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Abstract
Explaining material traces of movement as proxies for past movement is funda-
mental for understanding the processes behind why people in the past traversed the 
landscape in the way that they did. For this, least-cost path analysis and the use of 
slope-based cost functions for estimating the cost of movement when walking have 
become commonplace. Despite their prevalence, current approaches misrepresent 
what these cost functions are, their relationship to the hypotheses that they aim to 
represent, and their role in explanation. As a result, least-cost paths calculated using 
single cost functions are liable to spurious results with limited power for explaining 
known past routes, and by extension the decision-making processes of past people. 
Using the ideas of multiple model idealisation and robustness analysis, and applied 
via a tactical simulation, this study demonstrates that similar least-cost paths can 
be produced from slope-based cost functions representing both the same hypoth-
esis and different hypotheses, suggesting that least-cost path results are robust but 
underdetermined under the tested environmental settings. The results from this tacti-
cal simulation are applied for the explanation of a Roman road in Sardinia. Using 
probabilistic least-cost paths as an approach for incorporating multiple cost func-
tions representing the same hypothesis and error in the digital elevation model, it is 
shown that both model outcomes representing the minimisation of time and energy 
are unable to explain the placement of the Roman road. Rather, it is suggested that 
the Roman road was influenced by pre-existing routes and settlements.

Keywords  Least-cost path · Cost function · Robustness · Underdetermination · 
Postdiction · Roman roads

 *	 Joseph Lewis 
	 Jl2094@cam.ac.uk

1	 Department of Archaeology, University of Cambridge, Cambridge, UK

http://crossmark.crossref.org/dialog/?doi=10.1007/s10816-023-09621-w&domain=pdf
http://orcid.org/0000-0002-0477-1756


855

1 3

Explaining Known Past Routes, Underdetermination, and the…

“Hence our truth is the intersection of independent lies” – Levins (1966, p. 
423)

Introduction

From roads to footpaths to trails, the material traces of movement are thought to 
have preserved the decision-making processes of people in the past when travers-
ing the landscape (Snead et al., 2009). When direct records of the decision-making 
processes used by past people are not available, it is by explaining past routes that 
we can aim to uncover why people in the past moved where they did. For proposed 
explanations to have explanatory power, it is however necessary that the model out-
come sufficiently represents the outcome of the hypothesis of interest and not the 
artefacts of the specific mathematical formalisation used to represent the hypothesis.

A common method for explaining known past routes is the use of least-cost path 
(LCP) analysis (e.g. Fonte et al., 2017; Güimil-Fariña & Parcero-Oubiña, 2015; 
Herzog, 2013, 2022; Lewis, 2021). LCP analysis is predicated on the assumption 
that humans—whether modern or past—use all available information to economise 
their behaviour when traversing the landscape (Surface-Evans & White, 2012; Zipf, 
1949). In this approach, a slope-based cost function that expresses the cost of tra-
versing a specific slope gradient when walking, with cost often measured in time-
taken or energy expended, is used to calculate an LCP between a specified origin 
and destination (Herzog, 2013). When the path of the calculated LCP and the to-
be-explained known past route is deemed to be sufficiently similar,1 it is suggested 
that the resulting LCP, and the hypothesis that its underlying cost function aims to 
represent, reflects the decision-making processes used by past people when creating 
the known past route. For example, if an LCP calculated using a time-based cost 
function representing the hypothesis ‘humans minimised time taken when traversing 
the landscape’ shares similarity with a known past route, it can be inferred that the 
placement of the known past route was chosen to minimise time.

Whilst the comparison of multiple LCPs derived using different slope-based cost 
functions estimating the cost of movement when walking has been used to assess 
which single cost function, and by extension hypothesis, best explains the known 
past route (e.g. Güimil-Fariña & Parcero-Oubiña, 2015; Herzog, 2013, 2020, 2022; 
see also Field et al., 2019 for a reconstructive example; but see Campbell et al., 
2019 who argues against the notion of a single maximal cost function), this approach 
misrepresents what cost functions are, their relationship to the hypotheses that they 
aim to represent, and their role in explanation. For example, Güimil-Fariña and 
Parcero-Oubiña (2015) compared four cost functions, despite three of these aiming 

1  Similarity here is subjectively chosen by the analyst. Common approaches for assessing similarity is 
through visual inspection or more quantitative methods such as the buffer method for comparing two 
linear features as proposed by Goodchild and Hunter (1997). Examples of the former include Herzog 
(2014a), Lewis (2021), and Supernant (2017), with the latter including Herzog (2022) and Güimil-Fariña 
and Parcero-Oubiña (2015). Additional formal methods are however still needed (Herzog 2014b).
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to represent the same hypothesis ‘humans minimise energy expenditure when tra-
versing the landscape’. The ‘best’ cost function was subsequently used in Fonte et 
al. (2017)

Using the ideas of multiple model idealisation (hereafter MMI) and robust-
ness analysis associated with Levins (1966) and further developed by Wimsatt 
(1981, 1987) and Weisberg (2006, 2007, 2013), this paper argues that for LCP 
results to have explanatory power focus should shift from comparing single cost 
functions—each constructed with their own assumptions and simplifications—
and their ability to explain a known past route, to the comparison of hypotheses 
as represented by multiple cost functions. Within MMI, each individual model 
is deemed to be false but might still be useful when combined (Wimsatt, 1981, 
1987). First, the combining of models defines “the extremes of a continuum of 
cases in which the real case is presumed to lie”, and second “to look for results 
that are true in all of the models and therefore presumably independent of the 
various specific assumptions that vary from model to model” (Wimsatt, 1987, 
pp. 30–32). This latter point is subsumed under robustness analysis (Levins, 
1966; Wimsatt, 1981). When using LCP analysis to explain known past routes, 
it is thus not the cost function itself that is of interest—this is merely a simpli-
fying device used to represent the relationship between cost and slope gradient 
and operationalised to calculate the LCP—but rather the hypothesis that mul-
tiple cost functions aim to represent. By producing model outcomes that suffi-
ciently represent the outcome of the hypothesis and not the artefacts of a single 
cost function (sensu Levins, 1966), i.e. the hypothesis is shown to be robust, 
model outcomes can more credibly be used for explaining known past routes 
and more importantly the decision-making processes of past people. Or, as 
explained by Wimsatt (1981, p. 128) when discussing robustness analysis, “the 
distinguishing of the real from the illusory; the reliable from the unreliable; the 
objective from the subjective; the object of focus from artefacts of perspective; 
and, in general, that which is regarded as ontologically and epistemologically 
trustworthy and valuable from that which is unreliable, ungeneralisable, worth-
less, and fleeting”.

The theoretical and methodological basis of using cost functions when aiming 
to explain known past routes is examined in light of MMI and robustness analy-
sis. This is followed by two case studies. First, a tactical simulation (sensu Orton, 
1973), where LCP results from multiple time- and energy-based cost functions esti-
mating the cost of movement when walking only are shown to be robust but under-
determined. As a result, whilst model outcomes are similar when comparing within 
hypotheses and thus are suggested to provide a credible realisation of the expected 
outcome given the hypothesis, different hypotheses can also produce similar model 
outcomes. Second, model outcomes from both hypotheses ‘humans minimise time 
taken / energy expended when traversing the landscape’, as represented using mul-
tiple time- and energy-based cost functions, are assessed for their ability to explain 
a known Roman road in south-west Sardinia. All data and code for the analyses are 
available at: https://​doi.​org/​10.​5281/​zenodo.​82786​59.

https://doi.org/10.5281/zenodo.8278659
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Idealised Cost Functions and Multiple Models

All scientific models contain idealisations: the intentional misrepresentation of a 
target system. Using idealisations, phenomena in the world produced as a result of 
complex causal patterns become mathematically and computationally tractable, 
amongst other advantages (McMullin, 1985; Potochnik, 2017, pp. 41–50; Weis-
berg, 2007). Cost functions, themselves models, also contain idealisations; that 
is, they intentionally misrepresent—through different assumptions, approxima-
tions, and simplifications—the relationship between an associated cost and slope 
gradient. Differences in idealisation across cost functions can first be attributed to 
cost functions being created from data derived from participants of varying sexes, 
ages, and fitness levels, e.g. Campbell et al. (2019). Additional choices that influ-
ence the process of idealisation include what functional form is used to model 
the relationship, e.g. the bilateral exponential function used by Tobler’s Hik-
ing function (Tobler, 1993) or the sixth degree polynomial by Herzog (2014c); 
what parameters are included within the model, e.g. whether to include an off-
set parameter to represent the anisotropic property of slope (e.g. Campbell et al., 
2019; Tobler, 1993); to the specific parameter values used. Each cost function 
therefore represents a specific idealisation of the relationship between cost and 
slope gradient, each making varying trade-offs in their accuracy, precision, gener-
ality, and simplicity of representation (sensu Levins, 1966; Weisberg, 2007). As 
a result, no single cost function can simultaneously maximise all these properties 
(Levins, 1966). For LCP model outcomes to credibly explain the decision-making 
processes of past people when traversing the landscape, it is therefore necessary 
that model outcomes sufficiently represent the outcome of hypotheses, e.g. time 
or energy, rather than reflecting the specific simplifying assumptions within a 
single cost function: for each cost function contains idealisation and alone is an 
imperfect representation of the true relationship between the associated cost and 
slope gradient. Only when model outcomes sufficiently represent the outcome of 
the hypothesis of interest, i.e. the hypothesis is robust, can LCP model outcomes 
credibly be used for explaining why people in the past moved where they did.

Case Study 1: a Tactical Simulation

When using cost functions in LCP analysis to explain known past routes, it is 
necessary that cost functions are robust: that the model outcome depends not on 
the simplifying assumptions of a single cost function but the essentials, i.e. the 
hypothesis shared by multiple cost functions. If multiple cost functions represent-
ing the same hypothesis, e.g. the relationship between time taken and slope gra-
dient, each similar but distinct in their idealisation, are able to produce similar 
results, then the shared hypothesis can be deemed robust (sensu Levins, 1966; 
Weisberg, 2006; Wimsatt, 2007, pp. 94–132). The need for multiple cost func-
tions to produce similar—but not identical—model outcomes reflects that each 
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cost function is its own idealisation. As a result, model outcomes are expected to 
slightly differ. Similarity here is defined subjectively; general patterns are more 
important than the specific similarity. Model outcomes should however aim to 
reflect the shared hypothesis, i.e. be robust, whilst also not being underdeter-
mined, i.e. that model outcomes representing different hypotheses are distin-
guishable (sensu Perreault, 2019). Conversely, if robustness is not present, model 
outcomes can be deemed to not sufficiently represent the hypothesis of interest 
and thus do not provide a credible realisation of the expected outcome given 
the hypothesis. Or worse, if model outcomes using cost functions with different 
hypotheses are indistinguishable in their realisations, then the two hypotheses are 
underdetermined and thus do not provide adequate support for choosing which 
hypothesis best explains the decision-making processes used by past people when 
traversing the landscape.

Materials and Methods

To test the robustness and underdetermination of multiple cost functions sharing the 
same and different hypotheses, five simulated digital elevation models (DEMs) of 
1  km by 1  km, with a spatial resolution of 1  m, were used. The elevation of the 
DEMs was scaled to reflect two different scenarios: 0 to 5 m and 0 to 10 m. The 
former ensures that the maximum slope gradient is below 30° and in-line with the 
proposed critical gradient, i.e. the maximum slope gradient an optimal route would 
take (Kay, 2012), and the latter including slope gradients above the proposed critical 
gradient but below 50°. Five synthetic DEMS with fractal dimensions of 2.20, 2.30, 
2.40, 2.50, and 2.60 were generated using the spectral synthesis method (Saupe, 
1988) as implemented in GRASS (GRASS Development Team, 2022) for the two 
scenarios. The fractal dimension of a surface quantities its complexity at different 
scales — a surface with a fractal dimension closer to 2 is smoother and lacks vari-
ation, whereas closer to 3 the surface is rougher and more irregular (Tate & Wood, 
2001). Increasing the fractal dimension thereby results in simulated landscapes that 
have more complex surfaces and thus show greater topographic variability (Fig. 1).

As a result of increasing landscape complexity, the range of slope gradients also 
increases (Fig. 2). With complexity of real landscapes ranging from a fractal dimen-
sion of 2.20 to 2.60 (Hofierka et al., 2009), the testing of five different landscape 
complexities across this range is deemed to sufficiently capture the variability pre-
sent in real landscapes. With this, results presented here will be applicable across 
multiple landscape complexities and LCP analysis studies. This, however, does not 
assume that the only factor influencing past movement is the topography (see Murri-
eta-Flores, 2010). For example, the tactical simulation does not include the influence 
of rivers or different land types on the cost of movement when walking. Rather, the 
topography-only simulations provide a ‘laboratory’ where all other factors are not 
present and thus cannot influence the modelled results (sensu Bevan, 2013).

The robustness and underdetermination of the hypotheses as represented by multiple 
time- and energy-based cost functions were assessed using the following approach:
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Fig. 1   Simulated digital elevation models representing five different landscape complexities as measured 
by fractal dimension for two different scenarios: elevation scaled to between 0 and 5 m (A) and elevation 
scaled to between 0 and 10 m (B)

Fig. 2   Range of degrees slope gradients present in the five simulated digital elevation models with 
increasing landscape complexities as measured by the fractal dimension for two different scenarios: ele-
vation scaled to between 0 and 5 m (A) and elevation scaled to between 0 and 10 m (B). Slope gradients 
are calculated from each central cell to all other adjacent cells in the digital elevation models rather than 
just identifying the maximum slope gradient
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1.	 Two random points were selected within the extent of the five simulated DEMs 
for the two different scenarios. These points represent the origin and destination 
used when calculating the least-cost paths.

Fig. 3   Fourteen cost functions estimating cost in terms of time taken (s/m) (Campbell et al., 2019; Davey 
et al., 1994; Garmy et al., 2005; Irmischer & Clarke, 2018; Kondo & Seino, 2010; Márquez-Pérez et al., 
2017; Naismith, 1892; Rees, 2004; Tobler, 1993) and energy expended (KJ/m) (Herzog, 2014c; Llobera 
& Sluckin, 2007) by degrees slope. Uphill/downhill slopes are denoted by positive/negative slope values 
respectively. Campbell et al. (2019) is based on the 50th percentile. Cost functions for the two different 
scenarios presented: elevation scaled to between 0 and 5 m (scenario 1) and elevation scaled to between 
0 and 10 m (scenario 2). Note that the Irmischer and Clarke (2018) male and female off-path cost func-
tions are multiplications of male and female on-path respectively and therefore produce identical least-
cost paths
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2.	 Fourteen least-cost paths, using fourteen different cost functions (Fig. 3), were 
calculated from the origin and destination. Least-cost paths were calculated using 
the leastcostpath R package (Lewis, 2023). Least-cost paths are calculated using 
the Dijkstra algorithm and a 4-adjacency neighbourhood.

a.	 Time-based Tobler’s Hiking functions (Tobler, 1993), the modified Tobler’s 
Hiking function (Márquez-Pérez et al., 2017), the Irmischer-Clarke male and 
female on-path and off-path cost functions (Irmischer & Clarke, 2018), and 
the cost functions proposed by Rees (2004), Davey et al. (1994), Garmy et 
al. (2005), Kondo and Seino (2010), Naismith (1892), and Campbell et al. 
(2019) (50th percentile).

b.	 The energy-based cost functions proposed by Herzog (2014c) and Llobera 
and Sluckin (2007).

3.	 Each calculated LCP for the two different scenarios was assigned a ‘hypothesis 
type’, that is time or energy, e.g. Tobler’s Hiking function was assigned the ‘time’ 
type whereas Herzog ‘energy’.

4.	 Pairwise maximum Euclidean distances calculated between each LCP to all other 
LCPs for the two different scenarios. For example, the Euclidean distance from 
the spatial coordinates of the time-based Tobler’s hiking function LCP was cal-
culated to another LCP and the maximum Euclidean distance was retrieved. This 
was repeated for the other twelve LCPs. Henceforth, the maximum Euclidean 
distance is also termed ‘deviation’.

5.	 In total, 91 Euclidean distance values were calculated. The calculation of 91 
distances reflects that there are fourteen LCPs, thirteen other LCPs, and that the 
distance between two LCPs is symmetrical (91 = 14 * 13/2).

Note that the energy-based cost function by Pandolf et al. (1977) was not included 
within the study. This is due to the cost function requiring additional parameters 
such as body mass, load mass, and terrain quality that are often not available within 
many archaeological contexts.

The approach outlined above was repeated 1000 times, generating two sets of 
455,000 least-cost paths (91 LCPs * 5 landscapes * 1000 simulations for each sce-
nario) and their accompanying Euclidean distance were calculated for both scenar-
ios. To ease computational load, a different random sample was produced for each 
landscape complexity and scenario tested.

From the tactical simulation, there are four possible expectations with decreasing 
explanatory power (Fig. 4):

1)	 Assuming that the hypotheses as represented by multiple time- and energy-
based cost functions are robust and not underdetermined, the model outcomes 
are expected to be similar within hypotheses and distinguishable across hypoth-
eses (Fig. 4A). That is, the deviation as measured by Euclidean distance within 
model outcomes from multiple cost functions representing the same hypothesis, 
i.e. time or energy, is expected to be small, with differences in model outcomes 
attributed to the process of model idealisation. Deviation across model outcomes 
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when comparing time- and energy-based cost functions is expected to be large, 
given that they represent different hypotheses;

2)	 If the deviation within and across model outcomes when comparing time- and 
energy-based cost functions is large, the hypotheses, whilst not underdetermined, 
are not robust (Fig. 4B). That is, whilst the large deviation across hypotheses 
means that the model outcomes are distinguishable, the large deviation within 
model outcomes from multiple cost functions representing the same hypothesis 
suggests that the model outcomes are reflecting not the essentials shared across 
the multiple cost functions, but rather the simplifying assumptions made during 
the process of model idealisation;

3)	 If the deviation within and across model outcomes is small, the hypotheses are 
deemed robust but underdetermined (Fig. 4C). That is, whilst model outcomes 
from multiple cost functions representing the same hypothesis are similar, the 
model outcomes when comparing time- and energy-based cost functions are also 
similar and therefore not distinguishable;

Fig. 4   Four possible expectations from the tactical simulation: hypotheses are robust and not underdeter-
mined (A), hypotheses are not robust and not underdetermined (B), hypotheses are robust but underdeter-
mined (C), and hypotheses are not robust and underdetermined (D). Here robustness refers to the prop-
erty of model outcomes being similar, whereas underdetermination is the ability to differentiate between 
hypotheses as represented by model outcomes. Expectations are in the order of decreasing explanatory 
power



863

1 3

Explaining Known Past Routes, Underdetermination, and the…

4)	 Lastly, if the deviation within model outcomes is large with deviation across 
model outcomes small, the hypotheses are both not robust and underdetermined 
(Fig. 4D). That is, model outcomes from multiple cost functions representing the 
same hypothesis are not similar, whilst model outcomes when comparing the two 
hypotheses are similar and therefore not distinguishable.

Results and Discussion

Figure 5 shows that for both scenarios, i.e. when elevation is scaled to between 0 
to 5 m (Fig. 5A) and 0 to 10 m (Fig. 5B), the deviation within and across model 
outcomes is small. As a result, whilst the two hypotheses are robust, they are also 
underdetermined (Fig. 4C outcome). That is, although the model outcomes of the 
hypotheses ‘humans minimise time taken / energy expended when traversing the 
landscape’ as represented by multiple time- and energy-based cost functions are sug-
gested to produce credible realisations of the expected outcome given the hypoth-
eses, the two hypotheses also produce similar model outcomes when comparing 
across hypotheses. With this, it is difficult to discern between model outcomes from 
the two hypotheses; the expected deviation within the two hypotheses coincides 
with the expected deviation across hypotheses. This pattern is consistent across all 

Fig. 5   Square root Euclidean distance between least-cost paths within and across hypothesis types for 
the two different scenarios presented: elevation scaled to between 0 and 5 m (A) and elevation scaled 
to between 0 and 10 m (B). Within refers to model outcomes produced from the same hypothesis type, 
whereas across from different hypothesis types
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landscape complexities and scenarios tested. This underdetermination impacts the 
support for choosing which hypothesis best explains the known past route when 
using LCP analysis, and by extension the explanatory power of these hypotheses for 
understanding past decision-making.

The range within energy-based cost functions also increases as landscape com-
plexity increases for both scenarios (Fig. 6).

This is however more pronounced for lower fractal dimensions in scenario two 
(Fig. 6B), where elevation is scaled to between 0 and 10 m. The increasing range 
as landscape complexity increases within the energy-based cost functions can be 
attributed to the process of model idealisation. As landscape complexity increases, 
the slope gradients within the landscapes also increase (Fig. 2). With this, the func-
tional form used when creating the cost function becomes more influential on the 
model outcome. That is, at shallower slope gradients—more commonly occurring 
in scenario one given its less complex landscape—the relationship between slope 
gradient and cost is more similar across cost functions, i.e. shallower slope gradients 
require less energy to traverse. As slope gradient increases, differences in cost func-
tions become more pronounced, resulting in a greater impact on the model outcome. 
This can be seen for the two energy-based cost functions tested, where the lack of 
data points available at steeper downhill gradients results in two differing cost func-
tions (Fig. 3, bottom row). As a result, the model outcomes produced within more 

Fig. 6   Square root Euclidean distance between least-cost paths within and across hypothesis types by 
fractal dimension for the two different scenarios presented: elevation scaled to between 0 and 5 m (A) 
and elevation scaled to between 0 and 10 m (B). Within refers to model outcomes produced from the 
same hypothesis type, whereas across from different hypothesis types
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complex landscapes—and therefore containing steeper slope gradients—might not 
be reflecting the hypothesis shared across the two energy-based cost functions but 
the process of model idealisation. The smaller range within energy-based model out-
comes compared to within time- and across hypotheses for the two scenarios for all 
landscape complexities tested can however be attributed to the fewer energy-based 
cost functions tested. That is, 2 energy-based cost functions compared to the 12 
time-based cost functions. Whilst this suggests that the process of model idealisation 
for energy-based cost functions has less influence on the model outcome compared 
to time- and across hypotheses, this is not unexpected: both the energy-based cost 
functions tested are derived from the same data collected by Minetti et al. (2002), 
with the only difference in the cost functions resulting from the function used to fit 
the data.

Increasing the Euclidean distance between the origin and destination used when 
calculating the LCP also increases the deviation within and across hypotheses 
(Fig. 7). That is, model outcomes are both less similar within and across hypotheses 
as Euclidean distance increases. The difference in deviation between the two sce-
narios for the energy-based cost functions (Fig. 7, row 2) again highlights that the 
model outcomes from these cost functions are likely reflecting the process of model 
idealisation and not the shared hypothesis. The joint increase in both deviation 
within and across hypotheses as Euclidean distance increases nonetheless indicates 
that the two hypotheses remain underdetermined irrespective of distance between 
the origin and destination used when calculating the LCP. Given that increasing 
the Euclidean distance also increases the number of cells between the origin and 

Fig. 7   Euclidean distance between least-cost paths within and across hypothesis types for the two differ-
ent scenarios presented: elevation scaled to between 0 and 5 m (A) and elevation scaled to between 0 and 
10 m (B) as a function of increasing Euclidean distance between the origin and destination location used 
to calculate the least-cost path. Within refers to model outcomes produced from the same hypothesis 
type, whereas across from different hypothesis types



866	 J. Lewis 

1 3

destination, these results are also proposed to be applicable when calculating LCPs 
using DEMs with increasingly higher resolution from the same origin and destina-
tion. That is, as the resolution of the DEM increases, the number of cells between an 
origin and destination also increases.

In summary, the tactical simulation shows that the model outcomes from both 
hypotheses ‘humans minimise time taken / energy expenditure when traversing the 
landscape’ as represented by multiple time- and energy-based cost functions are 
robust but underdetermined across landscapes with increasing complexity, different 
maximum slope gradients, and increasing distances between origin and destination 
locations when calculating the least-cost path. Therefore, whilst the model outcomes 
can be suggested to produce credible realisations of the expected outcome given the 
specific hypothesis, the two hypotheses can also produce similar model outcomes. 
As a result, it is difficult to discern which hypothesis produced the model outcome, 
with this impacting the support for choosing which hypothesis best explains the 
known past route. By extension, this also limits the explanatory power of these two 
hypotheses for understanding past decision-making. Despite the issue of underdeter-
mination, the robustness of the two hypotheses does however suggest that the con-
current use of multiple time- and energy-based cost functions sufficiently represents 
the hypotheses ‘humans minimise time taken / energy expenditure when traversing 
the landscape’, respectively. Thus, when multiple cost functions representing the 
same hypothesis are used concurrently, the impact of the process of model idealisa-
tion on the model outcome is reduced. The underdetermination of the two hypoth-
eses does however show that it is more likely that the model outcomes representing 
the two hypotheses will not be distinguishable in their realisation, i.e. it will remain 
difficult to identify which of the two hypotheses resulted in the model outcome, and 
therefore which decision-making process resulted in the known past route.

Case Study 2: Explaining the ‘a Karalibus Sulcos’ Roman Road 
in Sardinia

With individual hypotheses represented by multiple time- and energy-based cost 
functions shown to be robust but underdetermined, multiple time- and energy-based 
cost functions were used concurrently for explaining the ‘a Karalibus Sulcos’ Roman 
road in the south-west of Sardinia. With least-cost path analysis results previously 
shown to be impacted by random error within the DEM (Lewis, 2021), probabilistic 
least-cost paths were used within this case study. Through the use of multiple time- 
and energy-based cost functions and the incorporation of random error in the DEM, 
spurious results in calculated least-cost paths as a result of model idealisation when 
creating the cost functions and measurement error in the DEM will be reduced.

Background

Following Nuragic transhumance routes and Punic-era roads, the ‘a Karalibus Sul-
cos’ Roman road connected the city of Sulci in the south-west of Sardinia to the port 



867

1 3

Explaining Known Past Routes, Underdetermination, and the…

at Carales in the south (Atzori, 2006; Mastino, 2005, pp. 382–385; Meloni, 1990, 
pp. 350–353). Providing an internal and more direct route than the road along the 
coast via Teluga and Nura (Fig. 8), the road was used to transport lead silver and 
wheat stored at Sulci to the port at Carales before being distributed to Italy (Atzori, 
2006, pp. 11–13). Given its economic role, it is hypothesised that the ‘a Karalibus 
Sulcos’ Roman road followed a path that minimised cost from Sulci to Carales. Fol-
lowing similar studies (e.g. Fonte et al., 2017; Lewis, 2021), the model outcomes 
from both hypotheses ‘humans minimise time taken / energy expended when tra-
versing the landscape’ will be assessed for their ability to explain the placement of 
the Roman road. Whilst it is possible that wheat and silver were transported using 
wheeled vehicles, the wheeled vehicle cost function developed by Llobera and 
Sluckin (2007) was not used within this study. Although the hypothesis could be 
formulated as ‘humans minimise steeper slope gradients when traveling by wheeled 
vehicles’, the critical gradient parameter within the cost function is not given a pre-
defined value defined by the cost function but instead to be estimated from the past 
route being explained. Therefore, any modelled outcome that aims to represent the 
hypothesis should include an additional clause: ‘humans minimise steeper slope gra-
dients than x critical gradient when traveling by wheeled vehicles’. As a result of 
this, each hypothesis become independent of one another and is not shared across 
cost functions with different critical gradient values. More importantly, the cost 
function itself, even with a pre-defined critical gradient value, is only a single model. 
Thus, any modelled outcome from this cost function would represent the artefacts of 
the specific mathematical formalisation used to represent the hypothesis and not the 
hypothesis itself.

Materials and Methods

The ‘a Karalibus Sulcos’ Roman road was based on that recorded by Atzori (2006, 
pp. 61–111). With a digitised version of the road by Atzori (2006) not available, 
the road was digitised by myself. The topography of Sardinia was represented 
using the TINITALY 10 m resolution DEM (RMSE, 4.3 m) (Tarquini et al., 2007). 
Whilst there are rivers within the study area that might have influenced the Roman 

Fig. 8   Overview of Roman Sardinia, the Roman road system, and the ‘a Karalibus Sulcos’ Roman road. 
Road stations and overview of the Roman road system following Mastino (2005)
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road (Mastino, 2005, pp. 336, 340; Meloni, 1990, pp. 230–231; Talbert, 2000, pp. 
736–746), it is difficult to know which of these rivers were passable and which 
would have required additional infrastructure such as fords or bridges to cross. 
Rather than assigning a constant cost value to all rivers as previously done, e.g. 
Güimil-Fariña and Parcero-Oubiña (2015), rivers were not incorporated within the 
analysis. Least-cost paths are calculated using the Dijkstra algorithm and a 16-adja-
cency neighbourhood. Fourteen time- and energy-based cost functions were used to 
represent the hypotheses ‘humans minimise time taken / energy expenditure when 
traversing the landscape’ (Fig. 3). Least-cost paths were calculated from the inter-
section of the ‘a Karalibus Sulcos’ Roman road and the Roman road along the west-
ern coast to the modern-day town of Decimomannu using the R package leastcost-
path (Lewis, 2023).

LCPs from multiple time- and energy-based cost functions were combined to cre-
ate two probabilistic least-cost paths: one representing the model outcome from the 
hypothesis ‘humans minimise time taken when traversing the landscape’, the other 
from the hypothesis ‘humans minimise energy expenditure when traversing the 
landscape’. The uncertainty in the LCPs as a result of random error in the DEM was 
propagated through the analysis, with each LCP calculated fifty times with different 
realisations of random error (see Lewis, 2021 for methodology). In contrast to Lewis 
(2021), autocorrelation in random error was not accounted for, with completely ran-
dom unfiltered error fields used instead (Wechsler & Kroll, 2006). The use of unfil-
tered error fields has two advantages: (1) reduction in computational burden as spa-
tial autocorrelation does not need to be calculated, and (2) no assumptions are made 
about the spatial relationships of the random error. As a result of the second advan-
tage, the effect of the random error fields can be deemed as the worst-case scenario 
(Wechsler & Kroll, 2006).

Results and Discussion

With the hypotheses ‘humans minimise time taken when traversing the landscape’ 
and ‘humans minimise energy expenditure when traversing the landscape’ as repre-
sented by multiple time- and energy-based cost functions shown to be robust, mul-
tiple time- and energy-based cost functions were used concurrently. Given that the 
two hypotheses have been shown to be underdetermined, it is to be expected that 
the model outcomes representing the two hypotheses will be similar in their realisa-
tions (Fig. 9). The lack of similarity between the ‘a Karalibus Sulcos’ Roman road 
and the expected outcome given the two hypotheses nonetheless shows that neither 
the minimisation of time or energy is able to explain the placement of the Roman 
road, and by extension the decision-making process of the Romans when construct-
ing the road. Thus, the process of road construction for the ‘a Karalibus Sulcos’ 
Roman road cannot be credibly attributed to the desire to minimise time or energy 
when traversing on foot from the western coast to the modern-day town of Deci-
momannu, or, in short, these hypotheses are rejected as explaining the Roman road. 
Whilst other studies have identified a prioritisation for minimising energy expendi-
ture, time taken, and cost when using animal-drawn wheeled vehicles as explaining 
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the placement of Roman roads (e.g. Fonte et al., 2017; Güimil-Fariña & Parcero-
Oubiña, 2015; Lewis, 2021; Parcero-Oubiña et al., 2019), it remains unclear whether 
these findings reflect the particular cost function idealisation used, the topography in 
which the Roman road was constructed in, or whether the result could be achieved 
given a different hypothesis as represented via multiple cost functions. With the use 
of probabilistic least-cost paths representing the outcome of a hypothesis and not a 
particular cost function, these issues are minimised.

It should be noted, however, that a number of least-cost paths representing the 
hypothesis ‘humans minimise energy expenditure when traversing the landscape’ 
do follow a route similar to the ‘a Karalibus Sulcos’ Roman road (Fig. 9B). Whilst 
unlikely, given the low probability of the least-cost paths crossing those cells after 
incorporating random error, it is nonetheless possible that the route of the ‘a Karali-
bus Sulcos’ Roman road was chosen to minimise energy expenditure. It is also 

Fig. 9   Probabilistic time- and energy-based least-cost paths, (A) and (B) respectively. Probabilistic least-
cost paths calculated from the concurrent use of multiple cost functions representing the same hypothesis 
and the incorporation of random error in the digital elevation model
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possible that the model outcomes following the Roman road are the result of mod-
ern-day roads captured within the high-resolution DEM. As discussed by Herzog 
and Yépez (2015), DEMs—unless corrected for—can contain modern-day activi-
ties that post-date the ancient landscape. Of the two energy-based cost functions 
tested, that is Herzog (2014c) and Llobera and Sluckin (2007), it is only however 
Herzog (2014c) that can produce the model outcomes that follow the Roman road 
(Fig. 10A). Given this, it is suggested that these model outcomes are more likely to 
be the product of model idealisation, and thus are not representative of the hypoth-
esis but the artefacts of the specific cost function.

More generally, the lack of similarity between the probabilistic least-cost paths 
and the Roman road suggests that the use of pre-existing routes and settlements 
therein played a greater role in its placement than minimising time or energy when 
traversing on foot from the western coast to the modern-day town of Decimomannu. 

Fig. 10   Probabilistic energy-based least-cost paths using the Herzog and Llobera-Sluckin cost function, 
(A) and (B) respectively. Probabilistic least-cost paths calculated from the incorporation of random error 
in the digital elevation model
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Whilst dating of settlements along the ‘a Karalibus Sulcos’ Roman road is diffi-
cult (Atzori, 2006, pp. 31–60), settlement continuity in south-west Sardinia from 
the pre-Roman to Roman period has been argued (Arca, 2018; Pietra, 2015; Tron-
chetti, 1995). Given that the pre-existing routes from Sulci to Carales are thought to 
have been the result of Nuragic transhumance routes, that is the seasonal movement 
of shepherds and their flocks between different regions, it is therefore possible that 
the Nuragic and later Punic routes—on which the Roman road also followed—took 
a route most preferable for the movement of animals. An alternative explanation 
is that one or more of the pre-Roman settlements influenced the road northwards 
before heading east towards Decimomannu, i.e. a historical dependency. Irrespective 
of the exact process, the use of pre-existing routes and settlements when construct-
ing the Roman road meant that the movement of resources and local traffic across 
south-western Roman Sardinia could be controlled. The re-use and formalisation of 
pre-existing routes is not however unique to the ‘a Karalibus Sulcos’ Roman road, 
with this process occurring throughout Roman Sardinia (Barreca, 1974, pp. 65–68; 
Tetti, 1985), and the Roman Empire more generally.

Conclusion

Using the ideas of multiple model idealisation and robustness analysis, and exam-
ined in the tactical simulation, this paper has shown that both the hypotheses 
‘humans minimise time taken when traversing the landscape’ and ‘humans minimise 
energy expenditure when traversing the landscape’ as represented by multiple time- 
and energy-based cost functions are robust but underdetermined across landscapes 
with increasing complexity, different maximum slope gradients, and increasing 
distances between origin and destination locations when calculating the least-cost 
path. Given this, similar model outcomes can be produced irrespective of whether 
the minimisation of time or energy hypothesis is employed. As a result, it is dif-
ficult to discern which hypothesis produced the model outcome, thereby impacting 
the support for choosing which hypothesis best explains the known past route, and 
by extension limits the explanatory power of these hypotheses for understanding the 
decision-making process used by people in the past.

Despite this epistemic limitation, this study has shown, through case study two, 
that multiple time- and energy-based cost functions can be used concurrently via 
probabilistic least-cost paths. With this, the probabilistic least-cost path aims to 
reflect the expected outcome given the hypothesis and not the artefacts of a single 
model. This both reduces the impact of model idealisation on the model outcome, 
whilst also accounting for random error in the digital elevation model. Furthermore, 
differences in model outcomes from cost functions sharing the same hypothesis can 
be examined, with the reason for these differences better understood.

Although limited by the issue of underdetermination, by accounting for the process 
of model idealisation and measurement error when using least-cost path analysis, the 
explanatory power of the two hypotheses is strengthened, with the risk of spurious 
results and interpretations reduced. With this, we can more towards a better understand-
ing of the decision-making processes used by past people when traversing the landscape.
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