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Abstract Network analysis using hunter-gatherer archacological data presents a num-
ber of unique challenges. At the forefront of these challenges are issues associated with
the aggregation and fragmentation of archaeological data that influence the size,
density, and confidence in network models. These methodological challenges are
unfortunate, as the diverse roles of social networks among hunter-gatherers have long
been recognized within anthropological research. In order to enhance the research
potential of networks constructed from hunter-gatherer archacological data, this re-
search highlights two data evaluation methods established in social science research to
assess the stability of network structure. More specifically, this research constructs
network models from the compositional analysis of ceramic artifacts recovered in the
Kuril Islands of northeast Asia and evaluates network centrality measures using
bootstrap simulation and sensitivity analysis. Results of this research suggest that while
archaeologists may never fully identify the “true” network of past relationships,
network models that approximate “true” network structure can provide useful metrics
in exploring the behavior of past hunter-gatherer populations. Overall, given the
challenges associated with hunter-gatherer archaeological data, it is argued here that
critically evaluating the structure and stability of network models is an essential first
step in developing an archaeological network analysis that is relevant and informative
to research on past small-scale societies.
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Introduction

Over the past decade, the range of academic disciplines applying a network perspective
has grown exponentially from its origins in social science to a diverse collection of
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disciplines including physics, biology, business, and economics. The common appeal
of network analysis, including social network analysis (SNA), for many of these
disciplines is that it provides a set of unique methods for visualizing and measuring
sets of relationships (Wasserman and Faust 1994). In particular, the growth of network
analysis within social science research has been influenced by advancements in
computing that can efficiently analyze the complex social relations that characterize
human populations. Within archacology, network analysis has been broadly applied to
populations ranging in space and time from Mesoamerica (Golitko et al. 2012;
Scholnick ef al. 2013) to the Middle East (Knappett and Nikolakopoulou 2005;
Collar 2013) and from the Epipaleolithic (Coward 2013) to the present (Mol and
Mans 2013).

While network analysis methods continue to be applied in a variety of archaeolog-
ical contexts, it is important to understand that not all archaeological datasets are
equally amenable to network analysis (Mills et al. 2013). For instance, in many
archaeological applications of SNA, archaeological databases used for analysis have
been drawn from either historic contexts or detailed textual records that directly indicate
trade or social relationships (Coward 2013). However, in many archaeological datasets,
direct insights into past social relationships are not always so obvious. Networks
constructed from archaeological data are more commonly visual representations of
connections inferred from a variety of assumptions about how individuals or sites in the
past are related by material culture. These assumptions can become increasingly
problematic when examining the scant material evidence of mobile foraging societies,
but they do not inherently prohibit network analysis. This research aims to demonstrate
that given the appropriate methodological considerations, network structures can be
reconstructed from hunter-gatherer material culture and used to inform and enhance
archaeological interpretations.

Hunter-Gatherer Social Networks: Function and Form

Despite the limited application of formal network analysis to hunter-gatherer archaeo-
logical data, the concepts of social relationships and material exchanges have long been
of interest to anthropologists studying small-scale societies (Braun and Plog 1982;
Lévi-Strauss 1969; Malinowski 1953; Mauss 1954; Radcliffe-Brown 1952; Wiessner
1977). As highlighted by Wobst (1974), Rautman (1993), and Wiessner (1977, 1982)
among others, perhaps one of the most fundamental roles of social relationships within
small-scale societies is minimizing the influence associated with incomplete knowl-
edge. Perhaps most well known is the /sxaro exchange system (Wiessner 1977, 1982,
1998, 2002), where reciprocal exchange partnerships serve as a mechanism for the
sharing of environmental information across local, regional, and distant spatial scales
with each individual actively maintaining social network partners (Wiessner 1997).
Through reciprocal gift giving, these exchange partners are formalized and act as a
support network that can provide places of refuge for individuals when physical
hazards impact local subsistence resources. As discussed by Wobst (1974) and
Rautman (1993), social networks within small-scale societies also help in reducing
the impact of uncertainty in the marriage pool by providing information about available
mates among other groups. In these cases, the actual amount of material goods or
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partners that are exchanged may be minimal, but the network still serves as a regional
redistribution mechanism (Rautman 1993). In addition to mating networks, social
networks have also been suggested to function in the reduction of uncertainty associ-
ated with violent behavior. As emphasized by Baksh and Johnson (1990), one response
to inter-personal violence among hunter-gatherers includes extensive inter-household
or inter-group exchanges, which provide a mechanism for gaining knowledge
concerning individuals in other households or groups. The development and sharing
of this knowledge helps to mitigate inter-personal and group violence by allowing
peaceful individuals to more easily avoid violent individuals as well as developing a
network of trusted partners that can help resolve passive or active violent behavior.
Undoubtedly, social networks among foraging populations likely functioned in a
multitude of different roles from not only information-sharing networks or social safety
networks but also advice networks, food redistribution networks, political alliance
networks, and kinship networks to name only a few. Given the potentially infinite
number of networks within small-scale societies that may or may not leave material
traces, it is often impossible for an archaeologist to assume a priori what type of social
relationships, if any, are being represented within an archaeological assemblage. For
some archaeologists, inferring the function of networks based upon archaeological data
from hunter-gatherers can quickly become a suspicious exercise that is highly influ-
enced by difficult assumptions including the ability to establish contemporaneity
between archaeological sites, the inability of scant archaeological evidence to reveal
social relationships, and/or the sampling or excavation strategy of the researcher. In my
own experience, colleagues have often highlighted these deficiencies with commonly
encountered questions such as “How do you know that certain artifacts are good
indicators for inferring social relationships?” “How do you know what the network
was used for?” “Don’t you think you need more data before you can reconstruct a
social network from 3000 years ago?”” Based upon these limitations of archaeological
data, it is accepted here that archaeologists will rarely ever know the “true” function (or
functions) of a social network as relationships among individuals are extremely diverse,
constantly evolving, and difficult to access through material traces. However, it is
argued here that the inability to identify the exact type of social relationship should not
exclude network analysis from the archaeological toolkit but rather places a greater
emphasis on building confidence in the form or structure of archaeological networks.
The use of hunter-gatherer archaeological data may have limitations in conceptual-
izing the function of past network relationships, but it should be encouraging for
archaeologists to know that the construction of network form from archaeological data
suffers from many of the same problems encountered by social scientists using more
conventional datasets. As all archaeologists are keenly aware, interpretations of the
archaeological record are often based on material culture that is temporally aggregated.
Thus, the construction of any discrete archaeological network model is also based on
artifact assemblages comprised of artifacts from a wide range of temporal contexts.
Similarly, since the early development of social network analysis, the temporal aggre-
gation of social ties in a network model has also been problematic (Marsden 1990). The
central concern to both archacologists and sociologists is whether a static network
model of aggregated social connections or artifacts can be considered “a persisting
order or pattern of relationships among some unit of sociological analysis” (Laumann
and Knoke 1986, p. 84). In archaeological research, the assumption of persistent
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relationships is often taken to an extreme with networks representing hundreds if not
thousands of years of interactions and material exchanges between individuals. In order
to overcome these fundamental issues, it is often acknowledged in social network
analysis that social exchange can occur as episodic or momentary interactions between
individuals, but the relationships identified by researchers are likely the most routinized
or consistently reproduced interactions (Huston and Robins 1982). It is recommended
here that archaeologists adopt a similar assumption when modeling networks in that
material or information exchanges that were more consistently performed in the past
have a greater chance of recognition hundreds or thousands of years after their last
occurrence.

Related to the aggregation problem, archaeologists are often faced with a fragmen-
tation problem. In this research, the fragmentation of data refers to variation in the
availability and types of data between units of archaeological analysis. The fragmen-
tation problem is particularly challenging in developing network structures based on
small-scale, hunter-gatherer societies given their increased mobility, small population
sizes, and reduced material culture signatures. In the terminology of social network
analysis, the fragmentation problem can be framed as a missing data problem, with a
fundamental question of how do we know if all the relevant actors (or archaeological
sites) have been identified? Given the relational nature of social networks, the inap-
propriate inclusion or exclusion of a small number of entities can potentially have
significant ramifications on the structural properties of a network (Butts 2008). In
addressing this question, many networks used for analysis within social sciences
maintain exogenously defined boundaries where membership is fairly well understood
so that it is possible to obtain relevant information on many of the network nodes and
that the failure to record a single tie or node does not lead to a radically different
understanding of the network structure. Based upon this assumption, a majority of
social network research defines the boundaries of a network by the set of actors on
which measurements can be obtained. In contemporary situations, when the boundary
of a network is unknown, special research designs and survey methods can be utilized,
such as respondent-driven or snowball sampling that helps define network boundaries
or highlights hidden populations (Heckathorn 1997, 2002). In archaeological research,
exogenously defining the boundaries of a network often means evaluating a sample of
archaeological sites within a geographic region or limiting analysis of archaeological
sites that correspond directly to a cultural or temporal period.

Reconstructing Hunter-Gatherer Network Structures from Archaeological Data
in the Kuril Islands

The Kuril Islands

As acknowledged above, construction of network form using archaeological data from
hunter-gatherer contexts is influenced by the aggregation and fragmentation of archae-
ological data. One of the main contributors to the severity of aggregation and frag-
mentation problems is the amount of archacological work performed in a region and the
availability of relevant archaeological data. The vast majority of archaeological data
used in this research stems from archaeological fieldwork in the Kuril Islands of
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northeast Asia (Fig. 1) conducted by the Kuril Biocomplexity Project (KBP) between
2006 and 2008. Over the course of three field seasons, the KBP undertook compre-
hensive survey and excavation of archaeological sites in the southern, central, and
northern regions of the island chain (Fitzhugh et al. 2007, 2009a, b). Based upon this
field research, over 60 archaeological sites were identified throughout the archipelago.
However, given active taphonomic processes as well as the fragmented archaeological
record of mobile hunter-gatherers, only 20 archaeological sites contained obsidian or
pottery remains which were suitable for inferring exchanges between past hunter-
gatherers communities using geochemical sourcing methods. Among these 20 archae-
ological sites, 12 had moderate to large artifact assemblages due to intensive excavation
or surface collection with the remaining eight sites containing less than 20 pottery
sherds or obsidian artifacts.

Based upon radiocarbon data provided by the KBP, the 20 archaeological sites used
in this network analysis chronologically extend over 3000 years and include the two
longest and most intensive occupation periods of the archipelago, 25501300 and
1300-700 cal BP. Using similarity in pottery styles between the Kuril Islands and the
neighboring islands of Hokkaido and Sakhalin, these occupation periods are associated
with the Epi-Jomon (2500-1300 cal BP) and Okhotsk (1300700 cal BP) cultures. In
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Fig. 1 Map of the Kuril Islands showing major open water straits, geographic regions, and names of key
islands
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brief, the Epi-Jomon culture is widely viewed as a continuation of hunter-gatherer
subsistence practices in Hokkaido and the Kuril Islands after the widespread adoption
of rice agriculture in the Japanese islands (Aikens and Higuchi 1982; Habu 2004). In
contrast, populations associated with the Okhotsk culture are often considered to have
migrated to Hokkaido and the Kuril Islands after originating in the western Sea of
Okhotsk (Deryugin 2008; Hudson 2004). As a note, due to very limited pottery and
obsidian assemblages, occupations of the Kuril Islands associated with the Jomon
(Middle, Late, and Final) and Ainu periods are not included in this analysis.

Perhaps the most defining feature of the Kuril archipelago is the biogeographical
differences between regions of the island chain. Stretching between the island of
Hokkaido and the Kamchatka peninsula, the Kuril Islands comprise approximately
32 islands that vary in size from 5 to 3200 km> with regions separated by two major
open water straits, the Bussol and Kruzenstern. In addition to geographically dividing
the southern and central regions, the Bussol Strait also serves as an major ecological
barrier that significantly influences modern flora and fauna distributions (Pietsch et al.
2003). Compared to the very low biological diversity of the central and northern Kuril
Islands, the southern islands demonstrate substantially higher flora and fauna diversity
with a wide range of mammals, birds, insects, fish, and shellfish (Hoekstra and Fagan
1998; Pietsch ez al. 2003). As part of the extremely active Kuril-Kamchatka subduction
zone, major tectonic events are a common occurrence in the island chain, and it is likely
these events were frequent throughout the Middle and Late Holocene (Fitzhugh 2012;
Maclnnes et al. 2009). Over the last 3000 years, Nakagawa et al. (2008, tDAR) has
documented approximately 80 major volcanic eruptions across the island chain with six
eruptions classified as caldera or large Plinian eruptions. In addition to volcanic
eruptions, paleo-tsunami deposits in the central islands indicate the regular presence
of tsunami events similar in scale to a couplet of 20 m tsunami waves that struck the
island chain in 2006 and 2007 (Maclnnes et al. 2009). While less catastrophic then
tectonic hazards, weather strongly influences habitation and movement in the region
(Fitzhugh 2012). During winter months, two strong atmospheric systems interact
creating northerly winds that bring in cold air masses from the Asian continent and
produce nearly 138 snowstorm days per year and stable snow cover from November to
May (Gangzei et al. 2010; Leonov 1990; Razjigaeva et al. 2008). In the summer months,
due to the interaction of the cold Oyashio current and the warm Soya current, some
areas of the Kuril Islands experience nearly 215 fog occurrence days per year, statis-
tically making the archipelago one of the foggiest places on earth (Bulgakov 1996;
Razjigaeva et al. 2011; Tokinaga and Xie 2009).

Compositional Analysis of Kuril Pottery

The use of geochemical sourcing data to infer the structure of relationships between
archaeological sites in the Kuril Islands differs from more traditional methods that use a
combination of technological and stylistic similarities (Mills ef al. 2013; Mizoguchi
2009). In contrast to these network models, the use of geochemical sourcing data relies
upon tracing the flow of material goods rather than the flow of information. Network
ties are constructed based on the movement of pottery sherds between their location of
geologic origin and their location of archaeological recovery. The linking of archaeo-
logical sites based on elemental characterization does require that clay geochemistry

@ Springer



188 Giesfield

clearly demonstrates real spatial differences between archaeological sites. However,
depending on a variety of factors, the ability to clearly identify spatial patterns within
geochemical data of clay can be easily masked by differing methods of elemental
analysis, underlying regional geology, the formation of clay deposits, and/or the
anthropogenic alteration of clay resources. It is important to note that the use of
sourcing data does not inherently assume any type of specific social relationship that
is responsible for the movement of a pottery vessel but rather simply acknowledges that
the vessel was transported from one location to another. This research does assume that
when a pottery sample recovered at one archaeological site is reliably assigned to a
geochemical source group associated with a different archaeological site, the transpor-
tation of the sample is most likely attributable to movement by cultural rather than
natural processes.

Unlike previous obsidian studies in the region that reveal long-distance, non-local
relationships, (Phillips 2011; Phillips and Speakman 2009) exchange networks derived
from ceramic source data can better highlight relationships at the local, supra-local, and
regional levels within the island chain. This increased spatial resolution from pottery
data occurs because obsidian sources are not found locally in the Kuril archipelago with
obsidian only entering the island chain from external sources on Hokkaido and
Kamchatka. Therefore, obsidian data is perhaps more relevant to network relationships
located at the ends of the archipelago and is less informative about the exchange
relationships among sites within the island chain (Gjesfjeld and Phillips 2013).
Tracing the movement of pottery sherds from their original clay sources to their place
of archaeological deposition can therefore provide a general measure of the distance
and direction of pottery movement between archaeological sites as well as a basis for
inferring network ties between hunter-gatherer populations.

In this research, the procedure for establishing network ties between archaeological
sites is based upon the protocol for geochemical source group identification established
by the Archacometry Laboratory at the University of Missouri Research Reactor
(MURR) (Baxter and Buck 2000; Glascock 1992; Glascock et al. 2004).
Construction of network models for this research began by obtaining the trace element
concentrations for 297 pottery samples using inductively coupled plasma-mass spec-
trometry (ICP-MS) at the Institute of the Earth’s Crust, Russian Academy of Sciences-
Irkutsk (IEC-RAS). Using elemental characterization data, the grouping of pottery
samples into source groups relies on the use of multivariate statistics including cluster
analysis and principal components analysis (PCA). Given the presence of correlated
elements as well as variability in distance measurements and clustering algorithms,
cluster analysis is only used to identify initial groupings with PCA methods used for
further refinement and classification of geochemical source groups. Once initial cluster
groups are formed based upon all elemental concentrations (Fig. 2a), PCA techniques
are used to reduce dimensionality of the dataset to a smaller number of uncorrelated
variables and to identify key elements that are driving the principal variation in the data
(Glascock et al. 2004). Biplots of key principal components (Fig. 2b) provide a visual
representation of groupings within the data allowing for evaluation of group member-
ships assigned through cluster analysis. Final group membership is ultimately deter-
mined by calculating the probability of each sample belonging to its assigned group
through the use of Mahalanobis distance (MD). In general, the MD statistic incorpo-
rates information between pairs of elements and permits calculating the probability that
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a sample belongs to the assigned group based not only on its proximity to the centroid of
the group but also on the rate at which the density of the sample data points decreases
away from the centroid (Glascock et al. 2004). The use of MD is preferred as Euclidean
distances do not account for correlations between elemental variables. Once group
membership is established through MD probabilities, network ties between archaeological
sites were assigned based upon source group composition. Using a majority rule, network
ties were given between all samples in the same group with membership probabilities over
50 % with the assumption that these samples are the most likely to share the same geologic
place of origin. As identified in Fig. 2c, eight of 14 samples in source group three (G3)
have high probabilities of belonging to the group with network ties established between
the archaeological sites of Kompaniskii (KOM), Ainu Creek (AIC), and Rikorda (RIK).
Furthermore, given that 75 % of these high probability samples are from a single
archaeological site (KOM), it is likely that the geologic origin of all these samples is near
the site of Kompaniskii based upon the “criterion of abundance” (Bishop et al. 1982).

Assessing Confidence in Small-Scale Networks
The effect of aggregation and fragmentation issues on the analysis of archaeological

networks is a lack of confidence in the structure of network models. Fortunately, these
data concerns are not unique to archaeological research and remain common topics of
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discussion within many social science disciplines that utilize social network analysis.
Based upon methodologies established in these related disciplines (Costenbader and
Valente 2003; Borgatti ef al. 20006), this research favors the construction and evaluation
of longitudinal data (if possible) for minimizing aggregation effects and the use of
bootstrap simulation and sensitivity analysis for assessing fragmentation effects.
Statistical routines associated with bootstrap simulation and sensitivity analysis were
completed using the freely available R statistical environment (R Development Core
Team 2010) with analysis and visualization of network graphs performed using the
statnet statistical package for R (Handcock et al. 2003)

Aggregation Within Kuril Island Networks

Given the inherent aggregation of archaeological data, one of the first considerations
prior to analyzing and interpreting networks is how many networks are appropriate to
summarize the social relationships that occurred during occupation of the research
area? In general, two different approaches have been used in addressing this issue. At
one end of the spectrum, archaeologists have assumed a long-term static bias in social
relationships with an implicit emphasis on the routinized or consistently reproduced
relationships. In this scenario, a single network represents all the social relationships
that occurred during the time period of interest. At the other end of the spectrum,
archaeologists have developed longitudinal network data that produces multiple net-
works that are each associated with discrete time periods.

If possible, the development of longitudinal network data is highly encouraged as it
can provide valuable insights into the evolution of network structure. For example, the
pioneering work of Mills et al. (2013) in the Tonto and San Pedro valleys of the
American Southwest analyzes four distinct networks that are associated with discrete
50-year periods (AD 1200-1250; AD 1250-1300: AD 1300-1350; AD1350-1400).
Coward (2013) demonstrates a similar approach by creating multiple network indices
for all sites dated to 1000-year time slices ranging between 22,000 and 6000 years ago
in Europe. However, within much of the archaeological data of small-scale societies,
the development of network data specific to multiple temporal intervals can be difficult
to obtain given limitations in available dating evidence and uneven artifact distribu-
tions. For instance, the Kuril assemblage of 297 pottery samples from 20 different
archaeological sites produces variable network sizes when subdivided into arbitrary
500-year intervals (see Table 1). Furthermore, archacological research (Fitzhugh et al.
2004) suggests that the Epi-Jomon and Okhotsk populations were likely unrelated
occupations and not contemporaneous. Therefore, subdividing the period from 2500 to
500 cal BP into discrete 500-year or 1000-year periods not only reduces network size
but also artificially imposes a temporal structure that does not correspond to the reality
of cultural occupation in the region.

Given limitations of available archaeological data suitable for elemental character-
ization, the construction of network models for multiple temporal periods (500-year
intervals) is not feasible for this research. However, given the distinct cultural occupa-
tions recognized in the Kuril Islands, a single network that encompasses both major
occupations is also questionable. In order to evaluate the suitability of a single network
for both cultural periods, it is necessary to determine the similarity between the
networks for separate cultural periods. If strong similarity exists between both
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Table 1 Range of networks and their sizes when subdividing Kuril pottery assemblage by time period and
culture

Temporal interval 2000 1000 500
No. of networks 1 2 4
Age ranges (cal BP) 2500-500 2500-1500 1500-500 2500-2000 2000-1500 1500-1000 1000500
Available sites/ 20 14 15 15 12 14 10
nodes per
network
Percent of total sites 100 % 70 % 75 % 75 % 60 % 70 % 50 %

Occupation periods  Okhotsk and ~ Okhotsk or

Epi-Jomon Epi-Jomon
No. of networks 1 2
Available sites/ 20 13 17
nodes per
network
Percent of total sites 100 % 65 % 85 %

networks, it can be assumed that the structure of the networks likely remained reasonably
static over time so that a single network provides an acceptable model of network ties over
both cultural occupations. Perhaps the simplest method to determine the similarity
between two network graphs is to determine their graph correlation. Similar to traditional
correlation methods, graph correlation is obtained by dividing the covariance of the
matrices by their standard deviations. The resulting statistic can be interpreted as a
standard Pearson’s product-moment correlation coefficient with values nearest to one
suggesting an increasing positive correlation and values nearest to negative one suggest-
ing a negative decreasing correlation with values nearest to zero suggesting independence.
Results of graph correlation between the Epi-Jomon and Okhotsk networks demonstrate
clear independence between the two networks with a correlation coefficient of 0.12. Based
upon these results, this research favors the construction of two separate networks corre-
sponding to each of the major cultural occupations in the Kuril archipelago (Fig. 3).
Furthermore, it is assumed here that creating specific networks for each cultural period
provides the greatest likelihood that archaeological sites used in this network analysis
were occupied contemporaneously and potentially involved in social exchanges.

Fragmentation Within Kuril Island Hunter-Gatherer Networks

In the construction of network form, it is often assumed that missing data does not
greatly influence node and graph-level indices of the network. In other words, the
failure to record a single node or a single tie does not significantly alter the network
structure or measurements such as centrality (Borgatti e al. 2006). However, it is also
known that certain centrality measures, such as eigenvector centrality, can vary signif-
icantly when only a sample of nodes is used for analysis (Costenbader and Valente
2003; Mills et al. 2013). Therefore, evaluating the stability of basic network measures
is an important consideration for assessing the robustness of networks constructed from
imperfect data (missing or hidden nodes and ties). Given the aggregation and fragmen-
tation issues discussed in this research, hunter-gatherer archaeological data can often be
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considered imperfect as network boundaries are often tentative and many of the nodes/
sites exhibit significant variability in their attributes and assemblages. Overall, the goal
for assessing the stability of network measurements on archacological networks is to
evaluate whether the network graph constructed from available archaecological data can
be conceptualized as a sample of an inaccessible larger network that would include
unknown or missing archaeological sites. If network centrality measures demonstrate
stability across a range of sampled networks, then interpretations from the archaeolog-
ically constructed network can potentially be projected as interpretations of a larger,
“real” network.

Following previous research on the stability of centrality measures (Borgatti ef al.
2006; Costenbader and Valente 2003; Galaskiewicz 1991; Mills et al. 2013), this
research uses a bootstrap procedure to determine how sampling influences the stability
of three common centrality measures: degree centrality, eigenvector centrality, and
betweenness centrality. Without reiterating research concerning centrality measure-
ments in sociology and archaeology (Bonacich 1972; Borgatti 2005; Brughmans
2010, 2013; Freeman 1977, 1979; Freeman et al. 1991; Mizoguchi 2009; Peeples
and Roberts 2013; Wasserman and Faust 1994), these three centrality measurements are
used as they represent three different ways to conceptualize the centrality of a node.
The most basic centrality measure is degree centrality, which is calculated by summing
the total number of direct connections to and from a single node. Eigenvector and
betweenness centrality differ slightly as they emphasize the position and connectedness
of a single node in relation to other nodes and ties in the network. Betweenness
centrality measures the shortest paths between pairs of nodes that include the specific
node of interest (Freeman 1977). Eigenvector centrality (Bonacich 1972) differs by
measuring the importance of a node based upon its indirect connections to other nodes
in the network. As Peeples and Roberts (2013) note, eigenvector centrality is appealing
to archaeological research as it assumes that a node is able to influence other nodes in
the network simultancously rather than through network position or direct ties
(Table 2).

The simulation procedure used to assess network stability proceeds by calculating
three centrality measures (degree, eigenvector, and betweenness) for repeated random
samples of the Epi-Jomon and Okhotsk networks. The sampling process occurs by
removing between one and five nodes, or roughly 5 to 40 % of the network. Given the
presence of isolates as well as the small network sizes of the Epi-Jomon network (13)
and the Okhotsk network (17), centrality measures after the removal of five nodes
would often contain a sample network with very few ties. Following Costenbader and
Valente (2003), nodal centrality measures were calculated for each sampled network
and the original network, minus the sampled node(s). Once calculated, the centrality
measures for each sampled network were correlated with the original network central-
ity. This process occurred 1000 times for each centrality measurement with a graph of
average correlations for the Epi-Jomon and Okhotsk networks presented in Fig. 4.

The most significant result of the bootstrap simulation procedure is the presence of a
slightly stronger decline in the average correlation values of the Epi-Jomon network.
The decrease in centrality correlation among the sampled Epi-Jomon networks is most
likely due to the smaller network size of the Epi-Jomon network (13 nodes) compared
with the Okhotsk network (17 nodes). With fewer overall nodes, the removal of only a
few nodes and their ties can more significantly alter the overall network structure. In
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Table 2 Centrality measurements for Epi-Jomon and Okhotsk networks

Site name Site abbrev. Centrality measures
Degree Eigenvector Betweenness

Epi-Jomon
Berezovka BER 14 0.50 25
Alekinha ALE 8 0.40 0
Kuybshevskaya KUB 8 0.40 0
Olya OLY 8 0.40 0
Rikorda RIK 8 0.40 0
Kompaniskii KOM 6 0.19 1
Chirpoi CHI 4 0.16 0
Drobnye DRO 4 0.16 0
Ainu Bay AIB 0 0.00 0
Ainu Creek AIC 0 0.00 0
Rasshua RAS 0 0.00 0
Sernovodskoe SER 0 0.00 0
Zapadnaya ZAP 0 0.00 0

Okhotsk
Ekarma EKA 14 0.42 16
Tokotan TOK 14 0.42 16
Berzovka BER 12 0.38 16
Kompaniskii KOM 10 0.37 0
Olya OLY 10 0.37 0
Vodopadnaya VOD 10 0.37 0
Drobnye DRO 8 0.20 4
Ainu Creek AIC 4 0.12 0
Baikova BAI 4 0.12 0
Alekinha ALE 2 0.07 0
Ainu Bay AIB 0 0.00 0
Bolshoy BOL 0 0.00 0
Chrinkotan CHR 0 0.00 0
Lake Lazournye LAL 0 0.00 0
Rasshua RAS 0 0.00 0
Ryponkicha RYP 0 0.00 0
Zapadnaya ZAP 0 0.00 0

particular, eigenvector centrality correlations of the Epi-Jomon network demonstrate
the sharpest decline moving from a 0.975 average correlation with the removal of a
single node to a 0.872 average correlation with the removal of five nodes and a
dramatic increase in the spread of correlation values (see mean and standard deviations
in Table 3). The more severe decline of eigenvector correlations is not surprising as
eigenvector centrality is calculated based upon the dependence of a node’s centrality in
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Fig. 4 Average correlation of centrality measures between actual and sampled data for Epi-Jomon and
Okhotsk networks

the network and can therefore fluctuate with the omission of only a few nodes
(Costenbader and Valente 2003). Perhaps most unusual are the differences in correla-
tion means associated with betweenness centrality with the Epi-Jomon network show-
ing stable and high correlation values and the Okhotsk network demonstrating signif-
icantly greater variation (Table 3). This pattern is likely a product of the highly skewed
betweenness centrality values of the Epi-Jomon network with only one site (BER)
demonstrating strong betweenness centrality as compared to a more balanced Okhotsk
network with three sites characterized by high betweenness centrality. Because of this
distribution, it is more likely that in the random sampling of the Epi-Jomon network,
nodes with no influence on betweenness centrality were removed in each sample,
whereas in the Okhotsk network, there is a greater probability that nodes with higher
betweenness centrality were removed.

In general, the greater instability of centrality scores in the smaller Epi-Jomon
network suggests that interpretations based on the Epi-Jomon network are only

@ Springer



196 Giesfield

Table 3 Mean correlation values
and standard deviations of centrality
measures between actual and sam-
pled data for Epi-Jomon and
Okhotsk networks

Number of removed Degree Eigenvector  Betweenness
nodes

Mean SD Mean SD Mean SD

Epi-Jomon
1 0.989 0.006 0.975 0.023 0.999 0
2 0.984 0.015 0.952 0.044 0.999 0
3 0.972 0.031 0.921 0.118 0.999 0
4 0.957 0.052 0.889 0.183 0.999 0.011
5 0.934 0.084 0.872 022 0.999 0.027
Okhotsk
1 0.996 0.003 0.996 0.004 0.935 0.085
2 0.992 0.006 0.991 0.011 0.902 0.107
3 0.987 0.011 0.984 0.021 0.888 0.116
4 0.98 0.018 0.977 0.031 0.855 0.148
5 0.973 0.025 0.967 0.064 0.863 0.145

informative if the unknown “true” network (which would include the entire “real”
population) is thought to be similar in size and density. In other words, if the
archaeologically constructed network size is thought to differ by only a few nodes or
ties (3 or less), then centrality scores from the constructed network can be reliably used
for interpretation of the broader, unknown network. For the Okhotsk network, the
strong stability of degree and eigenvector centrality scores throughout all sampling
intervals suggests that the constructed network and the “true” network do not have to be
as similar as the more unstable Epi-Jomon network. Therefore, it is likely that the
constructed Okhotsk network provides centrality scores that can be interpreted as
representative of the “true” network, with the caveat that previous archaeological
research has not drastically overlooked or misinterpreted Okhotsk period archaeolog-
ical sites.

Once the stability of centrality scores is established for all networks under analysis, it
is recommended to identify which individual nodes contribute most significantly to
changes in graph-level measurements. For example, in this research, network ties are
constructed through inferring the movement of pottery samples from one archacolog-
ical site to another archaeological site using elemental characterization methods. As is
typical in many archaeological datasets, some archacological sites within the Kuril
archipelago have significantly greater and more diverse artifact assemblages with the
consequence that some archaeological sites may demonstrate stronger relationships to
other sites due to repeated pottery movement. The basic assumption here is that more
prominent nodes with stronger ties are more meaningful to the structure and interpre-
tation of the archaeological network. However, what remains less well understood in
sparse networks is the influence of less prominent nodes with weak network ties,
defined here as nodes and ties with lower degree and non-repeating connections.

In order to address the influence of strong and weak nodes on network structure, a
valued matrix was constructed for both the Epi-Jomon and Okhotsk datasets. In
contrast to the previously analyzed binary matrices used for bootstrap analysis, the
valued matrices included the total number of times that pottery samples from one site
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were geochemically associated with pottery from another archaeological site or geo-
logic location. Self-ties are not reported in this research as a majority of pottery samples
(~60 %) demonstrate no movement between archacological sites. Once valued matrices
were constructed, sensitivity analysis proceeded by removing a single node and its
associated ties from the network and re-calculating graph-level indices (GLIs) includ-
ing graph density and graph centralization based upon degree, eigenvector, and be-
tweenness centrality. In slight contrast to node-level centrality, graph centralization
measures the tendency for any single point to be more central than all other points in the
network (Freeman 1979). Centralization measures are calculated by summing the total
differences between individual actor centralities and the maximum actor centrality
(numerator) divided by the theoretical maximum possible difference of centrality
within the network (denominator) (Freeman 1979; Wasserman and Faust 1994). This
calculation produces a standardized network centralization score between zero and one
with values closest to one representing a more centralized network graph and values
closest to zero representing a less centralized graph.

Results of the sensitivity analysis (see Fig. 5) generally conform to initial
predictions that archaecological sites with higher degree values demonstrate a
stronger influence on graph-level indices. For example, the site of Berezovka
(BER) is a highly central and well-connected site in the Epi-Jomon network,
and removal of the site produces significant changes in graph density and
centralization values for degree, eigenvector, and betweenness. Perhaps most
important to this research is the result that less prominent or lower degree
archaeological sites do not appear to significantly influence graph density or
centralization when removed. In general, both graphs demonstrate that except
for the sites with the highest degree, removal of any single node and their ties
does not significantly alter graph-level indices.

In summary, the construction of networks from hunter-gatherer archaeological data
can often be considered an extreme example of aggregation and fragmentation.
Common examples of this include the aggregation of social ties over centuries or
millennia and the fragmentation of material cultural data that can limit analysis to only
a handful of archaeological sites. While exploratory, it has been demonstrated here that
the tools exist within network analysis methods to evaluate the stability of sparse
networks constructed from hunter-gatherer archaeological data. Specifically, this in-
cludes promoting the use of longitudinal networks, the use of bootstrap simulation to
evaluate the stability of node centralities, and sensitivity analysis to assess the influence
of strong and weak nodes on the overall structure of the network. Results from these
methods suggest that while archaeological data is far from perfect, minor variations
surrounding network size or nodal attributes are largely insignificant in the interpreta-
tion of the overall network graph. In other words, as long as archacologists provide
datasets that produce a reasonable network model, then the lack of information
concerning one or two nodes (or even five nodes) does not significantly alter basic
network measurements. Furthermore, using the methodologies described above, ar-
chaeologists can also empirically evaluate which centrality measures are most robust
for their set of data rather than blindly applying and interpreting any or all of the
centrality measures available. Overall, network analysis of hunter-gatherer archacolog-
ical data will rarely be able to provide the level of detail associated with social science
research of modern populations, but it is evident from this research that networks
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Node /Site Abbrev. (Valued) Density (degree) (Eigenvector)  (Betweenness)
Berezovka BER 16 Medium High High High
Kuybshevskaya KUB 12 Medium Low Medium Low
Olya OLY 12 Medium Low Medium Low
Rikorda RIK 12 Medium Low Medium Low
Alekinha ALE 8 Low Low Low Low
Kompaniskii KOM 8 Low Medium Low Low
Chirpoi CHI 4 Low Low Low Low
Drobnye DRO 4 Low Low Low Low
Ainu Bay AIB 0 Medium Low Low Low
Ainu Creek AIC 0 Medium Low Low Low
Rasshua RAS 0 Medium Low Low Low
Sernovodskoe SER 0 Medium Low Low Low
Zapadnaya ZAP 0 Medium Low Low Low

High: >2 standard deviation (SD) change; Medium: >1 and <2 SD change; Low <1 SD change

Fig. 5 Visualization of Epi-Jomon and Okhotsk valued network graphs and results of sensitivity analysis
(width of line indicates strength of relationship; isolates removed from display)

constructed from archaeological data can still provide statistically robust models with
which to build interpretations of the past.

Using Network Form to Explore Network Function

As previously discussed, social networks within hunter-gatherer societies likely func-
tion in multiple roles including, but not limited to, facilitating the exchange of social
and environmental information, the trade of materials and/or resources, the mainte-
nance of friendships, and/or the development political alliances. Furthermore, in many
small-scale archaeological contexts, it is difficult to know the exact type of social
relationship that might be represented by the material remains under examination.
However, it is argued here that by building a statistically robust network structure that
can highlight key network characteristics, the “infinite” range of network functions can
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Alekinha ALE 2 Low Medium Low Low
Ainu Bay AIB 0 Low Low Low Low
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Chrinkotan CHR 0 Low Low Low Low
t:lz‘zumye LAL 0 Low Low Low Low
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Ryponkicha ~ RYP 0 Low Low Low Low
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High: >2 standard deviation (SD) change; Medium: >1 and <2 SD change; Low <1 SD change
Fig. 5 (continued)

be potentially narrowed to a group of network types that can be further examined by
alternative forms of archaeological evidence.

Epi-Jomon

Based on the quantification of node-level and graph-level centrality measurements as
well as the visualization of network form, the Epi-Jomon and Okhotsk networks
demonstrate a few unique characteristics useful in exploring network function.
Perhaps most evident in the visualization and centrality measures of the Epi-Jomon
network is the presence of a single node (Berezovka—BER) with a significantly higher
betweenness centrality value and a unique location within the network graph. In classic
social network analysis studies, such as the analysis of elite family networks in pre-
Renaissance Italy (Padgett and Ansell 1993), nodes with high betweenness values are
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often considered important social or regional hubs which serve to facilitate the ex-
change or redistribution of information or materials and may even exert a certain degree
of power or influence over other nodes in the network. In addition, when the geographic
location of a site is considered, an interesting pattern develops where sites located in the
central region (DRO, CHI) are only indirectly connected to sites in the southern region
through ties with the site of Berezovka. While preliminary, this information suggests that
geography and mobility likely play an important role in the structuring of the Epi-Jomon
network given that ties are generally between nearest neighbors and not between sites
separated by significant geographic distances. Based upon this structural type, it can be
initially hypothesized that the Epi-Jomon network may function as a semi-centralized
redistribution system with populations in different archaeological sites accessing materials
or information through indirect or down-the-line trade by maintaining connections with
their nearest neighbors but not direct contact with distant partners. It is possible that this
network type is also representative of seasonal mobility patterns with potters moving
vessels between different locations or making pottery vessels in one central location and
redistributing them across the landscape. Based upon differences in stylistic and techno-
logical pottery characteristics between different sites, this scenario is considered unlikely
but will be examined in future archaeological research.

Okhotsk

In the examination of Okhotsk network structure, key differences emerge in both the
centrality of nodes and the geographic distribution of ties. Unlike the Epi-Jomon network,
no single node stands out as highly centralized but rather a number of sites (EKA, TOK,
BER, OLY, VOD) demonstrate degree centrality values over twice the average centrality of
other network nodes. Furthermore, the distribution of ties within the Okhotsk network
suggests an increase in the proportion of inter-regional connections with 50 % (11 of 22)
of ties connecting sites located in different regions compared to only 26 % (4 of 15) of ties in
the Epi-Jomon network. This pattern of longer distance ties can also be recognized in the
distribution of tie lengths within both networks, with the Okhotsk network demonstrating a
similar median tie distance but greater overall variability (see Fig. 6).

Building from predictions of the information networks model (Fitzhugh ez al. 2011),
lower graph centralization and increased variability in tie distances suggest that the
Okhotsk network tends towards a more “integrated” network structure with ties
occurring at the local, supra-local, and regional scales (see Fig. 7). In contrast, the
Epi-Jomon network displays a tendency towards a more “insular” network with
emphasis on ties at the local and supra-local scales. It is proposed here that the presence
of ties at multiple spatial scales, particularly supra-local and inter-regional levels,
indicates an attempt to reduce uncertainty associated with the local socio-natural
environment by maintaining long-distance relationships. Based upon classical econom-
ic theory (Knight 1921), uncertainty refers to the incomplete knowledge concerning the
result of any action or behavior, with the development and maintenance of social
relations often considered a form of adaptive behavior for mitigating socio-natural
uncertainty (Fitzhugh et al. 2011; Gjesfjeld and Phillips 2013; Hamilton et al. 2007
Kelly 1995; Minc 1986; Minc and Smith 1989; Moore 1981; Rautman 1993; Whallon
2006). In theory, consistently reproduced social ties at multiple spatial scales help
reduce uncertainty by providing diverse opportunities to acquire knowledge of social
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and natural conditions by establishing formal partners outside of an individual’s local
area. In many small-scale societies, such social relationships can be viewed as a
prerequisite for colonization and long-term habitation in isolated or unpredictable
habitats as they enable a form of adaptive flexibility to mitigate the variable outcomes
of diverse hazard events (Fitzhugh 2004; Fitzhugh et al. 2011). Based upon this theory, it
is perhaps not surprising that 65 % of archaeological sites with evidence for Okhotsk
occupation are found in the more remote central and northern regions of the island chain.

Overall, preliminary analysis of network function within the Okhotsk network, as
derived from network form, suggests a potentially risk-reducing role of social relation-
ships that promote the direct exchange of material and information over a large range of
spatial scales. Perhaps most interesting is the suggestion that populations in more

Insular »> Integrated

Fig. 7 Graphical representation of various network structures (adapted from Fitzhugh ez al. 2011)
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uncertain and vulnerable socio-natural environments, such as the Okhotsk populations
in the remote Kuril Islands, value the acquisition of information and materials enough to
accept the greater risk and increased costs associated with maintaining connections at
supra-local and inter-regional spatial scales. While numerous factors influence the
development and maintenance of long-distance social relationships in the region (group
mobility, boating technology, socio-political relationships, emerging market econo-
mies), this research provides a range of starting hypotheses concerning the function of
social networks with which future archaeological research in this region can examine.

Conclusion

In a publication by Brughmans (2010: p. 1), the author emphasized caution in the
“uncritical application of network analysis methods developed in other disciplines” with
the “need for developing a specifically archaeological network analysis.” In order to fully
realize an archaeological network analysis, it is important that both the theoretical and
methodological challenges associated with archaeological data are evaluated. In this
research, the methodological challenges of data aggregation and fragmentation are ex-
plored through data evaluation methods developed in social science research. Despite
often providing extreme examples of aggregation and fragmentation, results using archae-
ological data from compositional analysis demonstrate that sparse archaeological net-
works are fairly stable over various network sizes and largely insensitive to the absence of
weak nodes. While archaeologists can almost never fully identify the “true” function(s) or
size of social networks in the past, it is argued here that by gaining confidence in the form
of the archaeological network, it is possible to explore a range of interpretations that can
help in understanding the complex relationships of individuals and societies in the past.
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