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Abstract
If different parts of curated stone tools were resharpened to different degrees, then
allometric patterns reside in tools’ variation. Allometry and the related reduction thesis
have important typological and theoretical implications that warrant their study. To seek
allometric pattern in Folsom replicas, this study uses conventional orthogonal dimen-
sions but also the inter-landmark distances by which Buchanan (Journal of Archaeo-
logical Science, 33, 185–199, 2006), applying the Huxley-Jolicoeur approach, found
allometry in archaeological Folsom points. Like Buchanan’s, it computes bivariate and
multivariate allometric coefficients for several variable sets to test models of Folsom-
point resharpening. In bivariate analysis, plan area as gross-size measure yields results
consistent with the Huxley-Jolicoeur approach; gross-size measures mass, centroid size,
and total length do not scale as expected. Multivariate results are robust to gross-size
measure. Length variables are positively, width variables and thickness negatively,
allometric. Using different variables, results corroborate the allometric variation found
in earlier studies. Distributions derived from multifactorial synthesis of multivariate and
other reduction measures demonstrate the value of this approach by linking stone-tool
allometry to behavioral-ecology models of broad scope. Allometric analysis requires
careful variable selection and rewards approaches that separately characterize those
constituent parts of the whole objects that are points.

Keywords Allometry . Stone-tool reduction .Wholes-and-parts . Folsom

By their size and shape, stone tools reveal many aspects of prehistoric cultures. But size
and shape of curated stone tools are not fixed properties. Instead, curated tools can be
resharpened and repaired in patterns and degrees that create variation in their size and
shape from first to last use. Accordingly, reduction is “an integral part of the tool itself,
just like ageing is an integral part of living things” (Iovita 2010:236), and types should
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be characterized by the full size-form trajectories that their specimens occupy, not just
their original states.

If tools experience equal proportional reduction of all segments, then the trajectory
of their variation in use engages change in size but not in shape. This is isometry. If,
however, different segments of tools experience different degrees of reduction for
resharpening and repair, the resulting variation in their size, which can only diminish,
is accompanied by variation in shape. If, for instance, segments like the tips and blades
of bifaces and the bits of unifaces undergo more frequent and extensive reduction than
do segments like stems, they diminish while others are little changed or unchanged.
This is change in shape with change in size, i.e., allometry.

Allometry explains major patterns of biological shape variation (Klingenberg
2007:25–27). Ontogenetic allometry occurs with changing body proportions during
growth; it scales with individual growth. Static allometry describes shape variation as a
function of ordinary or natural differences in size of adults within age cohorts.
Phylogenetic allometry is shape variation distributed along branches of a phylogeny,
scaling over evolutionary time. Allometric variation in stone tools from resharpening
and repair is analogous to ontogenetic allometry, yet acts in the opposite direction. That
is, stone tools change in shape by reduction, not growth. This study examines allome-
tric variation in tipped bifaces, i.e., “points.”

Reduction acts in one direction only, but allometry varies in pattern and direction.
Segments of tools becoming proportionally larger as tool size declines register negative
allometry, segments becoming smaller as size declines positive allometry. Because,
trivially, biological growth and lithic reduction have opposite effects upon size, positive
allometry in segments of stone tools means that they are larger when the tools are
larger, i.e., before or early in the reduction process. Negative allometry means that they
are proportionally larger when the tools are smaller.

Important of Allometry in Lithic Analysis

Some curated tools experienced damage or edge-dulling in use, then resharpening in
repair. Because tool segments exposed to the greatest risk of damage (e.g., point blades
and tips) probably required more resharpening or repair, than segments like stems,
blades might exhibit positive allometry, at least some segments or dimensions of stems
negative allometry. Dimensions of tools like maximum thickness may change little if at
all during use and reduction. If so, these dimensions also should exhibit negative
allometry. The reduction thesis encompasses the probability that both allometry’s
cause—tool rejuvenation by resharpening—and its effects upon their size and shape
characterized the life history of tools (Shott 2005). Not all stone tools were resharpened;
reduction allometry probably was common, not universal.

The reduction thesis has important implications. These include typology, because
specimens of a single type can vary in size and form in use in ways that may encourage
the false recognition of more than one type among their variation (Prentiss et al. 2017;
see Stafford and Cantin 2009:157 for resharpening that produces convergence in shape
of two different early Holocene point types). Reduction also can make specimens of
different types look similar (Charlin and Cardillo 2018:123). Understanding allometry’s
effects upon hafted bifaces requires distinguishing segments like blade and stem; stems
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may change in use less than do blades. Clearly, valid typological judgments of stone
tools must consider reduction effects.

The reduction thesis also has implications beyond typology. Degree of reduction is a
measure of curation, a theoretical quantity of considerable importance in lithic analysis
(Binford 1973; Shott 1996). Degree and pattern of reduction thus comprise character-
istics of type specimens as integral as their metric dimensions (Iovita 2010:236). For
instance, reduction distributions can distinguish between competing “scenarios” of
Folsom hunting practices by linking the duration of biface use to different assumptions
about group size and hunting rates (Hunzicker 2005:55–60). Similarly, reduction
distributions are important to models of prehistoric land use and behavior. They form
utility curves that can be used to test theoretical models of tool use and wider adaptive
practices. Miller (2018:55-63; see also Kuhn and Miller 2015), for instance, used the
marginal-value theorem to model bifaces as resource patches, relating their degree of
utility extracted, and therefore reduction, to varying hunting return rates. This treatment
makes reduction a behavioral variable that can be explained by, and which thereby
tracks, long-term adaptive processes. In the process, it makes the form of point types’
reduction distributions (Miller 2018:Fig. 3.1)(Fig. 1) relevant to sophisticated behav-
ioral modeling.

The possibility of phylogenetic allometry among types linked by cultural transmis-
sion over long periods is yet another reason to study reduction variation in stone tools.
In the past 20 years, evolutionary-development (“evo-devo”) biology has explained
some evolutionary trajectories as the product of changes in timing and duration of
growth processes between individuals of ancestral and descendant species. Obviously,
stone-tool variation owes to nonbiological processes, but new types may emerge over
time from allometric alteration of functional segments like stems. Investigating this

Fig. 1 The marginal-value theorem applied to point production, reduction, and discard. E is the return rate in
foraging models, here the expected-yield critical value where cost of continued use exceeds replacement cost.
Three utility curves for time/number-of-uses, which produce three solutions t1–3 for time-in-use, approximate
Weibull distributions (Shott and Seeman 2017) whose parameter β > 1, = 1, and < 1, respectively, from top to
bottom. Source: Miller (2018):Fig. 3.1)
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possibility requires large datasets, the distinction between segments like blade and
stem, and analytical methods that accommodate the continuous variation that inheres in
stone tools (e.g., Charlin and Cardillo 2018).

Finally, the reduction thesis and the allometric patterns that contribute to it are
relevant to assemblage formation. Plotting the distribution of reduction measures can
be informative of accumulation rates and assemblage composition (Surovell 2009). In
turn, reduction patterns calibrate discard rates (the inverse of use life) of different tool
types to common scales, and implicate different causes of discard (e.g., Shott 2016).
Distributions that reveal constant discard rate regardless of degree of curation suggest
chance as the cause of discard; those that reveal discard rate increasing with curation
implicate attrition.

Reduction measurement is method, but an important one for archaeological theory.
On balance, “reduction is an important source of variation on size and shape differen-
tiation between point assemblages” (Charlin and González-José 2018:169). Because
reduction can be allometric, moreover, “major distinctions between groups of points,
when measured using blade characteristics, are likely the result of differential
resharpening activities” (Prentiss et al. 2017:127). Such differential patterns risk
conflating allometry with original design, so analysts must avoid combining characters
from areas of points that might comprise distinct segments. Prentiss et al. (2017:124
and Figs. 10-12), for instance, produced different phylogenetic results on stems and
blades of points that, as they showed, might not have been discerned in analysis that
combined those segments. Accordingly, reduction analysis must consider and test for
the effects of modularity and allometry on the size and shape of hafted points, and
exercise care in the selection of characters used in both.

A recent challenge to the reduction-allometry thesis argues not directly against it, but
indirectly questions the prevalence of at least short-term curation. It opposes the
“fallacy” (Dibble et al. 2017) that identifies assemblages with single occupations and
all dimensions of assemblage variation with short-term behaviors involving the com-
plex engagement of tool use and mobility. Many assemblages are indeed accumula-
tions; methods have been developed to both reveal and exploit this quality (e.g., Lin
2017; Shott 2010; Surovell 2009). The view argues that pattern and degree of reduction
of flake tools is the cumulative product of repeated occupations of stable surfaces over
long periods and the opportunistic reuse there of previously discarded flakes. Its
relevance to biface technology is unclear because hafted tools are subject to different
use-and-abandonment criteria than are flakes (Lin 2017:1793). Also, where surfaces
either are aggraded or unstable over long periods or where human occupation is
comparatively recent, the probability of recurring use of previously abandoned tools
over near-geological time scales is diminished. Still, this view complements more than
opposes the reduction-curation thesis (see especially Surovell’s 2009 synthesis of the
approaches), by identifying limiting conditions and proposing alternative scenarios.

Allometry in Hafted Bifaces

Allometry is a product of resharpening, so resharpening practices are relevant to its
study. Consider, for instance, Hoffman’s (1985:Fig. 18.6; see also Miller 2018:Fig. 4.4)
model of resharpening exclusively on blade and not at all on stem segment, a strictly in-
haft model (Fig. 2a). As a point is used, damaged and maintained by reduction it
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decreases in overall size (using gross-size measures like area or mass) while the stem
segment remains unchanged. In this model, the stem segment becomes proportionally
larger as the point decreases in size, not by growing but by remaining constant while
the blade and overall specimen size decline. Accordingly, the stem is negatively
allometric, its proportion declining as point size increases. Conversely, the blade is
positively allometric, being proportionally larger when the point is larger.

In Ahler and Geib’s (Ahler and Geib 2000:Fig. 7) alternative model, both blade and
stem are reduced in use, the latter disproportionally. As blades are damaged or dulled,
their resharpening requires removing points from the haft and incorporating portions of
what originally was stem into the blade. Stems become proportionally smaller as points
decline in size, blades proportionally larger (Fig. 2b). Now the stem is positively
allometric—proportionally larger when the point is larger—the blade, conversely,
negatively allometric.

These and other resharpening models are best viewed as hypotheses for testing.
Ahler and Geib’s model was devised specifically for fluted Folsom points and assumes
a particular hafting arrangement, but might apply to other lanceolate types as well.
Hoffman’s model is generic.

Measuring Allometry

Allometric variation can be gauged using a common biological approach. The “Hux-
ley-Jolicoeur” model (Klingenberg 2007:24, 2016:115; see also Buchanan 2006:190)

Fig. 2 Point-resharpening models. a Hoffman’s in-haft model, where only blade segment (open) is reduced
while stem segment (shaded) remains unchanged such that the blade is positively, the stem negatively,
allometric (note: differences in stem-blade proportions deliberately exaggerated). b Ahler and Geib’s model
where both blade and stem are reduced but in different proportions; the blade is negatively, the stem positively,
allometric
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tracks bivariate allometry between independent variable x, often a gross-size measure,
and dependent y that measures a dimension or aspect usually of a segment. In
ontogenetic allometry, for instance, x often is approximated by the individual’s stature
or weight, while y measures size or dimensions of segments such as the head or limbs.
Analysis then determines the degree to which and rate at which y may vary as a
function of x. In original form, the model is:

y ¼ bxk

where b and k are constants. Because scaling is essential to allometry, analysis must be
conducted on log-transformed variables (Klingenberg 2007:30–31). Transformed (un-
less otherwise stated, natural logarithms “ln” are computed here), the model becomes:

ln−y ¼ ln−bþ k � ln−x

where constant b is the intercept and constant k the slope coefficient of the
regression estimate of the model. When k < 1, y is negatively allometric upon x
(i.e., y declines proportionally as x increases). When k = 1 the two quantities
maintain constant proportions, i.e., isometry. When k > 1 y is positively allome-
tric upon x (i.e., y increases proportionally as x increases). All three judgments
follow from the terms of the ln-ln regression model; because it is the model’s
slope coefficient, when k < 1 y increases at a lower rate than x, when k = 1 y
increases at unit rate with x, and when k > 1 y increases at a higher rate than x.
Significant departure from k = 1 is estimated by calculating k’s 95% confidence
interval (CI) as k ± 1.96 × s.e. where s.e. = the standard error of the estimate.

Because “dimensionality of morphometric variation is a prime concern of allometry”
(Klingenberg 2007:28), any aspect or scale of dimensions is a legitimate subject of
allometric analysis. These include simple ratios calculated between dimensions, which
may vary at different rates with size (Klingenberg 2016:117). But stone-tool size and
shape most often are characterized by using orthogonal dimensions like length, width,
and thickness. Sometimes length is subdivided between blade and stem segments,
sometimes width is measured at fixed intervals or in fixed number of locations between
tip and stem, and sometimes thickness is measured separately on blade and stem or
averaged among two or more separate locations.

These variables crudely reduce complex, whole-object form to a comparative
handful of relevant dimensions just as stick-figures crudely caricature Leonardo’s
Vitruvian Man (Shott and Trail 2010:Fig. 1). Yet they capture essential elements of
size and shape that permit analysis.

Inter-landmark distances (ILDs) may be better ways to characterize size and
shape of two-dimensional (2D) plan forms. Buchanan (2006) was the first to
apply them to 2D outlines of stone tools. ILDs share the limitations of
orthogonal dimension in reducing complex, irregular wholes to stick-figure
approximations, but provide a somewhat fuller characterization of 2D size and
shape. To some degree, they accommodate the complex irregularity of hand-
made objects by calculating means between comparable distances computed
between the plan’s two longitudinal halves. Accordingly, ILDs may be a modest
improvement upon orthogonal dimensions.
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Buchanan’s Study

Applying the Huxley-Jolicoeur model to ILDs, Buchanan (2006) documented clear
allometric patterning in archaeological Folsom points from the North American Plains.
He used point surface or plan area as gross-size measure. In bivariate analysis, most
length measures were positively allometric, most width and/or stem measures nega-
tively allometric. Only a blade-length variable was isometric, suggesting maintenance
of a minimum or optimum blade length or size. Results of multivariate analysis were
similar, blade length remaining isometric and all stem variables negatively allometric.

Buchanan inferred a pattern of in-haft resharpening: “blade lengths are isometric
with point area, a…plausible model may be that as the length of points was reduced
through resharpening, the expendable blade portion of the point was reduced accord-
ingly” (2006:194). In this scenario, the stem is negatively allometric as found in his
study (2006:Table 6) if modestly. Accordingly, the result resembles Hoffman’s more
than Ahler and Geib’s model. Yet the test assumed complete independence of blade
length from both total length and point area, not necessarily consistent with Ahler and
Geib’s (2000:Fig. 7) model that showed non-monotonic, therefore allometric, covari-
ation of blade and total lengths. Ahler and Geib (2000:809) proposed a test of their
model that involved increasing tip angle with reduction, which geometric morphomet-
ric analysis of the current dataset supported (Shott and Otárola-Castillo 2018). Also,
Buchanan measured blade length from tip to a geometric position—point of maximum
edge inflection—that did not necessarily mark points’ stem-blade juncture.

Buchanan’s was a pioneering morphometric study. Its demonstration of allometric
variation is worth emulation in a similar dataset characterized by similar variables, with
independent experimental control over rates and patterns of resharpening allometry.
Using different variables and methods, later studies documented similar allometric
variation in a range of point types and contexts (e.g., Charlin and Cardillo 2018;
Charlin and González-José 2018; Iovita 2011; Presnyakova et al. 2018; Suárez and
Cardillo 2019).

Materials and Methods

This study involves Folsom-point replicas. Briefly, Hunzicker (2005), 2008) fired
spears tipped with the points into animal carcasses to study their durability and
performance. Most relevant here, points were removed from hafts after each cycle of
use and damage. Repair was accomplished by resharpening in “a complex process
involving simultaneous efforts to restore symmetry, reduce tip thickness, [and] improve
alignment” (Hunzicker 2005:28). Most resharpening occurred on exposed blades and
tips, yet stems wrapped in sinew and covered with mastic sometimes suffered damage.
Whatever a point’s condition, it was removed from its haft for repair but also as an
integral step of experimental design, in order to make casts of each point at each cycle;
this is not in-haft resharpening. Even if stems were undamaged, blade rejuvenation
could impinge upon and reduce stems. Significantly, then, stems also underwent
resharpening to “restore each point to a functional state with minimal loss of length”
(Hunzicker 2005:28). Accordingly, Hunzicker’s procedure was intermediate between
Hoffman’s and Ahler and Geib’s models, although like the latter it could involve joint
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reduction of both blade and stem. Most point replicas survived the first cycle of damage
and repair, and 22 of 25 experienced two or more cycles (numbered 1, 3, 5, 7 and 9
from first to last as explained in Shott and Otárola-Castillo 2018). Overall, points
survived an average of about 3.3 cycles, yielding a total of 82 (25 × 3.3) versions of 25
originals.

In the same dataset analyzed here, Shott et al. (2007) studied allometry in simple ratios
of size variables upon thickness, as per Klingenberg (2016:117), Shott and Otárola-
Castillo (2018) in geometric morphometric analysis of three-dimensional (3D) models.
This study involves the intervening case, mostly two-dimensional (2D) measures of size
and shape in both bivariate and multivariate allometric analysis. It is designed with two
complementary purposes in mind. First, it completes fairly comprehensive analysis of a
single experimental dataset (i.e., ratios, and 2D and 3D bivariate and multivariate
allometry) whose causes of allometric variation are known, and which therefore indepen-
dently controls for the allometric effects examined here. Combined, these studies docu-
ment allometric variation in a single dataset using various measures andmethods. Second,
it approximates methods used in both traditional studies and Buchanan’s (2006)
pioneering study, serving partly to independently corroborate the latter.

Analysis involves 2D images of the 82 versions of the 25 Folsom replicas. For
comparability to variables often used in lithic analysis, a set of common orthogonal
dimensions was measured on each 2D image (Table 1). These include maximum length
(ML) from tip to base on the longitudinal axis, blade length (bldlen) from tip to stem-
blade juncture, stem length (stlen) from that juncture to base (bldlen + stlem =ML),
stem width (BW for comparison to Buchanan’s similar variable) from edge-to-edge
perpendicular to ML at the stem-blade juncture, and base length (LB). Following
Buchanan, a set of ILDs then was computed (Table 1, Fig. 3). Plan area (PA, mm2,
measured automatically in ScanStudio™) and maximum thickness (“thickness”) also
were recorded. All linear dimensions were recorded in cm using RapidForm’s
measurement tool. Supplementary Material 1 provides the data.

Some ILDs are identical or nearly so to Buchanan’s (2006) variables. Because
ScanStudio calculates area over both faces, resulting figures were halved. Plan area calcu-
lated from 2D and 3D versions of specimens may differ slightly, variation ignored as trivial.
Because ILDs were measured manually, slight errors sometimes occurred. For instance,
specimen B2 was used and resharpened five times, during which of course its length
diminished. Base-width LB should have declined little or remained constant but its mea-
sured value declined and then increased slightly, the latter physically impossible. Overall,
LB variation spanned only 0.04 cm so this measurement error is ignored as trivial.

Obviously, the number of ILDs here is fewer than in Buchanan’s study (yet note that
his analyzed distances were fewer than the distances shown on his Fig. 2, because some
of them were averaged with their counterpart on the other longitudinal half of each
specimen). This study omits Buchanan’s total length OL on the longitudinal axis (as
largely redundant with TB), and his perimeter length EL and base boundary or
perimeter length BB (as largely correlated with PA). Note also that BL here is not
necessarily the same as Buchanan’s BL, which terminated at “the calculated maximum
edge inflection position” (Buchanan 2006:Table 3), i.e., the greatest distance perpen-
dicular to the long axis from the lines TB to each edge. As in Buchanan’s study
(2006:Fig. 2), BL’s terminal points on the two edges may not be symmetrical; here,
however, BL is treated as a measure of oblique blade length—that part of the specimen
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that extends beyond hafting—not merely as a particular geometric position on the point
outline that corresponds to the greatest distance between the line that links tip and base
corner. BW as used here is not width measured “at 1/3 total length above base
landmarks” (Buchanan 2006:189) but width (measured perpendicular to ML) at the
most proximal of the two not necessarily symmetrical edge points where stem grinding
terminates (indicated by hash marks on right and left margins in Fig. 3). This point is
treated as minimum stem length. Finally, here LT is measured from base corner to
opposing edge’s stem-blade juncture wherever located, not automatically to “1/3 total
length” (Buchanan 2006:Table 3). Accordingly, some ILDs here are not identical to
Buchanan’s. In all cases, these dimensions measure approximately the same quantity or
segment of each point’s 2D outline.

Analysis

Among other ways, allometry can be studied in regression of individual dimensions upon
measures of gross size, or in simultaneous analysis of two or more dimensions as they vary
with multivariate gross-size measures. These are bivariate or multivariate allometric analy-
ses, respectively. Their “strong concordance” (Shea 1985:367) justifies a joint approach
here, as in Buchanan (2006), where bivariatemethods documented pairwise interactions and
multivariate methods revealed broader patterns of variation “not necessarily discernible in
the original data” and pairwise analysis alone (Shea 1985:369).

Bivariate Allometry

Analysis begins by consider pairwise comparisons of other variables to overall size
measures. First, ln-transformed traditional orthogonal dimensions and thickness were

Table 1 A set of common orthogonal dimensions

Orthogonal dimensions

Maximum length (ML) (mm) Distance from tip to base on longitudinal axis

Blade length (bldlen) (mm) Distance from tip to stem-blade juncture on longitudinal axis

Stem length (stlen) (mm) Distance from stem-blade juncture to base on longitudinal axis

Stem width (BW) (mm) Width perpendicular to ML at stem-blade juncture

Base width (LB) (mm) Width perpendicular to ML at base

Inter-landmark distances

TB (mm) Mean of two distances, from tip to base corners

BL (mm) Mean of two distances, from tip to stem-blade juncture at blade margins

LT (mm) Mean of two diagonal distances, from stem-blade juncture at blade margins
to bases corners

BW (mm) Same as stem width, above

LB (mm) Same as base width, above

Other variables

Plan area (PA) (mm2) Two-dimensional surface area

Maximum thickness (thickness) (mm) Maximum thickness perpendicular to both longitudinal and medial axes
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regressed upon lnML as a model for the many datasets coded only for such dimensions.
Second, following Buchanan (2006:193), ln-transformed ILDs and lnthickness were
regressed upon ln√PA as gross-size measure. Some results of regression of these
variables upon other gross-size measures also are reported.

Regressing lnBL, lnLT, and lnLB separately upon ln√PA illustrates the bivariate
method (Fig. 4). lnBL and lnLT correlated positively with ln√PA, hence are positively
allometric. But lnBL’s regression slope is steeper (recall that this line’s slope estimates
the allometric constant k), indicating higher positive allometry. Figure 4 also shows
that, unlike in Buchanan’s data, lnLT consistently is greater than lnBL; here, stems
usually are longer than blades. The difference may owe to Hunzicker’s experiment or to
Buchanan’s definition of stems as extending a constant one-third of overall length
rather than varying, as they might in empirical specimens and do in Hunzicker’s data.
lnLB, however, does not correlate with ln√PA (r = .05; regression slope of lnLB upon
ln√PA = − 0.03, s.e. = .064, i.e., the slope coefficient essentially = 0). Thus, some

Fig. 3 Inter-landmark distances: TB, mean of tip to stem corners; BL, mean of tip to stem-blade juncture, itself
marked by distal extent of edge grinding; LT, mean of diagonal stem-blade juncture to base corners; BW,
width at stem-blade juncture; LB, width at base. Horizontal lines extending outward from margins indicate
distal extent of edge grinding which, as shown here, may not be longitudinally symmetrical. Proximal-most of
these two points is taken as stem-blade juncture
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variables are allometric while others are not. This finding explains the value of ratios
like length-thickness used in earlier analysis (Shott et al. 2007). It suggests the
particular value of base width, perhaps even more than thickness, in future research
(see Kaňáková et al. 2016:Fig. 15 for empirical documentation of variation in length
variables with constancy in base width).

Orthogonal Dimensions In bivariate allometry using orthogonal dimensions, lnbldlen
and lnstlen (ln-transformed blade and stem length, respectively) are isometric—they
maintain essentially constant proportions as specimen size declines. Considering
Hunzicker’s resharpening practice, results suggest that maintenance of optimal length
involved roughly equal reduction of stem and blade. Yet Fig. 4 shows positive
allometry in ILD equivalents of both variables, casting doubt on this interpretation.
lnthickness and stem width measures lnBW and lnLB are negatively allometric, the
latter highly so (Table 2). In fact, nominally lnLB has a negative slope coefficient,
suggesting the rare condition of absolute, not just proportional, decline as overall size
rises (Klingenberg 2007:24). But lnLB did not actually decline absolutely during each
point’s use trajectory. Instead, the coefficient’s 95% CI intersects 0, so its value
indicates lnLB’s near constancy regardless of overall size.

ILDs Results differ in bivariate allometry using ILDs regressed upon ln√PA (Table 2).
Now, lnTB as a measure of overall length and lnBL as a measure of blade length are
positively allometric whereas lnLT—like its orthogonal counterpart lnstlen—is isomet-
ric. Again, the latter is questionable considering the pattern exhibited between lnLT and
ln√PA (Fig. 4). Again, lnBW, lnLB, and lnthickness are negatively allometric, lnLB
again greatly so. These results are largely consistent with Buchanan (2006:Table 6),
who reported positive allometry for lnML, lnTB, and other length and perimeter
measures (but isometry for lnBL, as in analysis of orthogonal dimensions) and negative

Fig. 4 lnBL (solid circles), lnLT (shaded circles), and lnLB (open circles) against ln√PA. Lines are each y-
variable’s least-squares regression line upon ln√PA

370 Shott



allometry for other variables. Divergence may owe to differences in resharpening
between Hunzicker’s experiment and prehistoric Folsom users.

When bivariate allometry using ILDs was tested by regression upon other measures
of gross size, results differed significantly. For instance, lnML used as gross-size
measure yielded no regression slope or k estimates that were either positively allometric
or isometric; instead, all variables returned estimates with 95% CI < 1, indicating
negative allometry. Similar results were obtained in bivariate allometric tests involving
regression of ILDs upon lnmass (g) and ln-centroid size (lnCS) of scanned 3D models
of specimens (although in the latter case lnBL attained isometry and lnTB was
modestly positively allometric). A reasonably comprehensive set of measures for
segmented modules of integral wholes cannot all be negatively allometric with size
variation in the whole, a physical and geometric impossibility. All can be isometric, if
reduction or any other source of size variation is strictly proportional among segments,
which did not occur in any permutation of analysis here. Instead, and as the reduction
thesis suggests, some were positively, some negatively, allometric.

If stone-tool reduction operates as generally understood, it disproportionately di-
minishes some parts of the integral wholes that are points. Therefore, measures of some
segments should be positively allometric, some perhaps isometric, some negatively
allometric. That occurs in bivariate regression of ILDs upon ln√PA, but not upon other
gross-size measures. Bivariate coefficients for each variable separately regressed upon
each gross-size measure correlate significantly with one another despite difference in
their magnitudes (in all pairwise tests, both r and r→1.0 and p < .01). Thus, bivariate
coefficients covary strongly but do not scale similarly. Scale discrepancies between
bivariate coefficients computed from variable regression upon different gross-size
measures may owe to differences in the latter’s ranges.

ln√PA varies from 3.1 to 3.8, a range of 0.7. lnCS has a range of 1.0, lnML of 1.2,
lnmass of 2.0. The progressive depression or reduction of B1/k estimates from ln√PA to
lnmass is inversely proportional to gross-size measures’ ranges. For instance, bivariate

Table 2 Bivariate allometry results. Top: orthogonal dimensions regressed upon lnML. Bottom: inter-
landmark distances regressed upon ln√PA. 95% CI calculated as B1 × ± 1.96 s.e. Values in italics significantly
> 1 (positive allometry), values in bold significantly < 1 (negative allometry)

Variable r2 p B0 B1(=k) 95% CI

lnbldlen 0.87 <.01 − 0.62 0.95 0.87–1.03

lnstlen 0.90 <.01 − 0.76 1.05 0.97–1.13

lnBW 0.21 <.01 0.54 0.14 0.08–0.20

lnLB 0.01 0.43 0.56 − 0.03 < – 0.01

lnthick. 0.19 <.01 1.38 0.11 0.06–0.16

Variable r2 p B0 B1(=k) 95% CI

lnBL 0.83 <.01 − 3.81 1.35 1.20–1.50

lnTB 0.94 <.01 − 3.91 1.57 1.48–1.66

lnLT 0.85 <.01 − 2.33 1.00 0.90–1.10

lnBW 0.34 <.01 − 0.26 0.29 0.19–0.39

lnLB 0.01 0.65 0.63 − 0.03 < 0–0.10

lnthick. 0.28 0.06 0.72 0.24 0.15–0.33
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coefficients computed from regression upon lnmass are 43–54% of coefficients com-
puting using ln√PA. Analyzing allometry, “choice of size variable…will always affect
results” (Buchanan 2006:190). In bivariate analysis here as before, plan area “was a
good proxy for point size” (Buchanan 2006:193); other size measures may not be
suitable. Whatever the case, magnitude of bivariate coefficients matters. When all are <
1 (as for lnmass and lnML and nearly so for lnCS), the Huxley-Jolicoeur decision rule
yields the near-impossibility that all variables are negatively allometric. Only ln√PA
among gross-size measures gives some bivariate coefficients < 1 and others > 1, i.e.,
that are consistent with the general understanding of stone-tool reduction.

Multivariate Allometry

Multivariate allometry proceeded in two steps. First, principal component analysis (PCA)
was conducted in PAST v2.17 (Hammer et al. 2001) for all original variables. Again
following Klingenberg (2007:30-31; see also Shea 1985:372), PCA used the variance-
covariance matrix. Multivariate allometry treats the first principal component (PC1) as a
general size dimension (Klingenberg 2007:28), particularly if its eigenvector explains
80%+ of total variance (Hammer 2019:236). Second, each variable’s multivariate allome-
tric coefficient (MAC) was computed in PAST (v.2.17) (Hammer et al. 2001). MACs were
estimated by dividing each original variable’s PC1 loading by the mean PC1 loading over
all variables (Hammer and Harper 2006:93). Because PAST assumes that input variables
are original, it automatically log-transforms them, evidently using the base-10 log. Accord-
ingly, original untransformed variables were entered into analysis there (requiring expo-
nentiation of lnCS). PAST bootstraps 95% confidence intervals for MACs. (Comparable
PCA analysis in SPSS™ requires ln-transformation but, unlike PAST, does not compute
95% CI. SPSS and PAST results differed somewhat in values but never in significance.)

Multivariate analysis was conducted four times, each using thickness and the ILDs
reported above. Each analysis, however, separately involved gross-size measures ln√PA,
lnmass, lnCS, and lnML. (Results that exclude the gross-size measure upon which other
variables are regressed to obtain bivariate coefficients are invalid [Shea 1985:383].) As in
the bivariate case,MAC< 1 indicates negative allometry,MAC= 1 isometry, andMAC> 1
positive allometry. As in preceding analysis, bivariate coefficients computed by regressing
lnthickness and ln-ILDs differed depending by gross-size measure. Unlike preceding
results, however, MACs computed from different gross-size measures differed little in
magnitude and never in significance (Table 3). That is, MACs for all gross-size measures
(ln√PA, lnmass, lnCS, lnML) and lnTB, lnBL and lnLTwere significantly greater than 1, all
for lnBW, lnLB and lnthickness significantly less than 1. Indeed, the magnitudes of all
MACs are so similar that ANOVA by size measure returned highly insignificant results
(F = .001 p = 1.00; lowest pairwise LSD= 0.97). If ln√PA and other gross-size measures
differ in bivariate analysis, they return essentially identical results in multivariate analysis.
(Orthogonal dimensions regressed upon lnML returned very similar results and identical
statistical decisions about each y-variable’s degree and direction of departure from 1.)

All bivariate coefficients correlated with all four of their corresponding MACs
(r = .82 p < .01), and bivariate and multivariate results agreed that lnBL was positively
allometric. But only bivariate coefficients upon ln√PA both patterned and scaled
similarly to MACs calculated using all gross-size measures. That is, bivariate
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coefficients and MACs covaried strongly but only bivariate coefficients involving
ln√PA and all MACs scaled similarly. Multivariate analysis gave consistent results
whatever the gross-size measure but bivariate analysis gave inconsistent results,
counseling the use there of ln√PA over other gross-size measures.

Besides direction of departure from critical values, magnitude of lnBL’s MAC indicat-
ed highly positive allometry; lnBL declined rapidly with point reduction. Consistently,
lnLT was more modestly positive in allometry, a result also found in geometric morpho-
metric analysis of 3D models of these data (Shott and Otárola-Castillo 2018) and that,
unlike bivariate results, are consistent with Fig. 4’s patterning. They also are consistent
with Hunzicker’s (2005:27-29) resharpening practices, which often reduced both blade
and stem, the former disproportionally. Difference in magnitude of their MACs suggests,
as did Hunzicker, that blades experienced more extensive reduction than did stems.

PCA involving ln√PA returned a single significant component, PC1, that accounted
for 85.9% of total variation, and rescaled or normalized loadings that identified PC1
with overall size (Table 4). That is, area and all length measures (total, blade, and stem)
loaded positively, while thickness and width at the stem-blade juncture loaded modestly

Table 3 Multivariate allometric coefficients (MACs) by variable from separate PCA analyses of ln-inter-
landmark distances and lnthickness with gross-size measures ln√PA, lnmass, lnCS, and lnML. Values in italics
significantly > 1 (positive allometry), values in bold significantly < 1 (negative allometry). All lnLB MACs
95% CI intersect 0—extreme negative allometry—possibly reflecting near constancy in its magnitude

Variable MAC Variable MAC Variable MAC Variable MAC

ln√PA 1.14 lnmass 1.64 lnCS 1.61 lnML 1.86

lnTB 2.06 lnTB 1.87 lnTB 1.92 lnTB 1.80

lnBL 1.86 lnBL 1.66 lnBL 1.70 lnBL 1.60

lnLT 1.28 lnLT 1.17 lnLT 1.19 lnLT 1.11

lnBW 0.39 lnBW 0.37 lnBW 0.34 lnBW 0.32

lnLB − 0.0004 lnLB 0.006 lnLB − 0.019 lnLB − 0.017

lnthickness 0.27 lnthickness 0.28 lnthickness 0.25 lnthickness 0.23

Table 4 PCA summary using ln√PA as gross-size measure

PC1 PC2

Eigenvalue 0.175 0.011

%variation 85.9 5.5

ln√PA 0.983 − 0.043
lnTB 0.993 − 0.097
lnBL 0.951 0.254

lnLT 0.918 − 0.280
lnBW 0.551 0.503

lnLB − 0.041 0.583

lnthickness 0.491 − 0.040
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negatively, and width at base practically not at all, with PC1. PCA involving other
gross-size measures produced similar results. Buchanan (2006:Table 5) reported broad-
ly similar results to Table 4’s for eigenvalues and variable loadings. In his (2006:Fig. 9)
vector plot, point area PA and blade-length BL were virtually coincident with the PC1
axis, indicating not just their high loading with but also their strong contribution to
PC1. Vectors for other perimeter and length variables, including TB, formed a highly
covarying set that also loaded highly upon but were slightly oblique to the PC1 axis.
Variables that measured stem size and shape had lower PC1 loadings and vectored
more obliquely to PC1’s axis, particularly LB; stem length LT’s vector fell between
other stem variables and blade and overall size ones.

Despite the broadly similar PCA results to Buchanan’s study, here the vector plot
documents some differences in data structure (Fig. 5). (PC2 does not meet conventional
significance criteria, so was retained only to produce this plot.) First, Buchanan did not
include lnthickness, which here loaded modestly upon and vectored, like ln√PA and
lnTB, along PC1’s axis. Like them, thickness has to do with overall size. As in
Buchanan’s study, ln√PA and lnBL loaded highly upon PC1; ln√PA’s vector lies almost
upon the PC1 axis but lnBL’s diverged somewhat toward positive PC2 values. Oblique
total length lnTB patterned near ln√PA in both loading and vector. As in Buchanan’s
study, stem-blade juncture width lnBW loaded modestly on PC1 and PC2, and base-
length lnLB loaded least upon and vectored farther from PC1’s axis. The greatest
difference was in stem length lnLT. Here, its vector diverged sharply from other stem
measures. Rather than lying between them and blade-length and overall-size variables,
lnLT registered the lowest negative PC2 loading, somewhat isolating it from other
variables. Overall, differences between Buchanan’s and this study occurred mostly in
lnBL (isometric in Buchanan’s study, positively allometric here) and lnLT (negatively
allometric in Buchanan, positively allometric here).

Analysis Summary

Buchanan (2006) used plan area as gross-size measure. Both here and in his study, that
measured produced bivariate allometric coefficients that scaled as traditional biological

Fig. 5 PCA vector plot, ln√PA as gross-size measure
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analysis expects: positively allometric dimensions returned coefficients > 1, negatively
allometric dimensions coefficients < 1. Here, other gross-size measures did not scale as
did plan area nor yield bivariate coefficients that followed the scaling and interpretation
of the Huxley-Jolicoeur model.

Here, bivariate analysis involving ln√PA and multivariate analysis of several vari-
able sets agreed. Most length variables were positively allometric, width ones and
thickness negatively allometric, base-width lnLB extremely so. lnLT provide isometric
in bivariate analysis, modestly positively allometric in multivariate analysis. Figure 4
clearly shows its positive allometry, so supports multivariate over bivariate analysis.

Perhaps surprising is that length of both point segments—blade and stem—were
positively allometric. That is, linear dimensions of the two segments that, combined,
comprise each point’s entire 2D length both grew proportionally longer as points
increased in area. The apparent paradox is explained by recalling the difference in
direction between biological and lithic allometry. lnBL and lnLT do not grow; both
decline as ln√PA declines (Fig. 4), but lnBL’s steeper decline matches its higher MAC.
From Fig. 4 and multivariate analysis, both blade and stem decline with reduction, just
at different rates. As in Buchanan’s study, analysis here documents allometric variation
in reduced stone tools.

Reduction Distributions from Allometry

Allometric analysis may seem merely technical, documenting how and how much
points are reduced. Whatever the value of such knowledge, allometric study extends
beyond them. If, for instance, PC1 is a good multivariate size measure that incorporates
allometric variation, then it can be used to test behavioral-ecology theories noted above,
underscoring the higher analytical value of allometric reduction analysis. Ranks of
reduction measures across specimens generate distributions of values that approximate
Fig. 1’s utility curves. Models like the marginal-value theorem give different results
depending not just on return-rate/abandonment-criterion E but also the form of the
distributions that link E to time or number of uses. Allometric analysis specifies the
forms of such distributions.

PC1 score from analysis that included ln√PA is a general reduction measure, ranging
from approximately − 2.0 to 1.72. To generate distributions, specimen scores were
rescaled by adding the absolute value of the lowest score to all cases (shifting the lower
end of the range to 0) then dividing rescaled values by the absolute value of the range of
PC1 scores (that value ≈ 3.72, the range extending from − 2.0 to 1.72) to produce a
descending range from 1 to 0 that expressed both rank and relative magnitude of each
specimen’s PC1 score. This is scaled multivariate PC1 (sclMVPC1). In previous
analysis, simple ratios like length-thickness (L/T) also patterned with reduction (Shott
et al. 2007). This ratio was rescaled similarly. This is scaled L/T (sclL/T). Other
measures, including varieties of resharpening indices (e.g., Suárez and Cardillo
2019:Fig. 4), also can be used for these purposes, but consideration here is limited to
the two described above.

sclMVPC1 largely sorts Folsom replicas and their resharpening stages by number of
uses or reduction cycles (Fig. 6). ANOVA supports this conclusion; means decline
consistently by pooled stage (F = 55.2 p < .01, all LSD < .01). Therefore, sclMVPC1
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tracks size reduction and resharpening cycle and, by extension, utility extracted (Shott
1996). sclMVPC1 and sclL/T pattern somewhat differently against absolute rank
(Fig. 7). sclMVPC1 patterns closely with Fig. 1’s linear model (equivalent to a Weibull
model where β = 1 [Shott and Seeman 2017:732]) except at its tail, while sclL/T is
modestly concave-upward and therefore trends toward Fig. 1’s lower function and a
Weibull model where β < 1.

Distributions derived from various reduction measures differ modestly, yet even
such differences can affect solutions when inserted into models like Fig. 1’s. Multifac-
torial reconciliation that incorporates all measures (see Shott and Seeman 2017 for its

Fig. 6 sclMVPC1 rank distribution sorted by pooled use/resharpening cycle. Solid circles = stage 1, shaded
circles = stages 3 and 5, open circles = stages 7 and 9

Fig. 7 Rank distribution of sclMVPC1 and sclL/T. Dashed line corresponds to Fig. 1’s linear model and a
Weibull model where β = 1 (Shott and Seeman 2017:732). Multifactorial rank distribution in dark grey
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derivation) seems the best overall measure. Accordingly, Fig. 7 also plots the distribu-
tion of a multifactorial reduction measure derived from PC1 and L/T. The multifactorial
distribution lies nearest sclMVPC1’s, suggesting again that multivariate analysis pro-
duces the most robust results.

The sclMVPC1 and multifactorial distributions implicate constant attrition—
chance—a Weibull model whose shape parameter β = 1, corresponding to Fig. 1’s
straight-line function. In this dataset, the result is an artifact of experimental design; all
iterations of size and shape from first use to last occur in the distribution in equal
proportion. Because archaeological points may not be discarded equally at all reduction
stages, empirical data may show different distributions of such reduction measures.
When, for instance, curation rate is high (Weibull β > 1), reduction values will skew to
lower sclMVPC1 range. The form of resulting cumulative distributions will be convex-
upward, not linear, like Fig. 1’s top distribution. When curation rate is low (Weibull β <
1), resulting curves should be concave-upward in form and located below the straight
line of constant failure.

If reduction is an integral property of curated tools then reduction distributions
describe and graphically model it. If these distributions approximate the ideal utility
curves of Fig. 1, they are valid measures by which to test behavioral-ecology or any
theoretical models that predict pattern and degree of tool reduction. If they fit the
Weibull or other failure models, theoretical explanations for the forms of utility curves
also are implicated, involving processes that range from burn-in failure to chance to
accelerating attrition (Shott and Seeman 2017:732).

Conclusion

Bivariate and multivariate allometric analysis in Folsom replicas substantially agree,
but not in all important details. Complementary use of these methods was rare in the
past (Shea 1985:368), in biology let alone archaeology. Benefits include thoroughness
in analysis but especially the parsing of common and specific patterns of allometric
variation that bivariate analysis documents and that multivariate analysis generalizes.
Yet bivariate results are highly dependent upon the gross-size measure used, while
multivariate results are robust.

Combined with earlier studies (Shott et al. 2007; Shott and Otárola-Castillo 2018),
this one suggests that similar allometric signals exist in three methods applied to a
single dataset. Width variables and thickness are negatively allometric, length variables
positively allometric. Blades are more positively allometric than are stems. Results lend
further confidence to allometric analysis of stone tools, if such is needed. In turn,
allometric reduction analysis is vital to traditional archaeological concerns like typol-
ogy and sophisticated behavioral models (e.g., Surovell 2009). Yet the inherent limi-
tations of simple ratios between dimensions and the ambiguity that may inhere in
bivariate allometric approaches that use different gross-size measures both suggest
greater confidence in multivariate allometric results.

This and earlier studies of the present dataset involved, trivially, experimental
replicas. Their advantage is foreknowledge of the sources of their variation, their
disadvantage their possible departure from prehistoric norms and practices. Whatever
the value of experimental data, of course the chief focus must be on archaeological
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data. As above, allometry and the broader reduction thesis bear upon typology,
behavioral models linked to degree and pattern of reduction, to assemblage formation
and, arguably, to emerging approaches in the study of point types as units of long-term
change. This study has no typological implications because reduced Folsom points are
unlikely to be mistaken for other types, yet might for types of very similar form and
technology. Figure 7 and comparable reduction curves can test implications of
behavioral-ecology models for changing return rates and land-use patterns (e.g.,
Miller 2018). Because greater reduction and stronger allometric pattern both relate to
artifact use life, which in turn bears upon assemblage formation, degree and pattern of
reduction allometry also influence assemblage size and composition in ways that can be
traced and measured (e.g., Shott 2010). Where, for instance, Folsom points are more
heavily resharpened, fewer will be discarded ceteris paribus. Results also bear upon
assemblage quantification; typically, an unused Folsom point and a heavily reduced
specimen are counted equally. Yet the former registers little to no associated tool-using
behavior, the latter a great deal of such behavior. Finally, just as biological allometry
contributes to organismic evolution, it may help reveal the processes of morphological
transition that characterize point sequences across eastern North America. Allometric
analysis at this higher level, both in time and analytical unit, requires common
definitions of modules and characterization of size and shape across types, and must
be linked to broader changes in the definition of theoretical units that are beyond this
study’s narrow focus (e.g., Shott 2020).

Per sources cited above, many empirical datasets exhibit allometric patterns similar
to those found here. As more are analyzed, one finding is especially salient: because
allometry involves proportional change in size of distinct segments, analysis both
requires careful variable selection and rewards approaches that parse whole objects
into constituent parts. Allometry is a by-product of processes of maintenance and
resharpening that play out among and between segments of tools. Any analysis of
the phenomenon must define and distinguish those segments.
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