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Abstract Archaeologists can learn a great deal from the distribution of cultural
evidence at various scales ranging from large regions, through small communities,
down to individual households. Since in many societies a significant proportion of the
human experience takes place within and around houses, houses play a prominent role
in discussions of habitus. Yet archaeologists have also experienced challenges in their
attempts to understand this habitus, especially when so many archaeological remains
pertain to short-term activities that occurred near the end of a house’s use life, or even
after, and may not even be typical. Focusing on the tiniest debris that accumulates over
long periods may help us overcome these challenges, but many archaeologists have
been reluctant to employ micro- refuse analysis because of the erroneous perception
that the scale of effort it involves must be astronomical. The approach we demonstrate
in this paper shows that careful consideration of sampling both in the field and in the
lab makes it possible to detect robust patterns from persistent activities with a fraction
of the effort that some previous analysts have employed. One of our key findings is that
employing large numbers of volunteer counters, in combination with adequate quality
assurance protocols, greatly facilitates this type of research.
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Introduction

Micro-refuse (also known as micro-artifact, micro-debris, and micro-remains) analysis
is the study of very small anthropogenic debris recovered from archaeological contexts.
Although micro-refuse may be found in many archaeological features, such as hearths
or middens, micro-refuse recovered from ancient living surfaces, such as house floors,
can inform on the small-scale activities of individuals and small groups—especially
within households or small campsites. This kind of micro-refuse analysis focuses on
understanding spatially persistent activity over the life of a household, rather than just
the last use, abandonment, or post-abandonment re-purposing of a space. To accom-
plish these goals, micro-refuse analysis needs to be a kind of spatial analysis, with
samples collected, processed, analyzed, and interpreted with spatial research goals in
mind. We contend that this “spatial micro-refuse analysis,” when combined with
carefully conceived sampling, alleviates much of the perceived difficulty of conducting
and interpreting micro-refuse studies in domestic contexts.

Even though researchers ranging from Fladmark (1982) to Hull (1987), Rosen
(1986), and Vance (1987) advocated micro-refuse analysis in activity area studies for
more than two decades, most archaeologists have found it too daunting (e.g., Tani
1995:245). This is because most of the current methods for micro-refuse analysis were
developed for other purposes, such as prospecting for particular micro-artifact types
(e.g., charred plant remains), examining individual features (e.g., hearths, storage pits,
or middens), or understanding more general diachronic patterns at a site (e.g., analysis
of “column” samples). Most of the commonly used methods of micro-refuse analysis
were developed by paleoethnobotanists who were looking for very rare ecofacts, and so
believed that they should (1) collect a very large volume of sediment from features
likely to preserve charred plant remains and (2) sort all (or nearly all) of that sediment
in order to find as many of the very rare preserved plant remains as possible. While this
effort may be justified in paleoethnobotanical studies, we contend that it is wholly
inappropriate for spatial micro-refuse analysis and this has deterred many researchers
from undertaking such studies. Specifically, the concept of counting literally tens of
thousands of items in potentially dozens of different bags of sediment is far too slow
and costly. For example, just a single 1 l sediment sample in the pioneering Simms and
Heath (1990) analysis of micro-refuse at the Orbit Inn site contained more than 10,000
micro-bone fragments and more than 118,000 fragments of shell. Such effort does not
justify the result, especially considering that each context in this study only provided a
sample size of n=1 (as these are cluster samples). That these early analysts sought to
mitigate inter-observer error by having a single individual do all the counting only
exacerbated the workload problem and ironically made it impossible to assess the effect
of observer bias on the data.

In this paper, we present a set of methods specifically designed for “spatial
microarchaeology.” These methods are focused on analyzing micro-refuse samples as
spatial records, and we aim to optimize the time and labor associated with sorting and
counting micro-refuse, while at the same time controlling for error and providing
greater insight into what the data may mean. We propose a work flow that can take a
researcher through all stages of analysis, from the field to final interpretations. We
present our methods in four sections: (1) field collection, (2) processing and sorting
procedures, (3) sampling, outlier detection, and density estimation, and (4) spatial
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analysis. To exemplify our method, we will refer to a spatial micro-refuse analysis that
we conducted of a house floor from the small Late Neolithic site of Tabaqat al-Bûma in
Wadi Ziqlab, northern Jordan. The lower floor of area E33, which we use as our case
study, likely dates to the LN4 period of the site (ca. 5350 to 5170 cal. BC at 68 %
confidence), an occupation phase that probably lasted between 145 and 400 years
(Banning 2007). More complete discussion of spatial micro-refuse analyses from
Tabaqat al-Bûma can be found in Ullah (2009, 2012), while more information about
the site and its phasing occurs in Banning et al. (2011).

Towards a Theory of Spatial Micro-Refuse Analysis

Considering that most current archaeological projects are operating under increasingly
limited budgets, knowing when and why to include spatial micro-refuse analysis in a
research program is not trivial, especially when the time and money devoted to sorting
micro-refuse could be used to fund any number of other sophisticated analyses.
Justification for spatial analyses of micro-artifact densities relies on its ability to inform
about long-term patterns in the use of domestic space in ways that larger artifacts and
architectural features cannot. In fact, for some contexts like those in our case study,
many of the macro-remains actually pertain to abandonment and post-abandonment use
of spaces (e.g., trash disposal) rather than to persistent domestic uses.

Consider several special properties of small debris: (1) The small size of micro-
refuse (typically defined as ranging between 0.5 and 5 mm (Ullah 2012)) makes them
less vulnerable to some kinds of post-depositional cultural or natural disturbances so
that they are more likely to be found as de facto refuse in archaeological contexts than
are larger artifacts (Hayden and Cannon 1983; Dunnell and Stein 1989). (2) That
micro-refuse is likely to be discovered close to where it was deposited means that
spatial patterns in the densities of the different micro-refuse classes are directly relevant
to the spatial aspects of human behaviors in ancient domestic spaces (or at least to those
behaviors likely to create micro-refuse; Fladmark 1982; Rosen 1986, 1993; Sherwood
et al. 1995; LaMotta and Schiffer 1997). (3) Most debris-producing activity is likely to
produce significantly higher quantities of micro-refuse than it would macro-remains,
particularly as fragmentation is a fractal process (Brown et al. 2005). (4) Micro-refuse
should accumulate densely in locations where the behaviors that produce them most
frequently occur. Thus, spatial micro-refuse actually benefits from the fact that most
ancient habitation deposits are “time-averaged palimpsests of trash” (Barton et al. 2011:
709). Although we must be mindful that the activities that originally deposited micro-
refuse are not the only contributors to micro-refuse distributions—maintenance activ-
ities, such as sweeping, and other site-formation processes can be important—we may
still exploit these properties to inform about the long-term patterns—the habitus—of
the use of domestic spaces (Hodder and Cessford 2004).

Following from these four points, we would expect different activities to produce
differences in the quantity and “mix” of micro-refuse types. We can draw upon
ethnoarchaeological and experimental data to build “middle-range” models that connect
specific activities (e.g., butchering animal carcasses or grinding grain) with different abun-
dance profiles of resulting micro-refuse (e.g., abundant bone chips, or abundant basalt chips;
Jones 1983; Schiffer 1983, 1987; Gregg et al. 1990; LaMotta and Schiffer 1997; Kamp
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2000). Small beads and bead fragments are not present in the Wadi Ziqlab example
presented here but can also occur on prehistoric and historic sites, indicating areas of craft
production or places where decorated clothing was stored or worn (Guan et al. 2011; Simms
andHeath 1990). Interpretation of spatial patterning in the relative density of differentmicro-
refuse classes recovered from ancient floors should then allow us to construct a model of the
spatiality of regularly conducted domestic activities.

The preceding discussion of the theory of micro-refuse production, dispersal, and
deposition produces tangible methodological implications for the collection and analysis
of these small-sized artifacts. If we want to use micro-refuse to understand long-term
processes of domestic arrangements, we need to analyze them in amanner appropriate to
the particular characteristics of micro-refuse that reveals such long-term patterns. The
remainder of this paper lays out our method to achieve this and some example results.

Collecting Micro-Refuse Samples in the Field

Collection and spatial sampling methods set limits on all consequent analyses, so the
research frame of a spatial micro-refuse analysis must begin in the field. Researchers must
make trade-offs; they need to obtain enough samples taken at high-enough spatial
resolution to produce meaningful results, but should refrain from over-sampling, and
from sampling dubious (e.g., recently disturbed or poorly dated) contexts, which would
waste time andmoney. For example, the northern portion of the G34 building at our site of
Tabaqat al-Bûma had been disturbed by recent road building, and so we chose not to
sample that portion of the floor. This alsomeant that we could sample the intact portions of
this relatively large house floor (the house was approximately 4 m by 6.5 m) at a spatial
resolution of 50 cm2 without unduly increasing the workload associated with analysis.

Researchers also need to make practical decisions about what thickness of sediment
belongs to a “surface” in the context of their site. As an example of this issue, in our case
study in northern Jordan, we were often confronted by buildings that had likely been
occupied for long periods (100 or more years (Banning 2007)). The mud and/or loosely
plastered floor surfaces that we discovered thusmay have been resurfacedmany times, but it
was not possible for us to confirm or deny this in the field. Therefore, we constrained our
samples to a thickness of about 6–10 mm in order to minimize vertical mixing of layers.

The optimum sampling strategy for each site will vary, but it should streamline sample
collection and processing, and minimize costs and error. The goals of efficient micro-
refuse sampling are as follows: (1) to capture accurately the spatial patterning of micro-
refuse from an archaeological surface at a scale appropriate to subsequent analyses, (2) to
do so using the smallest number of sample locations, (3) to collect the smallest volume of
sediment that will still yield useful results, (4) to provide accurate results for both sparse
and abundant artifact types, and (5) to be easy for archaeologists to implement in the field.
In this section, we report the results of some simulations of sampling efficiency and
accuracy that may guide strategies for collecting micro-refuse samples.

GIS Simulation of Archaeological Deposits

We used the free and open-source GRASSGIS software suite (GRASSDevelopment Team
2014) to conduct our micro-refuse simulations. We first simulated two possible
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arrangements of “activity areas” in a 10 m by 15 m rectilinear domestic floor by randomly
distributing different numbers of circular “activity areas” across the floor. We use random
distributions of activity areas in our simulations because cultural processes, while not
random, are variable enough that there is no a priori reason for positioning activity areas
in particular places within a structure. The first scenario simulates a small number of large
activity areas (Fig. 1a, b; 10 circles with radii of 1–2 m) and the other a larger number of
smaller areas (Fig. 1c, d; 30 circles with radii of 0.25–1 m). In our simulation, we “seeded”
micro-refuse in these areas at either a high density of 1/cm2 (Fig. 1a, c) or a lower density of
0.1/cm2 (Fig. 1b, d). The actual locations of each individual piece of micro-refuse were
determined by a random point generator so that point northings and eastings followed a
normal distribution. This ensures that artifact deposition is denser in the center of activity
areas than at their edges, which conforms to ethnographic data on artifact deposition within
activity areas (Kent 1984; Binford 1978). We simulated site-formation processes by
“perturbing” the coordinates to distances determined by another random number generator
(following a normal distribution ofμ=0 cm andσ=50 cm). The results are plausible models
of a variety of possible micro-refuse distributions within the two different arrangements of
simulated activity areas (Fig. 1e–h). Finally, we created a raster density map for each

Fig. 1 The four simulated micro-refuse distributions. a–d Initial random assignment of activity area locations
and sizes and initial “deposition” of micro-refuse at low and high density. e–h Simulation of site formation
process by random “perturbation” of micro-refuse points. i–l 10 cm resolution kernel density maps of the final
micro-refuse density patterns for each simulation
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simulation using a kernel density estimator at a 10 cm resolution (Fig. 1j–m) to use as a
“control” in the sampling experiments discussed in the next section. We have encapsulated
our simulation method in a custommodule for GRASSGIS that we call “r.floorsim,”which
can be downloaded from theGRASSGIS add-ons repository (see the supplemental material
for the URL).

Spatial Sampling Frame Experiment Protocol

In the field, archaeologists are frequently limited to those collection strategies that are
practical to implement with the tools commonly at their disposal, such as carpenter’s
tapes, string, and nails. With these constraints in mind, we generated four simple spatial
sampling frames from which to draw density estimates for each of the four simulated
micro-refuse deposits. The first sampling frame is a standard contiguous square grid of
1 m by 1 m collection cells from which all “sediment” for a sample element would be
collected (Fig. 2a). The three remaining sampling strategies employ arrangements of
smaller, non-contiguous circular sampling cells of 5 cm radius (i.e., “pinch” samples)
from which all “sediment” for a sample element would be collected. The first of these is
a 1-m-square lattice of sampling points (Fig. 2b), the second is a 1-m-triangular lattice
of sampling points (Fig. 2c), and the final one is composed of 150 sample points
randomly located across the surface (Fig. 2d).

Using each of these sampling frames, we first extracted counts of “micro-refuse” for
each sample element from each of the simulated micro-refuse distributions. We then

Fig. 2 Four potential spatial sampling frames for collecting micro-refuse. a Cellular grid-based method
(central dot shows location of interpolation points), b rectilinear grid of “pinch” sampling points, c triangular
grid of “pinch” sampling points, and d a random distribution of “pinch” sampling points
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converted the counts into density by dividing them by the area of each sample element
(e.g., multiplying by 10,000 cm2 for the gridded square sampling elements, and by
78.54 cm2 for the 5 cm circular “pinch” sampling elements). Finally, we used these data
to interpolate raster density maps for each simulated micro-refuse distribution at 10 cm
resolution (see Interpolation of Density Maps for a discussion of interpolation tech-
niques). For the grid-based approach, we created both a “coarse” raster density map at
the resolution of the sampling grid (1 m) and an interpolated 10 cm resolution density
map, created by assigning the density estimate for the entire cell to a point in the center
of that cell (Fig. 2a) from which to run the interpolation. In this way, we achieved five
different maps of estimated density for each of the four simulated activity area
distributions, resulting in four experiments with 20 maps in total (Fig. 3a–e).

Fig. 3 The interpolated density surfaces from each of the different sampling frames for the high-density
simulation of many small activity areas. a “coarse” 1 m resolution grid-based sampling, b “fine” 10 cm
resolution interpolated grid-based sampling, c 10 cm resolution interpolated rectilinear point-based “pinch”
sampling, d 10 cm resolution interpolated triangular point-based “pinch” sampling, e 10 cm resolution
interpolated random point-based “pinch” sampling, and f 10 cm kernel density “control” map
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Simulation Experiment Results

We compared the density values in the interpolated maps with the kernel-density
“control” maps by calculating the correlation coefficient between them, and also to
3×3 cell and 5×5 cell mean-smoothed versions of each control model (Table 1). The
smoothed control models remove the influence of small-scale variations in density, and
thus, provide an understanding of how well the interpolated maps correspond to larger-
scale trends. Each of the 20 density maps correlated reasonably well with the actual
density of micro-refuse in the simulated deposits (the minimum correlation was 0.687
for triangular “pinch” sampling for the low-density simulation with many activity areas,
which is still significant at p<0.1), although every collection method produced better
correlations in the high-density experiment than in the low-density one. Interpolating
from the cellular grid count provided the most highly correlated result in all experi-
ments, likely because the larger “sampling radius” of the 1 m grid cell was less
susceptible to small perturbations in micro-refuse density (although this may also mean
that this method potentially under-estimates very high densities due to spatial averag-
ing). The triangular or rectilinear “pinch” sampling frames provide the next most
accurate estimates for all but the low-density experiment of many small activity areas.
The coarse-resolution 1 m grid data was typically little better than a random sampling
pattern, and both usually provided the worst density correlations of the tested sampling
frames, except in the low-density simulation of few large activity areas.

Interestingly, all of the experimental maps had higher correlation with the smoothed
control datasets than with the original 10 cm kernel density control map. In all but the
high-density experiment of a few large activity areas, furthermore, correlation in-
creased with the size of the smoothing neighborhood. This suggests that all of the
sampling and interpolation procedures we tested here better predict broad-scale trends

Table 1 Table of correlation statistics showing the correlation between the density surfaces interpolated from
the different sampling frames with the kernel density map for each simulated micro-refuse distribution

Control Control 3×3
smoothed

Control 5×5
smoothed

Control Control 3×3
smoothed

Control 5×5
smoothed

10 large areas 30 small areas

High density simulations

Grid cells 0.924938 0.947849 0.9372 0.892586 0.927697 0.932699

Interpolated grid 0.955905 0.979535 0.966663 0.919693 0.955951 0.962663

Rectilinear points 0.942822 0.966167 0.95916 0.907355 0.943007 0.949496

Triangular points 0.944964 0.968307 0.956301 0.913275 0.948922 0.955027

Random points 0.93062 0.953614 0.937951 0.884719 0.919556 0.92605

Low density simulations

Grid cells 0.821658 0.921419 0.932433 0.718998 0.884836 0.904214

Interpolated grid 0.852584 0.954296 0.966663 0.747251 0.918137 0.940607

Rectilinear points 0.826407 0.924877 0.936748 0.700751 0.859377 0.879895

Triangular points 0.828716 0.927589 0.938313 0.687665 0.843687 0.863098

Random points 0.820205 0.917944 0.929395 0.703816 0.864561 0.884801
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in the density data than they do patterning at scales smaller than the original collection
grid. Our simulations suggest, however, that very small-scale details are more likely the
result of post-depositional site-formation processes than of long-term human activities
that initially produced the deposit. For example, our technique would accurately
delineate the flintknapping corner of the house (a region bigger than the resolution of
the collection grid), but would only hint at small pockets of flakes introduced to other
parts of the floor by bioturbation (e.g., animal burrows smaller than the collection grid).
As very small-scale spatial variations are not likely to provide insight into long-term
trends of domestic behavior, a collection scheme focused on small-scale patterning may
actually obscure the larger patterns that are more relevant to persistent household
practice. Interpolation essentially removes fine-scale “noise,” thereby, providing a
clearer picture of the general trend of micro-refuse densities at the scales that are more
relevant to repeated human behavior, and analogous to the “activity areas” of Susan
Kent’s (1984) ethnoarchaeological studies.

Field Sampling and Collection Methods

The results of the brief simulation experiments reported in GIS Simulation of
Archaeological Deposits provide empirical evidence that can better guide the choice
of a spatial micro-refuse sampling frame for a research plan and knowledge of current
field conditions, an expectation of the possible micro-refuse densities at the site, and the
budget for field and laboratory work. If time and budget allow, the traditional grid-
based methods of spatial micro-refuse sample collection can yield very accurate
estimates of the spatial pattering of micro-refuse densities if combined with an inter-
polation procedure, but will take the most time to collect and process. Grid-based
collection schemes should not be used without interpolation, however, as the coarse,
uninterpolated results of a grid-based sampling strategy will not justify the added
expense. Although point-based “pinch” samples cannot capture smaller-scale pattern-
ing, they do capture the general trends well, and may also provide better estimates of
density in the densest parts of the distribution. “Pinch” samples may therefore be
preferable if minimization of total collected sediment volume is desirable. For example,
in the broad horizontal exposure style of excavation at our Tabaqat al-Bûma case study,
we conducted grid-based sampling in most buildings (with sample elements of about
1–2 l each), but, at more recent, smaller-scale excavations at other Late Neolithic sites
in the region, we have opted for lattice-based “pinch” sampling frames (with sample
elements of about 100–200 ml each), which are more practical to deploy in smaller
excavation units that obliquely bisect portions of living surfaces (Fig. 4).

Another aspect of field collection is the choice of surfaces to sample. In this paper,
our case study is limited to variation across floors inside buildings. However, it can also
be useful to study micro-refuse in exterior surfaces and it is useful to take samples from
comparable deposits off-site, especially in contexts where the cultural identification of
some classes of material is not clear. For example, perhaps, it is difficult to be sure that
basalt chips result from the use of grinding stones (in our context, however, basalt does
not occur naturally in Wadi Ziqlab’s drainage). Regardless of field collection methods,
our simulations show that our ability to produce reliable data is closely related to the
density of micro-refuse in the ancient living surface and the spatial configuration and
size of the activity areas that may be present. Any interpretation of the spatial patterning
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of micro-refuse should take this into account, and we will return to the issue of micro-
refuse data in the “Sampling Procedure and Optimum Sampling Volume” section.

Separating, Identifying, and Counting Micro-Refuse

After collecting samples in the field, the next phase of spatial micro-refuse analysis is to
estimate the density of different micro-refuse types in those samples. To do so, one must
first find the micro-refuse, which means it must be separated from the sediment matrix.

Mechanical Separation of Micro-Refuse

Although simple wet screening (or even dry sieving in depositional contexts such as
sandy or silty layers) through two or more nested screens can be employed to remove
the “fines” (silt and clay-sized particles) and large clasts (larger gravels, pebbles, and
cobbles) of sediment to be sampled for micro-refuse, most micro-refuse analysts rely on
flotation to separate delicate charcoal and botanicals from the heavier clasts. Screening
is simpler, very inexpensive, and commonly used (e.g., in CRM, where a sample sorted
by 1/8” screen is often required in important contexts), but we advocate the use of
flotation in spatial micro-refuse studies whenever it is feasible. Although typically more
time-consuming, inexpensive methods of flotation do exist (e.g., “bucket” flotation
(Fairbairn 2005) or “hand pump” flotation (Shelton and White 2010)), and flotation
offers significant advantages for later analysis because it results in cleaner clasts and
micro-refuse that is easier to sort and identify, especially if surfactants or other safe
reagents (such as a 5 % solution of distilled white vinegar or other mild organic acid)
were added to the flotation liquid.

Whether floated or not, we advocate separation of multiple size classes of micro-
refuse (and associated sediment clasts). Although considerable debate exists about the
size range for micro-refuse, most researchers have focused on artifacts that are smaller

Fig. 4 The larger exposures at Tabaqat al Bûma allowed easy implementation of grid-based sampling frames
aligned to the orientation of the house-floors (a). Smaller excavation units at sites like al-Basatîn (Gibbs et al.
2006) exposed only portions of living surfaces, which were more efficiently sampled with lattice-based
“pinch” sampling frames (b)
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than 5 mm but larger than 0.5 mm, typically analyzing all artifacts in their size-
definition as a single sample. Because there are considerable data on the effects of
fluvial, colluvial, and aeolian transport process on sedimentary grains (and therefore,
artifacts) of differing sizes (e.g., Sahu 1964; Visher 1969; Tucker 1980; McLaren and
Bowles 1985; Pye and Tsoar 2009; Bertran et al. 2012), we strongly suggest separation
of floated micro-refuse by nested geological sieves with mesh sizes aligned to standard
sedimentary clast size divisions for sands and small gravels (either the “Udden-
Wentworth” scale used in North America (Wentworth 1922), or the ISO 14688-1 scale
used internationally (ISO-BSEN 2002; Table 2). It is clear that formation processes
differentially affect artifacts of different sizes (Shott 2010), but barring additional
ethnoarchaeological or experimental justification, our initial experience from Tabaqat
al-Bûma suggests that the “Very Coarse Sand” and “Very Fine Gravels” of the Udden-
Wentworth scale (i.e., clasts between 1 and 4 mm ) are reasonable “default” size
fractions with which to conduct initial analyses, and the results reported in the
“Sampling Procedure and Optimum Sampling Volume” section focus on the 1.4–
2.0 mm size fraction. These size classes are easily viewed under low magnification
with binocular microscopes and are sufficiently large to resist traction or transport by
moderately powered natural processes (e.g., normal winds, rain splash, etc.) while still
small enough to evade removal during the use and maintenance of floors.

Sorting Procedure, Training, and Sorting Ergonomics

Previous attempts at micro-refuse analysis have often attempted to escape inter-
observer variation by having a single analyst count all the micro-refuse in all the
sample elements. This does indeed mitigate inter-observer error but causes serious
bottlenecks in analysis and, ironically, makes evaluation of observer error difficult, if
not impossible. We therefore endorse the use of multiple “amateur” student volunteers
to sort the samples, which can be done in the laboratory well after excavations have
been completed (see the “Sampling Theory, Outlier Detection, and Density Estimation”
section for justification). It is vital to have a standardized training program for these
volunteers, however, so as to minimize inter-observer biases. We suggest this be done
in a group session to minimize differences in training, and that a standardized reference
collection with 10–30 examples of each type of micro-refuse from the site is always

Table 2 Udden-Wentworth (North American) and ISO 14688-1 (International) clast-size divisions relevant to
micro-refuse studies (Wentworth 1922; ISO-BSEN, 2002)

Udden-Wentworth scale International scale (ISO 14688-1)

Clast size Size fraction name Clast size Size fraction name

8–16 mm Medium gravel 6.3–20 mm Medium gravel

4–8 mm Fine gravel 2.0–6.3 mm Fine gravel

2–4 mm Very fine gravel 0.63–2.0 mm Coarse sand

1–2 mm Very coarse sand 0.2–0.63 mm Medium sand

1/2–1 mm Coarse sand

1/4–1/2 mm Medium sand
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available. Training should include detailed description of the distinguishing features of
each type of micro-refuse, such as the sharp edges and ventral surface of a micro-flake,
the different colors of flint to expect, the apparent “sponginess” and inclusions in tiny
chips of pottery, the cellular structure of a charcoal fragment, the sheen of archaeolog-
ical shell, or the fibrous aspect of coprolite fragments. Our recommended training
protocol also requires volunteer analysts to re-count the first few samples that they
sorted under the supervision of a more experienced sorter, discarding the data that they
recorded while they were still inexperienced at identifying micro-refuse.

Each volunteer analyst should maintain a log of each sediment context as it was
sampled, noting the size fraction and the date of counting (see the supplemental
materials). This ensures that each counter will examine a subsample from each context
at least once. As discussed in the “Sampling Procedure and Optimum Sampling
Volume” section, sampling should be done with replacement so analysts should be
prevented from working on the same context at the same time. Samples should be
drawn from the larger bag after mixing its contents gently, using a graduated cylinder to
determine the correct sampling volume (3 ml in our case; the “Sampling Procedure and
Optimum Sampling Volume” section). Samples should be sorted into small piles by
category on a Petrie dish under binocular optical microscopes (Fig. 5). After the initial
sorting, analysts should re-examine the piles and ensure identification of micro-
materials by checking against the reference collection or requesting supervisory con-
firmation. Counts of each micro-refuse type should then be entered on a central form,
along with the date and the analyst (see the supplemental materials).

The ergonomics of sorting should be ensured by adjusting the height of microscopes
and lab furniture for a variety of body sizes, reducing fatigue error. Since this is eye-
straining work under any conditions, we suggest that analysts only work for sessions of
about one hour. We find that analysts can count one or two subsamples during this time
and thus the subsamples for a particular floor and size fraction can be sorted in just a

Fig. 5 An example of a sorted micro-refuse sample element from our Tabaqat al-Bûma case study

Modernizing Spatial Micro-Refuse Analysis 1249



few weeks of part-time work. Finally, we also recommend setting up the microscope
near a window so that counters can periodically look out and change their focus, which
also relieves eye strain (Fig. 6).

Sampling Theory, Outlier Detection, and Density Estimation

Sampling theory has long demonstrated that it is much better to have a large number of
observations from which we can measure central tendency (e.g., mean or median) and
its associated error, than a single observation, no matter how extensive or careful that
single observation might be. In other words, it is always advantageous to have a large n
in order to have a small standard error on an estimate of the mean. Consequently, it
follows that a solution to the workload dilemma is to employ a larger number of
observers (e.g., student volunteers) and to subdivide the work. We must be confident,
however, that differences in apparent micro-refuse abundance or density (abundance
adjusted for unit volume) from context to context are “real” and not simply due to inter-
observer error. The first solution to mitigate inter-observer error is to ensure that
sediment from every spatial sampling location is examined by every observer. Our
analyst training program (see the “Sorting Procedure, Training, and Sorting
Ergonomics” and the “Determining the Optimum Sample Size (Number of Sample
Elements)” sections) and supervisory assistance also help but, even after training, some
observers will inevitably be incapable of accurately identifying particular classes of
material, and will consistently over- or under-report counts for those classes. Typically,
over-counting is the greater problem; there is theoretically no upper limit to the possible
counts, but the lowest count any observer can have is zero (a Poisson distribution). Our
method for dealing with these consistently poor counters is statistical, but varies
depending on the density of a particular micro-refuse type. In any case, we attach a
unique observer ID tag and date stamp to each count so that we can track trends in
observer differences (see the Supplemental Materials for templates of the laboratory
forms that we use to accomplish this).

Fig. 6 Volunteer student analysts sorting micro-refuse in our laboratory on the University of Toronto campus.
Note the abundant natural light, variety of seating/working positions, and the height of the lab tables
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Sampling Procedure and Optimum Sampling Volume

The simulation experiments in the “Collecting Micro-Refuse Samples in the Field”
section showed how the actual density of micro-refuse in the sampled deposit and the
style of collection can affect the accuracy of the resultant density maps. This is
exacerbated by the volume of the collected sample elements; all else being equal, a
smaller volume of sediment will contain fewer micro-refuse than a larger volume.
These factors also affect the laboratory procedure of sorting, counting, and outlier
removal. On the one hand, having sampling elements that are too small can result in too
many counts of zero for all micro-refuse types, leading to biased estimates of density
(Fig. 7a). On the other hand, sorting large volumes improves density estimates (Fig. 7d)
but at the cost of increasing the workload and thus the potential for analyst fatigue and
miscounts, or of decreasing sample size (n). There is an inevitable trade-off between the
number of sample elements (i.e., sample size, n) and the size of the individual sample
elements. Assuming that the total budget of analytical effort is fixed, if we increase the
size of the sample elements, we must decrease the total number of samples that can be
studied. The “pinch” sampling strategies discussed in the “Collecting Micro-Refuse
Samples in the Field” section are one way to mitigate this (i.e., by limiting the initial
sample size during field collection). However, as we showed in the “Collecting Micro-
Refuse Samples in the Field” section, the larger collection volumes that grid-cell
sampling yields may produce better results, and so may be the preferred collection
method in many cases.

We have therefore developed a sequential sampling procedure that reduces the
workload associated with sorting large sample elements. In this procedure, multiple
small volumes for a given size class are drawn—with replacement—from the total
volume that has been collected from each grid cell. Each of these small volumes is
analyzed by a different analyst. The actual volume of sediment to be included in the
sample should be determined by experimentation, using the density of the most
common or most important types of micro-refuse (e.g., bone, basalt fragments, lithics,
shell, and pottery) at the very coarse sand through very fine gravel size ranges as the
indicator of adequate sample size. It is important to adapt the specifics of the experi-
mentation procedure to the conditions of each site (i.e., the specific types, densities, and
sizes of micro-refuse), and we detail the procedure we used at Tabaqat al-Bûma only as
an example of how this may be achieved. According to the logic in the “Mechanical
Separation of Micro-Refuse” section, we chose to initially focus on the very coarse
sand sized particles (1–2 mm, Table 2) of our size-sorted heavy fractions. In order to
increase sampling efficiency, we also chose to break that category up into smaller (1–
1.4 mm) and larger (1.4–2 mm) size fractions to see if there were differences in micro-
refuse density or identifiability within the very coarse sand size fraction. For each of our
two size classes, we initially drew samples using an element of 0.5 ml, but found far too
many counts of 0 and 1 to be acceptable. We also experimented with elements of
1.0 ml, finding only little improvement, before settling on 3.0 ml as fairly satisfactory
for most micro-refuse types, in that the mean or density was sufficiently high and our
estimates of relative error leveled off (see the “Determining the Optimum Sample Size
(Number of Sample Elements)” section). This sample element size produced adequate
amounts of these artifacts for statistical rigor, while still being small enough for most
analysts to sort and count in about an hour (Fig. 8 and compare Fig. 7), and the 1.4–
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2 mm size class was much easier for analysts to sort accurately into micro-refuse
categories. We note that this procedure to select an adequate element volume takes only
a few days, and can also be used to produce the comparative collections that we
advocate in the “Sorting Procedure, Training, and Sorting Ergonomics” section.
Finally, we note that if “pinch” collection methods are used, this type of experimenta-
tion is not necessary because the sample element sizes are predetermined in the field.
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Fig. 7 Ideal Poisson distribution functions for sample element sizes of a 0.5, b 1, c 3, and d 10 ml, with an
overall density of 3,000 items per liter. As sample element size increases, the distribution approaches normality
and the accuracy of estimates of mean and standard deviation increases, but sorting effort drastically increases
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Fig. 8 Histograms of reported counts of a charcoal, b bone, c shell, and d flakes for the grid “G” context of
our Tabaqat al-Bûma case study with a sample element size of 3 ml. These types occur in increasing
abundance, with charcoal being very rare, and flakes being the most abundant. Compare these distributions
to those in Fig. 4
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For pinch samples, we instead advocate sorting the entire sample for each size fraction
of interest by multiple analysts. The outlier detection, stopping rule, and density
estimation routines discussed in the next section (“The Effect of Abundance and
Outlier Detection” section) apply to both collection strategies.

The Effect of Abundance and Outlier Detection

For the more abundant classes of micro-refuse, a variety of statistical analyses can
highlight cases where the identity of an observer is a better explanation of the variation
in counts than is the identity of the sediment context. The approach that we advocate is
one that is analytically and computationally simple; we transform the raw counts into
standard deviation units away from the mean (Z-scores ), and then identify “bad
counters” for a particular class of micro-refuse as those consistently above some
confidence threshold (e.g., the 90 % confidence interval or ±1.65 SD). We then exclude
data from those observers from the subsequent analysis of counts for that artifact type,
but it is not necessary to remove them from all aspects of the analysis; someone poor at
counting lithics might be perfectly competent to count basalt, for example. With the
most consistent outliers removed, the impact of remaining outliers is largely mitigated
by using either trimmed means or medians (keeping in mind that micro-refuse studies
entail cluster samples rather than element samples) to estimate the actual density of
each micro-refuse type in counts per unit volume of clasts in the studied size fraction.
Trimmed means and medians are reasonable methods of assessing central tendency for
skewed distributions that contain many outliers, including Poisson-distributed phenom-
ena like our micro-refuse count data (Hoaglin et al. 2000).

Some classes of material (e.g., burned bone, burned lithics, most micro-ecofacts)
occur at much lower density than the more abundant ones, with the result that our
sample element volume (3.0 ml), even after the procedure discussed in the “Sampling
Procedure and Optimum Sampling Volume” section, is highly likely to yield only
counts of 1 or 0, with only rare instances of higher counts. For example, in our samples
from Wadi Ziqlab, micro-ecofacts such as coprolites may only occur in one out of ten
samples, and then at very low densities (one or two observations). Rather than
increasing the volume of the sample element (which feeds back into the workload
problem), we recommend the simpler solution of treating the rare items with decreased
precision. Analysts still count these rare items, but we then convert these counts to
simple presence or absence. Outlier detection then becomes a matter of identifying
observers who either never see anything other than the most abundant artifact types or
who consistently count rare items that no other counters noticed. We stress that micro-
refuse densities will vary from site to site, and even within contexts at the same site, so
this conversion should only be undertaken when rare items occur at densities that are
significantly (e.g., an order of magnitude) sparser than the more commonly discovered
micro-refuse types in the same context. Although density cannot be calculated for these
rare items, their ubiquity (the relative frequency of non-zero observations) in each grid
cell or sample point provides a quantitative measure with which to distinguish spatial
patterns. It is important to keep in mind that ubiquity is not directly comparable to
density or abundance, but it is also reasonable that contexts that tend to include at least
one observation of a certain micro-refuse class a significant proportion of the time are
different in some way from contexts that almost never have such observations. For
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example, the presence of a few pieces of burned bone in one corner of a house could
mark the corner as an area of interest if no other burned bones were discovered in other
portions of the house. This is especially useful for types that are so rare as to be difficult for
many observers to identify correctly even when they are present. The number of possible
values that ubiquity can have depends entirely on the total number of observations–with
only four observations ubiquity can only be one of 0, .25, .5, .75, or 1.0, for example—but
the sample sizes produced by our stopping rule (see the “Determining the Optimum
Sample Size (Number of Sample Elements)” section) are sufficiently large for ubiquity to
take on many possible values so that it almost approaches a continuous measurement.

Determining the Optimum Sample Size (Number of Sample Elements)

Although it is possible to estimate the ideal size of n for a particular budgeted effort,
estimated density, and desired error and confidence level (Thompson et al. 1992;
Drennan 1996; Shennan 1997; Banning 2000), we recommend the alternative approach
of sequential sampling. Sequential sampling involves adding sample elements until
some stopping rule is satisfied. Here, we use a very simple stopping rule that identifies
when the decrease in the cumulative relative standard error (RSE) begins to level off as
we increase n. A heuristic plot with n on the x axis and the estimate of RSE along the y
axis (Fig. 9) show how RSE changes with increases in n. When n is small, RSE is not
stable from one size of n to the next. However, as n increases, RSE usually begins to
fall and then level out, so that the RSE of, say, 15 observations is not that different from
that for 16 observations. We conducted exploratory data analyses with our Tabaqat al-
Bûma data sets, in which we purposely over-sampled grid cells (e.g., Fig. 9) to test the
validity of this method, and to determine a reasonable general stopping rule. Our results
suggest that sampling can be suspended after three consecutive estimates that are not
significantly different. Because the graphical representation of the cumulative RSE
curve (e.g., Fig. 9) is an easily interpretable heuristic image, we recommend using it
first to confirm visually that the last three estimates appear to make a “reasonably flat”
line (i.e., the RSE curve "flattens out" over 3 or more consecutive data points). We then
confirm this by calculating the "local slope" of the plot line for each micro-refuse type
(the slope of a regression line drawn through three consecutive data points). We have
found that a 3-point “slope” of less than 0.03 for three consecutive measures of this

C
u
m

u
la

ti
v
e 

R
S

E

Basalt Bone Flakes Pottery Shell

0

0.2

0.4

0.6

0.8

1

2 4 6 8 10 12 14 16 18

Fig. 9 Plot of cumulative relative standard error versus number of observations (n) for grid “B” of the E33
floor. After the trend lines level out, further increases in sample size cease to add precision to our estimate of
the density of micro-refuse
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slope indicates that there will be no significant benefit from further sampling. It is easy
to program a check on this slope into a spreadsheet with a simple formula.

It is important to note that significant outliers in the data can affect this stopping rule.
As an example, notice how the Cumulative RSE curve for Bone in Fig. 10a “spikes” at
12 samples. Examination of the raw count data from this context show that sample
element 12 returned a count of “36,” which is much higher than most of the other
counts (including the immediately preceding count of “4”). In the case of “true” outliers
(e.g., due to miscounts or other human error), we can trim them (see “The Effect of
Abundance and Outlier Detection” section), and this will likely alleviate the problem
(e.g., Fig. 10b). However, in the case of rare micro-refuse with many 0 counts, such
“spikes” are caused even by counts of 1. In these cases, we advocate applying the
stopping rules to the more abundant types in the same collection unit, unless one of the
rare classes is particularly critical to the anticipated analysis. Finally, if the data appear
to suffer from neither significant outliers nor rarity, then there may simply be significant
error inherent in the data. This is not likely to occur, however, so should be the last
conclusion drawn for a curve that refuses to flatten out quickly.

This approach provides some grounds for confidence that the estimates of density or
ubiquity for the most important common and rare micro-refuse are reasonably accurate,
and it also generates statistical errors and confidence limits for those results.
Importantly, this approach most often accomplishes this with sample sizes that require
much less effort than has usually been associated with micro-refuse. We estimate that it
took approximately 200 h to sort the entire E33 floor in our case study, with the
workload spread across the two dozen volunteer and work-study students that we
employed over two separate semesters in our lab at the University of Toronto. This
estimate includes the time allocated to the training procedure outlined in the
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Fig. 10 Plots of cumulative RSE versus n for grid “G” of the lower E33 floor a before outlier trimming and b
after trimming
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“Mechanical Separation of Micro-Refuse” section, some experimentation with sample
element size and micro-refuse size classes, and deliberately “over sampling” half of the
grid squares to confirm our stopping rules, yet still yields a total analysis time of about
20 h per context. Although it is difficult to precisely assess all the incidental costs, we
estimate that the final cost of the analysis for this one floor context was less than
CAN$1,000 (this includes the costs associated with gathering, packing, shipping, and
analyzing the samples for this floor). This can be contrasted with the famous
“Heartbreak Hotel” spatial micro-refuse study by Metcalfe and Heath (1990), who
reported that “literally hundreds of person-days were required over the four years
devoted to isolating the microrefuse [sic] from the floor and hearth samples” (p.
793). That was for 42 contexts, and presuming at least 200 8-h days, yields a minimum
estimate of 1,600 total sorting hours. It, thus, took Metcalfe and Heath an average of at
least 38 h to sort a single context, and all of these hours were accrued by a single
analyst. We do not know the financial cost of Metcalfe and Heath’s study, but we
believe our method to have cost significantly less. Our methods not only saved sorting
time and cost, but provided a vastly improved understanding of the error in our data. To
further encourage a renewed interest in spatial micro-refuse studies, we have created a
spreadsheet template that facilitates our counting, outlier detection, and stopping rules
routines, which can be freely downloaded from microcommons.org, which is an online
repository of micro-refuse analysis tools, data, and publications (see the Supplemental
Material for the URL).

Analyzing Spatial Patterns in Micro-Refuse Density

The final phase of a spatial micro-refuse analysis is the actual spatial analysis that will
inform our interpretation of the habitual use of space on the ancient surface. Tables of
micro-refuse density data are not easily interpretable, and most of the common grid-
based spatial statistics, such as local density analysis (Johnson 1984) and grid-based
unconstrained clustering (Kintigh 1990), are unsatisfactory for two main reasons. They
only produce grid statistics at the (often very coarse) resolution of the original collec-
tion grid, and they are often difficult to interpret and must be mentally cross-correlated
with other spatial data to produce an understanding of the spatial patterning in question.
We instead advocate the use of quantitative graphical methods such as interpolation and
unsupervised multiband-image classification.

Interpolation of Density Maps

The simplest quantitative graphics are thematic color maps at the resolution of the
original collection grid (Fig. 11a), but these are often too coarse (grid-based collection)
or spread (“pinch” samples) to be heuristically meaningful. We therefore advocate the
use of GIS software to interpolate visually pleasing density plots that also serve as
inputs for mathematically complex statistical analyses. Many interpolation methods are
available, but we endorse regularized spline-tension interpolation as a tunable and
highly accurate method, although any higher-order interpolation procedure (e.g.,
kriging or bicubic spline interpolation) will produce better results than lower-order
interpolation procedures (such as the inverse distance-weighted method; Mitasova and
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Mitas 1993; Mitas and Mitasova 1999). To do this with grid-based data, the densities of
each grid square are assigned to a point in the center of that grid square. Because the
interpolation algorithm statistically “fills the gaps” between each input point, it pro-
duces output maps that predict the spatial pattern of micro-refuse densities at a
precision finer than that of the original collection grid (Fig. 11b). We must reiterate,
however, that these interpolated density maps are only as good as the input data, and as
such are still subject to the all the potential problems associated with grid-based data.
That being said, the simulation experiments discussed in the “Collecting Micro-Refuse
Samples in the Field” section suggest that grid-based methods produce reasonable
results when combined with interpolation. The density plots provide excellent heuristic
power with which to visualize concentrations and sparse areas in each micro-refuse
type (Fig. 11b), but if the densities are relatively normally distributed across the map
area, then the interpretive power of the density maps can be increased by converting
them to Z-score units, which, with a threshold at the ±1σ level, will better highlight
areas of significant density and sparseness (Fig. 11c).

Unsupervised Classification of Activity Areas

Our discussion of theory in the “Towards a Theory of Spatial Micro-Refuse Analysis”
section suggests that activity areas should be defined by a unique signature of densities for
all of the various micro-refuse rather than by examining just one type of micro-refuse at a
time. Visually, it is difficult to compare the distributions of more than two artifact types at a
time, so we advocate the use of “unsupervised classification”, a type of cluster analysis
commonly used to classify multi-band satellite imagery (Lillesand et al. 2004), to partition
the data from living surfaces into unique groupings of density values across many or all
micro-refuse types simultaneously. This technique, which can be conducted in a variety of
open-source and commercial imagery-analysis and GIS software, first spatially registers
each density plot into an image “stack,” and then compares the multi-spectral “signature”
at each pixel of themap. Pixels are assigned into a predetermined number of clusters based
on a user-defined measure of similarity (typically theMaximum Likelihood statistic) in an
iterative process so that the similarity within each cluster is greater than that between

Fig. 11 Micro-basalt density on the lower E33 floor a represented at the original scale of the collection grid, b
interpolated to 1 cm resolution, and c converted to Z-score and clipped to the ±1σ threshold
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clusters. Cluster separation occurs above a user-specified confidence interval (we use
99 %). The resulting cluster maps (Fig. 12) are produced as visual heuristic products at a
scale that is easily interpretable by a human analyst. We stress that this process is not a
“black box”—the analyst must control and interpret the procedure in order for it to
produce a meaningful result.

In our use of this technique, each “spectrum” is actually the density or ubiquity map
of a different micro-refuse type, so the frequency of each of the spectra (micro-refuse
types) within each resulting cluster indicates the relative importance of each artifact
class in the areas defined by that cluster’s boundaries. A useful way to visualize this for
abundant data types is to display the average density of each micro-refuse type within
the spatial boundaries of each cluster as bar plots (Fig. 13 and see Table 3 for raw data).
Comparing these plots not only shows which micro-refuse types are more frequent
within a cluster, but also the relative importance of a particular micro-refuse type across
all clusters. It should be noted, however, that while density and ubiquity measures can
be used together in the cluster classification, ubiquity and density cannot be plotted on
the same y axis in the cluster constituent chart. It may therefore be more useful to
undertake separate classifications with each type of data, which is what we have done
with our case study data (Fig. 13a, b).

Results in a Case Study from Tabaqat al-Bûma, Jordan

Although space precludes detailed discussion of our particular case study here, we draw
attention to a few of the results already illustrated as examples of the kinds of persistent
activities that we can plausibly reconstruct through micro-refuse analysis.

Fig. 12 Map of clustering results for the lower E33 floor for a abundant micro-refuse types using density
values and b rare micro-refuse types using ubiquity value. See Fig. 8 for types included in each analysis and
for cluster constituents
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Even the simple smoothed density plots provide interesting insights. For
example, the density of micro-basalt, which can only occur at the site anthro-
pogenically, and most likely originates from the use of basalt grinding stones
imported to the site, is slightly higher in an area close to a large limestone
mortar (Fig. 11b, c). It is plausible to interpret this either as evidence for the
use of a basalt pestle or for the use of a portable basalt grinding slab that was
removed from the structure before its abandonment, while the very heavy
mortar was left in place. Similarly, bone chips that might result from some
aspects of food preparation are concentrated to one side of a possible plaster
hearth feature and micro-lithics cluster fairly tightly near the likely entrance,
which would have had better daylight lighting conditions than other parts of the
room.

The cluster results for relatively abundant micro-refuse (Figs. 12a and 13a) also
appear to identify several distinct activity areas, each with a different suite of micro-
refuse densities. In the corner near the possible hearth, cluster 4 is highly influenced by
that concentration of bone fragments already mentioned, and shows fairly average
levels of micro-pottery and low levels of other types, with shell especially low. Cluster
1, which occurs mainly in the likely grinding area, has above-average basalt, below-
average bone and pottery and about average lithics and shell. The highest levels of

Fig. 13 Cluster compositions for the cluster configurations shown in Fig. 7 for the lower E33 floor a for
abundant micro-refuse using density values and b for rare micro-ecofacts using ubiquity values
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lithics and pottery occur in cluster 3, which could have been a locus for tool retouch and
maintenance and pot cleaning or storage in pots. Cluster 2 is probably the “back-
ground” that would include swept and walking or sitting areas, and perhaps, the micro-
refuse that was included in the floor-construction material, such as the earth excavated
nearby.

However, we should interpret these results in light of cluster analysis of the ubiquity
data as well (Figs. 12b and 10b). Especially notable is that clusters 3 and 4, with the
greatest ubiquity of botanical remains, are mainly in the southern part of the room, also
consistent with food preparation there, and fish vertebrae, also likely associated with
food preparation, only reach high ubiquity in cluster 4. Burned bone and burned flakes
are only common in cluster 3, where we also find relatively high ubiquity of charcoal in
close association with the hypothesized hearth.

Conclusions

Problems of time investment, precision and error enter micro-refuse studies at
many points from the initial collection of sediment samples, through sampling
and counting in the lab, through quality assurance of the data, to analysis and
interpretation. Through experimentation over many years, we have found that
all these problems are surmountable. Attention to the spatial collection frame
guides the scale of the rest of the analysis, but even coarse, grid-based
collection can result in accurate, high-resolution density and ubiquity plots.
Use of many analysts sorting multiple small samples significantly decreases
the cost and processing time over traditional methods of sorting micro-refuse,
yet still yields reliable results with an enhanced understanding of the error of
the final density estimates. Moreover, by ensuring adequate training, ergonom-
ics, and quality assurance protocols, we minimize the effects of human error.
Our preferred method for identifying clusters from interpolated density maps is
an intuitive graphical approach that allows simultaneous analysis of many
categories of micro-refuse. All together, the workflow outlined in this paper
leverages modern digital technology and sampling theory to yield easily inter-
pretable results that, we think, help us better understand the daily lives of
ancient people. That our method does so while maintaining budgetary efficiency
and with attention to error control will, we hope, encourage the expansion of
spatial micro-refuse studies in household archaeology.

Table 3 Densities of the five most common micro-refuse types for each cluster in the supervised classifica-
tion results

Cluster Basalt Bone Flakes Pottery Shell

1 0.540045 1.66965 0.230215 0.883101 0.593715

2 0.460488 2.45048 0.242947 1.58377 0.606337

3 0.439374 2.79819 0.286754 2.72552 0.593319

4 0.505159 4.98588 0.211477 1.09817 0.156426

1260 Ullah et al.



Acknowledgments This research was funded by several grants from the Social Sciences and Humanities
Research Council of Canada, and we acknowledge their generous support. We would like to extend our
profound thanks to the dozens of University of Toronto student volunteers and work-study students who
participated in microrefuse sorting in the Department of Anthropology’s Wadi Ziqlab laboratory, and to
Matthew Betts, Paul Racher, and Danielle MacDonald who supervised them in earlier phases of this project.
The Department of Antiquities of Jordan and its Director at the time, Dr. Ghazi Bisheh, greatly facilitated the
fieldwork at Tabaqat al-Bûma that provides the case study for this paper. We also wish to acknowledge the
GRASS GIS development team who, together, has created an excellent and highly extensible open-source GIS
environment, without which this research could not have taken place. Finally, we would also like to thank
microcommons.org for hosting our spreadsheet template, and for helping the cause of spatial micro-refuse
analysis in general.

References

Banning, E. B. (2000). The archaeologist’s laboratory: the analysis of archaeological data. New York:
Springer.

Banning, E. B. (2007). Wadi Rabah and related assemblages in the southern Levant: interpreting the
radiocarbon evidence. Paléorient, 33, 77–101.

Banning, E. B., Gibbs, K., & Kadowaki, S. (2011). Changes in material culture at Late Neolithic Tabaqat al
Buma, in Wadi Ziqlab, northern Jordan. In J. Lovell & R. M. Yorke (Eds.), Culture, chronology and the
chalcolithic: theory and transition (pp. 36–60). Oxford: Oxbow Books.

Barton, C. M., Riel-Salvatore, J., Anderies, J. M., & Popescu, G. (2011). Modeling human ecodynamics and
biocultural interactions in the late Pleistocene of western Eurasia. Human Ecology, 39, 705–725. doi:10.
1007/s10745-011-9433-8.

Bertran, P., Lenoble, A., Todisco, D., et al. (2012). Particle size distribution of lithic assemblages and
taphonomy of Palaeolithic sites. Journal of Archaeological Science, 39, 3148–3166. doi:10.1016/j.jas.
2012.04.055.

Binford, L. R. (1978). Dimensional analysis of behavior and site structure: learning from an Eskimo hunting
stand. American Antiquity, 43, 330–361. doi:10.2307/279390.

Brown, C. T., Witschey, W. R., & Liebovitch, L. S. (2005). The broken past: fractals in archaeology. Journal
of Archaeological Method and Theory, 12, 37–78.

Drennan, R. D. (1996). Statistics for archaeologists: a common sense approach. New York: Springer.
Dunnell, R. C., & Stein, J. K. (1989). Theoretical issues in the interpretation of microartifacts.

Geoarchaeology, 4, 31–42.
Fairbairn, A. (2005). Simple bucket flotation and wet sieving in the wet tropics. Canberra: RSPAS, Australian

National University.
Fladmark, K. R. (1982). Microdebitage analysis: Initial considerations. Journal of Archaeological Science, 9,

205–220. doi:10.1016/0305-4403(82)90050-4.
Gibbs, K., Kadowaki, S., Banning, E. B. (2006). The Late Neolithic at al-Basatîn in Wadi Ziqlab, northern

Jordan. Antiquity, 80(310), http://antiquity.ac.uk/projgall/gibbs/index.html.
GRASS Development Team (2014) Geographic Resources Analysis Support System. http://grass.osgeo.org.
Gregg, S. A., Kintigh, K. W., Whallon, R. (1990). Linking ethnoarchaeological interpretation and archaeo-

logical data: the sensitivity of spatial analytical methods to postdepositional disturbance. The
Interpretation of Archaeological Spatial Patterning.

Guan, Y., Gao, X., Wang, H., Chen, F., Pei, S., Zhang, X., & Zhou, Z. (2011). Spatial analysis of intra-site use
at a Late Paleolithic site at Shuidonggou, Northwest China. Chinese Science Bulletin, 56(32), 3457–3463.
Accessed 12 September 2014.

Hayden, B., & Cannon, A. (1983). Where the garbage goes: refuse disposal in the Maya Highlands. Journal of
Anthropological Archaeology, 2, 117–163. doi:10.1016/0278-4165(83)90010-7.

Hoaglin, D. C., Mosteller, F., & Tukey, J. W. (2000). Understanding robust and exploratory data analysis
(2nd ed.). New York: Wiley.

Hodder, I., & Cessford, C. (2004). Daily practice and social memory at Catalhoyuk. American Antiquity, 69,
17–40.

Hull, K. L. (1987). Identification of cultural site formation processes through microdebitage analysis.
American Antiquity, 52, 772–783. doi:10.2307/281385.

ISO-BSEN (2002). 14688–1. 2002. Geotechnical investigation and testing. Identification and classification of
soil. Part 1: identification and description. British Standards Institution.

Modernizing Spatial Micro-Refuse Analysis 1261

http://dx.doi.org/10.1007/s10745-011-9433-8
http://dx.doi.org/10.1007/s10745-011-9433-8
http://dx.doi.org/10.1016/j.jas.2012.04.055
http://dx.doi.org/10.1016/j.jas.2012.04.055
http://dx.doi.org/10.2307/279390
http://dx.doi.org/10.1016/0305-4403(82)90050-4
http://antiquity.ac.uk/projgall/gibbs/index.html
http://grass.osgeo.org/
http://dx.doi.org/10.1016/0278-4165(83)90010-7
http://dx.doi.org/10.2307/281385


Johnson, I. (1984). Cell frequency recording and analysis of artifact distributions. In H. Hietala (Ed.), Intrasite
spatial analysis in archaeology (pp. 75–96). Cambridge: Cambridge University Press.

Jones, G. E. M. (1983). The use of ethnographic and ecological models in the interpretation of archaeological
plant remains: case studies from Greece. Cambridge: University of Cambridge.

Kamp, K. A. (2000). From village to tell: household ethnoarchaeology in Syria. Near Eastern Archaeology,
63, 84–93. doi:10.2307/3210745.

Kent, S. (1984). Analyzing activity areas: an ethnoarchaeological study of the use of space. Albuquerque:
University of New Mexico Press.

Kintigh, K. W. (1990). Intrasite spatial analysis: A commentary on major methods. In A. Voorrips (Ed.),
Mathematics and information science in archaeology: a flexible framework (pp. 165–200). Bonn: Helos.

LaMotta, V., & Schiffer, M. B. (1997). Formation processes of house floor assemblages. In P. M. Allison (Ed.),
The archaeology of household activities (pp. 19–29). New York: Routledge.

Lillesand, T. M., Kiefer, R. W., & Chipman, J. W. (2004). Remote sensing and image interpretation (5th ed.).
Hoboken: Wiley.

McLaren, P., Bowles, D. (1985). The effects of sediment transport on grain-size distributions. Journal of
Sedimentary Research 55.

Metcalfe, D., & Heath, K. M. (1990). Microrefuse and site structure: the hearths and floors of the Heartbreak
Hotel. American Antiquity, 55, 781–796. doi:10.2307/281250.

Mitas, L., & Mitasova, H. (1999) Spatial interpolation. In: P. A. Longley, M. F. Goodchild, D. J. Maguire, &
D. W. Rhind (Eds), Geographical information systems: principles, techniques, management and applica-
tions (pp 481–492). New York: Wiley.

Mitasova, H., & Mitas, L. (1993). Interpolation by regularized spline with tension: I. Theory and implemen-
tation. Mathematical Geology, 25, 641–655.

Pye, K., & Tsoar, H. (2009). Mechanics of aeolian sand transport. Aeolian Sand and Sand Dunes (pp. 99–
139). Berlin: Springer.

Rosen, A. M. (1986). Cities of clay: the geoarchaeology of tells. Chicago: University of Chicago Press.
Rosen, A. M. (1993). Microartifacts as a reflection of cultural factors in site formation. In P. Goldberg, D. T. Nash, &

M.D. Petraglia (Eds.),Formation processes in archaeological context (pp. 141–148).Madison: Prehistory Press.
Sahu, B. K. (1964). Depositional mechanisms from the size analysis of clastic sediments. Journal of

Sedimentary Research, 34.
Schiffer, M. B. (1983). Toward the identification of formation processes. American Antiquity, 48, 675–706.
Schiffer, M. B. (1987). Formation processes of the archaeological record. Albuquerque: University of New

Mexico Press.
Shelton, C. P., & White, C. E. (2010). The hand-pump flotation system: a new method for archaeobotanical

recovery. Journal of Field Archaeology, 35, 316–326. doi:10.1179/009346910X12707321358838.
Shennan, S. (1997). Quantifying archaeology (2nd ed.). Edinburgh: Edinburgh University Press.
Sherwood, S. C., Simek, J. F., & Polhemus, R. R. (1995). Artifact size and spatial process: macro- and

microartifacts in a mississippian house. Geoarchaeology, 10, 429–455. doi:10.1002/gea.3340100603.
Shott, M. J. (2010). Size dependence in assemblage measures: essentialism, materialism, and “SHE” analysis

in archaeology. American Antiquity, 75(4), 886–906.
Simms, S. R., & Heath, K. M. (1990). Site structure of the Orbit Inn: an application of ethnoarchaeology.

American Antiquity, 55, 797–813. doi:10.2307/281251.
Tani,M. (1995). Beyond the identification of formation processes: behavioral inference based on traces left by cultural

formation processes. Journal of Archaeological Method and Theory, 2(3), 231–252. doi:10.1007/BF02229008.
Thompson, S. K., Ramsey, F. L., & Seber, G. A. F. (1992). An adaptive procedure for sampling animal

populations. Biometrics, 48, 1195. doi:10.2307/2532710.
Tucker, P. (1980). A grain mobility model of post-depositional realignment. Geophysical Journal

International, 63, 149–163. doi:10.1111/j.1365-246X.1980.tb02614.x.
Ullah, I. I. T. (2009). Within-room spatial analysis of activity areas at Late Neolithic Tabaqat Al-Buma, Wadi

Ziqlab, Al Koura, Jordan. Studies in the History and Archaeology of Jordan, X. The Department of
Antiquities of Jordan, Amman, pp 87–95

Ullah, I. I. T. (2012). Particles from the past:Microarchaeologial spatial analysis of ancient house floors. InB. J. Parker
& C. P. Foster (Eds.),New perspectives in household archaeology (pp. 123–138). Winowna Lake: Eisenbrauns.

Vance, E. D. (1987). Microdebitage analysis in activity analysis: an application. Northwest Anthropological
Research Notes, 20, 179–189.

Visher, G. S. (1969). Grain size distributions and depositional processes. Journal of Sedimentary Research,
39, 1074–1106.

Wentworth, C. K. (1922). A scale of grade and class terms for clastic sediments. The Journal of Geology, 30,
377–392.

1262 Ullah et al.

http://dx.doi.org/10.2307/3210745
http://dx.doi.org/10.2307/281250
http://dx.doi.org/10.1179/009346910X12707321358838
http://dx.doi.org/10.1002/gea.3340100603
http://dx.doi.org/10.2307/281251
http://dx.doi.org/10.1007/BF02229008
http://dx.doi.org/10.2307/2532710
http://dx.doi.org/10.1111/j.1365-246X.1980.tb02614.x

	Modernizing...
	Abstract
	Introduction
	Towards a Theory of Spatial Micro-Refuse Analysis
	Collecting Micro-Refuse Samples in the Field
	GIS Simulation of Archaeological Deposits
	Spatial Sampling Frame Experiment Protocol
	Simulation Experiment Results

	Field Sampling and Collection Methods

	Separating, Identifying, and Counting Micro-Refuse
	Mechanical Separation of Micro-Refuse
	Sorting Procedure, Training, and Sorting Ergonomics

	Sampling Theory, Outlier Detection, and Density Estimation
	Sampling Procedure and Optimum Sampling Volume
	The Effect of Abundance and Outlier Detection
	Determining the Optimum Sample Size (Number of Sample Elements)

	Analyzing Spatial Patterns in Micro-Refuse Density
	Interpolation of Density Maps
	Unsupervised Classification of Activity Areas

	Results in a Case Study from Tabaqat al-Bûma, Jordan
	Conclusions
	References


