved only once. This minimizes the amount
of ML code needed to set up the procedure for a new arithmetic type.

5. Example: The Natural Numbers with Infinity

Let us extend the type of natural numbers with a new element, infinity. The natural
numbers are extended with ∞ by obvious equations such as ∞+n = ∞×n = ∞.

ORGANIZING NUMERICAL THEORIES USING AXIOMATIC TYPE CLASSES 45

This type is used in the HOL system for reasoning about the lengths of finite and
infinite lists. Michael Gordon suggested this example, adding, “It is an overload-
ing nightmare in HOL, with lots of theorems covering the various cases when
arguments are finite and infinite.”

Let us define this type in Isabelle and attempt to civilize its theory using type
classes. We declare type natinf to consist of natural numbers of the form Finite n

and the constant Infinity.

datatype natinf = Finite nat | Infinity

We declare the type to belong to the trivial classes zero, one, plus and times.

instance natinf :: "{zero,one,plus,times}" ..

The definitions of zero and one refer to the corresponding natural numbers.

zero_def: "0 == Finite 0"
one_def: "1 == Finite 1"

The definitions of addition and multiplication are by case analysis on whether
the operands are finite or not.

add_def:
"M + N == (case M of Finite m ⇒

(case N of Finite n ⇒ Finite (m+n)
| Infinity ⇒ Infinity)

| Infinity ⇒ Infinity)"
mult_def:
"M * N == (case M of Finite m ⇒

(case N of Finite n ⇒ Finite (m*n)
| Infinity ⇒ Infinity)

| Infinity ⇒ Infinity)"

Type natinf is an “almost semiring.” The required properties have trivial proofs
by simplification with automatic case splitting.

instance natinf :: almost_semiring
proof

fix M N K :: natinf
show "(M + N) + K = M + (N + K)"

by (simp add: add_def split: natinf.split)
show "M + N = N + M"

by (simp add: add_def split: natinf.split)
show "0 + M = M"

by (simp add: zero_def add_def split: natinf.split)
show "(M * N) * K = M * (N * K)"

46 LAWRENCE C. PAULSON

by (simp add: mult_def split: natinf.split)
show "M * N = N * M"

by (simp add: mult_def split: natinf.split)
show "1 * M = M"

by (simp add: one_def mult_def split: natinf.split)
show "(M + N) * K = M * K + N * K"

by (simp add: add_def mult_def left_distrib
split: natinf.split)

show "0 �= (1::natinf)"
by (simp add: zero_def one_def)

qed

Now, let us examine the treatment of orderings. We define ≤ to extend the
analogous relation on the natural numbers, with ∞ obviously the greatest element.
We define < as dictated by the type classes for orderings.

le_def:
"M ≤ N == (case M of Finite m ⇒

(case N of Finite n ⇒ Finite (m≤n)
| Infinity ⇒ True)

| Infinity ⇒ (N=Infinity))"

less_def: "M < N == M ≤ N ∧ M �= (N::natinf)"

Type natinf is linearly ordered. The five linorder axioms are stated by using
show or assume . . . thus. The proofs are again trivial.

instance natinf :: linorder
proof

fix M N K :: natinf
show "M ≤ M" by (simp add: le_def split: natinf.split)
{

assume "M ≤ N" and "N ≤ M" thus "M = N"
by (simp add: le_def split: natinf.split_asm)

next
assume "M ≤ N" and "N ≤ K" thus "M ≤ K"

by (simp add: le_def split: natinf.split_asm)
next

show "(M < N) = (M ≤ N ∧ M �= N)"
by (simp add: less_def)

show "M ≤ N ∨ N ≤ M"
by (simp add: le_def linorder_linear split: natinf.split)

}
qed

ORGANIZING NUMERICAL THEORIES USING AXIOMATIC TYPE CLASSES 47

Figure 2. The arithmetic types of Isabelle/HOL.

At this point, we have accomplished much by comparison with the equivalent
formalization in HOL. Type classes (not provided in HOL) allow existing theo-
ries to be reused. The Isabelle proof script is considerably shorter than the HOL
one, but it provides access to many more theorems. Showing that natinf belongs
to linorder makes Isabelle’s library of facts about linear orderings available.
Showing that natinf belongs to almost_semiring makes a few numeric lemmas
available, as well as operators for sums and products over finite sets.

Unfortunately, type natinf lacks many key properties. Addition cannot be can-
celled, and multiplication is not strictly monotonic: we have ∞+M = ∞ = ∞+N

and ∞ × M = ∞ = ∞ × N for all M and N . The type cannot be shown to be
a semiring, and most arithmetic laws require at least this. Without cancellation of
addition, we cannot even prove 0 × a = 0, and indeed 0 × ∞ = ∞ for type
natinf. We now see that simply adding infinity to the natural numbers does not
yield a theory that satisfies the usual arithmetic laws. Axiomatic type classes not
only allow proofs to be reused but also provide a framework for analyzing proposed
arithmetic types.

6. Conclusions

Axiomatic type classes work well in practice. Isabelle/HOL is distributed with
eight arithmetic types (Figure 2). Five of these are traditional: the natural, integer,
rational, real, and complex numbers. Three more arise from nonstandard analysis:
the hypernatural, hyperreal, and hypercomplex numbers. The hyperreal numbers
include infinitesimal and infinite values in addition to the usual real numbers; they
allow a rigorous formalization of intuitive arguments about two values being in-
finitesimally close together, for example. The hypercomplex numbers are related
to the hyperreal numbers in the obvious way. The hypernatural numbers, which
are less well known, extend the natural numbers with infinite values; they form
an ordered semiring and are therefore much better behaved than type natinf. All

48 LAWRENCE C. PAULSON

three “hyper” types were defined from the standard types (using ultrafilters) by
Fleuriot [2]. Most users will not require nonstandard analysis, but it is significant
that type classes can cope with so many different types.

Subtyping is not the way to formalize such a complicated type hierarchy. Its in-
elegance would become glaringly obvious if we had to derive properties of the nat-
ural numbers from those of the hypercomplex numbers. Users would have to know
about obscure types such as the hypercomplexes and hyperreals simply because of
their position near the top of the hierarchy.

This paper can be seen as advocacy for axiomatic type classes. However, the
key point is simply axiomatic development of abstract mathematics followed by
application to concrete instances. A theory interpretation construct such as that of
IMPS [1] may also work as a basis for organizing theories of arithmetic types.
In order to provide a uniform notation, however, the approach also depends upon
overloading. Theory interpretation of itself does not necessarily allow the symbol +
to take on several different meanings in a single expression.

Also relevant is the constructive algebraic hierarchy formalized in Coq by Geu-
vers et al. [3]. They define concepts such as groups and rings. There appears to be
no overloading of the familiar arithmetic operators. Instead, the work is a basis for
developing constructive algebra.

Acknowledgments

Tobias Nipkow and Markus Wenzel equipped Isabelle with axiomatic type classes.
The type classes for ordered rings and fields are based on earlier work by Gertrud
Bauer and Wenzel. Mike Gordon suggested the example of extended natural num-
bers and provided information about the HOL formalization. Nipkow and Phil
Wadler commented on this paper. Thanks are also due to the anonymous referees.

References

1. Farmer, W. M., Guttman, J. D. and Thayer, F. J.: IMPS: An interactive mathematical proof
system, J. Automated Reasoning 11(2) (1993), 213–248.

2. Fleuriot, J. D. and Paulson, L. C.: Mechanizing nonstandard real analysis, LMS J. Comput.
Math. 3 (2000), 140–190, http://www.lms.ac.uk/jcm/3/lms1999-027/.

3. Geuvers, H., Pollack, R., Wiedijk, F. and Zwanenburg, J.: A constructive algebraic hierarchy in
Coq, J. Symbolic Comput. 34(4) (2002), 271–286.

4. Gordon, M. J. C. and Melham, T. F.: Introduction to HOL: A Theorem Proving Environment
for Higher Order Logic, Cambridge University Press, 1993.

5. Hudak, P.: The Haskell School of Expression, Cambridge University Press, 2000.
6. Klein, G. and Nipkow, T.: Verified bytecode verifiers, Theoret. Comput. Sci. 298 (2003), 583–

626.
7. Nipkow, T.: Order-sorted polymorphism in Isabelle, in G. Huet and G. Plotkin (eds.), Logical

Environments, Cambridge University Press, 1993, pp. 164–188.
8. Nipkow, T., Paulson, L. C. and Wenzel, M.: Isabelle/HOL: A Proof Assistant for Higher-Order

Logic, LNCS 2283, Springer, 2002.
9. Paulson, L. C.: ML for the Working Programmer, 2nd edn, Cambridge University Press, 1996.

ORGANIZING NUMERICAL THEORIES USING AXIOMATIC TYPE CLASSES 49

10. Paulson, L. C.: Inductive analysis of the Internet protocol TLS, ACM Transactions on
Information and System Security 2(3) (1999), 332–351.

11. The PVS standard prelude, http://pvs.csl.sri.com/doc/prelude.html, 2003.
12. Wadler, P. and Blott, S.: How to make ad-hoc polymorphism less ad hoc, in 16th Annual

Symposium on Principles of Programming Languages, ACM Press, 1989, pp. 60–76.
13. Wenzel, M.: Type classes and overloading in higher-order logic, in E. L. Gunter and A. Felty

(eds.), Theorem Proving in Higher Order Logics: TPHOLs ’97, LNCS 1275, Springer, 1997,
pp. 307–322.

