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Abstract
Since the world’s first in vitro fertilization baby was born in 1978, there have been more than 8 million children conceived 
through assisted reproductive technologies (ART) worldwide, and a significant proportion of them have reached puberty or 
young adulthood. Many studies have found that ART increases the risk of adverse perinatal outcomes, including preterm 
birth, low birth weight, small size for gestational age, perinatal mortality, and congenital anomalies. However, data regarding 
the long-term outcomes of ART offspring are limited. According to the developmental origins of health and disease theory, 
adverse environments during early life stages may induce adaptive changes and subsequently result in an increased risk 
of diseases in later life. Increasing evidence also suggests that ART offspring are predisposed to an increased risk of non-
communicable diseases, such as malignancies, asthma, obesity, metabolic syndrome, diabetes, cardiovascular diseases, and 
neurodevelopmental and psychiatric disorders. In this review, we summarize the risks for long-term health in ART offspring, 
discuss the underlying mechanisms, including underlying parental infertility, epigenetic alterations, non-physiological hor-
mone levels, and placental dysfunction, and propose potential strategies to optimize the management of ART and health care 
of parents and children to eliminate the associated risks. Further ongoing follow-up and research are warranted to determine 
the effects of ART on the long-term health of ART offspring in later life.

Keywords Assisted reproductive technologies · In vitro fertilization · Long-term health risks · Adverse perinatal outcomes · 
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Introduction

Assisted reproductive technologies (ART) are defined as all 
interventions that include the in vitro handling of human 
oocytes, or embryos for reproduction, such as in  vitro 

fertilization (IVF), intracytoplasmic sperm injection (ICSI), 
preimplantation genetic testing (PGT), assisted hatching, 
gamete, and embryo cryopreservation [1]. Worldwide, more 
than 8 million IVF offspring have been born, and over 2.5 
million cycles are performed each year, resulting in over 
half a million births annually [2]. ART accounts for 3.5% 
of births in 21 European countries, with even 9.3% in Spain 
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[3], and 2.2% of births in the US annually [4]. With the rapid 
growth of ART in China, at the end of 2019, there were 517 
assisted reproductive centers and 27 human sperm banks 
in mainland China [5]. The number of ART newborns in 
mainland China was 311,309 in 2016, accounting for 1.69% 
of the total births [6].

Although there is a significant population of ART off-
spring worldwide, only a limited number of studies provide 
robust evidence on the long-term health outcomes of ado-
lescents or young adults born to IVF treatment. Most stud-
ies have investigated short-term outcomes, and it has been 
proven that even singletons born from ART have a higher 
risk of adverse perinatal outcomes, including preterm birth, 
low birth weight, perinatal mortality, and congenital anoma-
lies [7–10].

According to the developmental origins of health and dis-
ease (DOHaD) theory, adverse environments in early life 
can induce adaptive changes and influence the development 
of the placenta and fetus, resulting in an increased risk of 
diseases in later life, such as metabolic disorders and cardio-
vascular diseases. In 2010, Motrenko proposed the “embryo-
fetal origins of diseases” theory, which suggests that abnor-
mal embryo development can cause diseases in later life 
[11]. In 2014, Huang et al. [12] developed this hypothesis for 
gamete and embryo fetal origins of adult diseases based on 
evidence from ART-associated studies. ART is performed 
at critical stages of gamete maturation and embryo develop-
ment. Adaptive responses of gametes or embryos to adverse 
environmental factors make them susceptible to adverse 
perinatal outcomes and long-term health risks [12]. Increas-
ing evidence suggests that ART offspring are predisposed to 
increased risks of non-communicable diseases (NCD), such 
as malignancies, asthma, obesity, metabolic syndrome, dia-
betes, cardiovascular diseases, and psychiatric disorders [13]

This review aims to summarize current knowledge on 
long-term health risks of adolescents or adults born from 
ART, discuss underlying mechanisms, and explore future 
strategies to optimize the safety of ART.

Long‑term health risks of the offspring

Concerns have been raised and research has been con-
ducted on the long-term health outcomes of ART offspring. 
Researchers have primarily focused on malignancies, 
asthma, obesity, diabetes, cardiovascular diseases, thyroid 
disorders, neurodevelopmental disorders, neurological disor-
ders, psychiatric disorders, and reproductive health. Table 1 
shows some recent high-quality studies on this subject. The 
health condition of these young people would provide valu-
able evidence for both health providers and families who 
have children born from ART or plan to undergo ART.

Perinatal outcomes

In spite of the relatively insufficient evidence on the long-
term health risks of ART, plenty of studies have reported an 
increased chance of perinatal complications. From a fetal 
perspective, preterm birth and intrauterine growth restric-
tion (IUGR) are by far the two most discussed outcomes. 
A large cohort study from Denmark, which, enrolled a total 
of 20,080 singletons demonstrated a significantly increased 
risk of preterm birth caused by ART treatment [32]. Another 
population-based comparative study from the USA suggests 
a 2.6 times increase in low birth weight in ART singleton 
infants compared to naturally conceived ones [33]. In addi-
tion to these two articles, data from many other studies have 
also supported the elevated incidence of preterm birth and 
IUGR in ART [34–36]. From a maternal perspective, hyper-
tensive disorders, placental dysfunction, and cesarean sec-
tion are considered to happen more often among ART moth-
ers [37, 38]. A study from Sweden, Denmark, and Norway 
that included all registered ART births from 1988 to 2007 
reported an increased incidence of hypertensive disorders 
following all ART procedures, including IVF, ICSI, and FET 
[37]. Evidence supporting the susceptibility to placental dys-
function is abundant, including placental previa, placental 
metabolic alterations, and abnormal placentation [39, 40]. 
Besides, due to artificial intervention, multiple pregnancies 
are more commonly seen in ART versus spontaneous con-
ception. Although the main focus of this article is about the 
future risks of ART children, short-term risks should also be 
noted considering the potential association between them. 
Studies have found that low birth weight infants might suf-
fer from a higher risk of obesity, type 2 diabetes, hyperten-
sion, coronary heart disease, and other metabolic syndromes 
in adulthood [41, 42]. For preterm offspring, studies sug-
gested a statistically elevated incidence of mental retarda-
tion, cardiovascular abnormalities, and chronic kidney dis-
ease [43–45]. Furthermore, mounting evidence has proved 
that the undesirable physical conditions of mothers during 
pregnancy could pose a shadow on the long-term health of 
offspring by intrauterine programming [41, 46]. The most 
well-known example of this theory may be the Dutch Fam-
ine Birth Cohort, in children born to mothers exposed to 
famine; they are suffering from a greater chance of diabe-
tes in adulthood [47]. This large-scale phenomenon clearly 
demonstrated the long-lasting effect of suboptimal intrau-
terine conditions on the future health of offspring. There-
fore, we present the worrying outcomes of short-terms here, 
given that they are very likely to be the hints for far-reaching 
impact on ART children.
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Malignancies

Early studies from Australia, Holland, Israel, and Britain 
showed no increase in the risk of cancer [48–51]. Recently, 
a study from the Netherlands, which included 24,268 ART 
offspring, 13,761 SC offspring, and 9660 naturally con-
ceived offspring of subfertile parents, followed for a mean 
of 21 years, did not observe any increase in cancer risks 
among ART offspring, neither compared with naturally 
conceived offspring of subfertile parents (HR, 1.00; 95% 
CI, 0.72–1.38) nor compared with SC offspring (SIR, 1.11; 
95% CI, 0.90–1.36) [14]. A population-based cohort study 
from Nordic countries, including 91,796 ART offspring and 
358,419 spontaneously conceived (SC) offspring, followed 
for a mean of 9.5 (4.8) years, found no significant increase 
(HR, 1.08; 95% CI, 0.91–1.27) in overall cancer rates [52].

However, some studies have observed an increased risk 
of cancer in ART offspring, particularly for certain types of 
cancer. In a recently published large cohort study from the 
US, 146,875 IVF singletons and 2,194,854 SC singletons 
were followed for a mean (SD) follow-up of 4.5 (2.5) years 
and 4.7 (2.5) years, respectively. Although no significant 
increase in overall cancer was found in ART offspring, there 
was an increase in the risk of hepatic cancer and embryonal 
tumors among ART offspring [15]. It should be noted that 
most studies in this area are limited by their sample size, 
and most of these studies did not control for factors, such as 
parental socioeconomic status, perinatal health status, and 
maternal smoking, which have been reported to affect the 
incidence of cancer [53–57].

A cohort study undertaken in Sweden, following up 
25,582 ART offspring, including all births between 1982 
and 2005, found a moderately increased risk (HR, 1.42; 95% 
CI, 1.09–1. 87) of cancer in IVF offspring. After adjusting 
for maternal age, years of unwanted childlessness, parity, 
and maternal smoking, OR remained statistically significant 
(OR, 1.45; 95% CI, 1.10–1.91). The increased cancer risk, 
mostly hematologic cancer, eye tumors, and central nerv-
ous system tumors, which are the most common pediatric 
cancers, is associated with premature delivery, high birth 
weight, respiratory diagnoses, and low Apgar scores in ART 
offspring [58]. These factors have already been reported to 
be associated with pediatric cancer in non-IVF studies [57, 
59]. Specifically, high birth weight has been associated with 
acute lymphoid leukemia (ALL) [60, 61], central nervous 
system tumors [62], and Wilms’ tumors [63, 64]. In sum-
mary, disadvantageous maternal characteristics and adverse 
perinatal outcomes are more likely to be responsible for the 
increased cancer risk.

Mounting evidence suggests that frozen embryo transfer 
(FET) may contribute to an increased risk of cancer in ART 
offspring. Hargreave et al. [16] observed an increased risk of 
cancer (HR, 2.43; 95% CI, 1.44–4.1) among FET offspring, 

in a cohort study in Denmark, which included 1,085,172 
children born between 1996 and 2012 with a mean follow-
up of 11.3 years. A meta-analysis including 11 case–control 
studies and 16 cohort studies reported an increased pediat-
ric cancer incidence in FET offspring (RR, 1.37; 95% CI, 
1.04–1.81) compared with SC controls and 1.28 (95% CI, 
0.96–1.69) fresh ET controls, while other ART treatments, 
such as IVF, ICSI, and fertility drugs were not associated 
with increased pediatric cancer risks [65]. The increased 
incidence of malignancies may be related to genetic and epi-
genetic changes during cryopreservation [66, 67]. In recent 
years, some studies have suggested that the difference in 
outcomes between FET and fresh ET may be related to the 
different endometrial hormone preparation cycles. However, 
none of the above clinical studies have further classified and 
discussed different methods of endometrial preparation in 
the FET and fresh ET groups. In addition, it is worth not-
ing that many of the cases included in these cohort studies 
received ART treatment 10 or even 20 years ago, when slow 
freezing was the most used method for cryopreservation. 
Whereas vitrification has become the mainstream method 
in replace of slow freezing recently [68, 69], the safety of 
vitrification warrants further research with longer follow-up 
periods.

In summary, ART appears to be generally safe in terms 
of cancer risk. However, it is noteworthy that recent studies 
have reported increased risks of cancer in offspring con-
ceived using FET. With the widespread use of vitrification, 
further subgroup studies on FET offspring are necessary 
to determine any association with cancer. Considering that 
existing studies addressing cancer risk in ART offspring 
have focused on childhood cancers, and that cancer devel-
opment is more common in middle-aged and older adults, 
more long-term follow-up studies are warranted.

Asthma

As mentioned above, ART-conceived singletons have sig-
nificantly higher odds of preterm birth and low birth weight, 
which are associated with the incidence of asthma later in 
life [70, 71]. Thus, a higher prevalence of asthma is expected 
in ART offspring than in SC offspring. In a recent meta-anal-
ysis of 14 high-quality studies, a significantly increased risk 
(RR, 1.28; 95% CI, 1.08–1.51) of asthma was observed in 
ART offspring [17]. A registry study of 2,628,728 children 
born between 1982 and 2007 in Sweden, including 31,918 
ART offspring, discovered an increased risk of asthma, 
albeit small, in children conceived by IVF (OR, 1.28; 95% 
CI, 1.23–1.34); the absolute risk increased from 4.4 to 
5.6%. However, after adjusting for the duration of involun-
tary childlessness, the effect was eliminated, and after the 
removal of anti-asthmatic use in early pregnancy, the risk 
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was reduced [18], suggesting that parental subfertility and 
maternal asthma are the main risk factors.

Obesity

Recently, whether ART offspring are more likely to develop 
obesity than SC offspring has been a topic of concern. A 
recent large population-based cohort study [19] included 
122,429 ART offspring and 7,574,685 SC offspring with 
a mean (SD) follow-up time of 8.6 (6.2) years for ART 
children and 14.0 (8.6) years for SC children. The study 
observed a small but significant increase in the risk of obe-
sity among ART offspring (HR, 1.14; 95% CI, 1.06–1.23; 
p = 0.001). In contrast, a prospective study [72] compared 
maternally reported length/height and weight in children 
from the second trimester to 7 years of age, and self-reported 
height and weight at age 17 years when screening for mili-
tary conscription. It was found that children conceived by 
ART grew faster after birth and attained greater height and 
weight at 3 years of age; however, once the ART offspring 
entered adolescence, their height, weight, and body mass 
index (BMI) did not differ from those of SC controls, which 
may be due to a rapid catch-up growth after birth.

In addition to BMI, previous studies have observed 
increased peripheral adipose tissue in ART offspring 
[73–75]. Animal studies have shown increased body weight 
and body fat content in ART offspring compared with SC 
offspring. Increased volume and number of lipid droplets 
and lipid droplet fusion were observed in the hepatocytes of 
ART-conceived mice, and liver TG content was significantly 
increased in ART mice, which plays an important role in 
lipid accumulation in adults [76]. Our previous study found 
that ART-conceived mice had less monounsaturated fatty 
acids and more polyunsaturated fatty acids in the adipose tis-
sue in both adult and old mice, while alterations in saturated 
fatty acids (SFAs) were only observed in adult mice [77].

Fat metabolism often exhibits sexual dimorphism. Belva 
et al. [78] conducted research on individuals between 18 
and 22 years of age and found that male ICSI offspring had 
higher peripheral fat density (recorded by skinfold) than 
females. Another study showed that male ICSI offspring had 
lower HDL levels at 18 years of age than naturally conceived 
males [79]. Sex-specific metabolism was also observed in 
IVF mouse offspring. Female IVF offspring had higher body 
weight and cholesterol levels than female SC offspring, 
whereas male IVF offspring had increased body fat com-
position and higher levels of triglycerides and insulin [80].

In summary, current evidence suggests that ART off-
spring may be at an increased risk of developing unfavorable 
fat composition and deteriorated metabolic profiles, suggest-
ing a potential risk of subsequent cardiovascular and meta-
bolic diseases in later life. Sexual dimorphism on this topic 
is noteworthy for future studies.

Diabetes

According to the DOHaD theory, ART offspring are 
expected to be at a higher risk of metabolic diseases, such 
as diabetes, with age due to the increased adverse perinatal 
outcome in early life. However, the abovementioned large 
cohort study of the Nordic population, including 122,429 
children born after ART and 7,574,685 children born after 
SC, suggested that there was no significant difference in 
the risk of type 2 diabetes between ART and SC offspring 
(HR, 1.31; 95% CI, 0.82–2.09; p = 0.25); however, the 
mean follow-up time was only 8.6 years in the ART group 
and 14.0 years in the SC group [19]. Conversely, as for 
impaired glucose metabolism, a meta-analysis conducted 
by our team on 19 studies that included 2112 ART off-
spring and 4096 SC offspring during childhood to early 
adulthood indicated a higher fasting insulin level in ART 
offspring [81]. Another study compared 380 ART off-
spring and 380 SC offspring aged 6–10 years and found 
that the fasting blood glucose, serum insulin, and HOMA-
IR levels of ART offspring were significantly higher than 
those of their SC counterparts [82]. As type 2 diabetes is 
more common among older adults, the current findings of 
impaired glucose metabolism in ART offspring suggest 
that more prediabetes and diabetes may be observed in 
future follow-up studies.

The diet of the offspring may play an important role in 
accelerating the progression of abnormal glucose metabo-
lism in ART offspring. ART-conceived mice were more 
likely to develop obesity, fasting hyperinsulinemia, and 
hyperglycemia when challenged with a high-fat diet (HFD), 
and insulin-stimulated glucose utilization was 20% lower 
(steady-state glucose infusion rate) than that in SC mice 
[83].

For type 1 diabetes, Norrman et al. [20] found an associa-
tion between ART and type 1 diabetes in a cursory analysis 
(HR, 1.13; 95% CI, 0.98–1.30), but disappeared after adjust-
ing for known confounders (HR, 1.07; 95% CI, 0.93–1.23). 
In subgroup analyses, an association was found between 
FET and type 1 diabetes (aHR, 1.52; 95% CI, 1.08–2.14 
and 1.41; 95%, CI 1.05–1.89 for frozen versus fresh, respec-
tively). However, a nationwide birth cohort study including 
565,116 singleton pregnancies in Denmark found no associ-
ation between ART and childhood type 1 diabetes; however, 
in secondary analyses, ovulation induction was associated 
with an increased risk of type 1 diabetes (HR, 3.22; 95% CI, 
1.20–8.64) [84].

To conclude, an association between type 2 diabetes and 
ART was not observed, but a trend of impaired glucose 
metabolism in ART children has been suggested. FET and 
ovulation induction may be associated with type 1 diabetes. 
Further studies in older ART populations are warranted to 
clarify the risk of diabetes.
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Cardiovascular disease

The cardiovascular condition of ART offspring has become 
one of the most concerning problems in recent years. A 
matched control study on 382 children conceived by ART 
between 6 and 10 years old based on their sex, age, and 
maternal age reported that the blood pressure of ART off-
spring was higher than that of SC offspring, together with 
the structural and functional disorders of the left ventricle, as 
well as the prevalence of left ventricular hypertrophy, even 
after adjustment for early life factors, current lifestyle fac-
tors, and the type of ART [85]. A study matched by maternal 
age found that fetuses from both fresh ET and FET showed 
larger atria, thicker and more spherical ventricles, and evi-
dence of both suboptimal systolic and diastolic function, 
with more pronounced changes after fresh ET as compared 
to FET [86]. Similar results were observed in studies with 
follow-up until the age of 3 years [87]. In a previous retro-
spective investigation, we observed that the blood pressure 
of IVF offspring aged 3–13 years was higher than that of SC 
offspring [88]. In our meta-analysis including 2112 ART 
offspring and 4096 SC offspring, a slight but significant 
increase in both SBP (1.88 mmHg; 95% CI, 0.27–3.49) and 
DBP (1.51 mmHg; 95% CI, 0.33–2.70) were observed in 
ART offspring [81]. In addition, suboptimal diastolic func-
tion and higher vessel thickness were observed in the ART 
offspring.

In contrast, a population-based cohort study did not find 
an increased risk of cardiovascular disease in ART off-
spring after adjustment for factors, such as maternal age and 
maternal cardiovascular disease [19]. Similar results were 
observed in children as young as 9 years of age [89] and in 
14–17 year-old ICSI-conceived adolescents [90]. For adults, 
a small study recruited 279 men and women aged 22–35 and 
observed no increased vascular or cardiac metabolic risk in 
ART offspring compared with SC offspring from the same 
source population [91].

Although there is conflicting evidence regarding the 
risk of suboptimal cardiovascular function, the current data 
suggests a potential increase in cardiovascular conditions 
in ART offspring. Future studies should focus on adjusting 
for confounding factors, such as maternal age and maternal 
cardiovascular disease. As cardiovascular disorders are more 
common in older populations, longer follow-up studies are 
required in this area.

Thyroid disorders

Several small studies have suggested an increased risk of 
thyroid disorders in ART offspring. A study of 106 IVF off-
spring and 68 SC offspring, aged 4–14 years, found signifi-
cantly elevated serum thyroid-stimulating hormone (TSH) 
compatible with mild TSH resistance of the thyroid in IVF 

offspring compared with SC controls. Seven IVF offspring, 
but none in the control group, had persistent elevations in 
circulating TSH levels, suggesting subclinical primary hypo-
thyroidism or euthyroid hyperthyrotropinemia. Circulating 
antithyroid antibodies were not detected in either group, 
indicating that the difference was not due to the presence 
of antithyroid autoantibodies [21]. In another study, 98 full-
term IVF offspring were evaluated by screening for thyroid 
function. Hyperthyrotropinemia (TSH levels higher than 
6.5 mU/L) was diagnosed in 10 IVF offspring at postnatal 
ages of 2 weeks to 1 month. The control group included 
10 randomly selected SC offspring of the same age with 
hyperthyrotropinemia. A thyrotropin-releasing hormone 
(TRH) test was performed, and there was an exaggerated 
TSH response to TRH in all 10 IVF offspring but in none 
of the controls. Therefore, subclinical hypothyroidism was 
diagnosed only in the IVF offspring. It is of note that neona-
tal screening tests in both groups were negative [92].

An increased risk of thyroid dysfunction has been asso-
ciated with high maternal serum levels of estradiol  (E2) 
induced by ovarian stimulation. Our previous study found 
that the mean serum  E2 levels of women undergoing fresh 
embryo transplantation (ET) were significantly higher than 
those of women undergoing FET or following natural con-
ception. The levels of thyroxine (T4), free thyroxine (FT4), 
and TSH were significantly increased in children aged 3 to 
10 years conceived through fresh ET compared to SC chil-
dren, while the levels of T4 and TSH in the FET group did 
not increase. Furthermore, T4 and FT4 levels in the fresh 
ET group were positively correlated with maternal E2 levels 
during the first trimester [93].

In conclusion, IVF may confer susceptibility to subclini-
cal primary hypothyroidism in the offspring, particularly 
in fresh ET offspring. Therefore, ART offspring should be 
monitored for thyroid function, even if neonatal screening 
tests appear normal. Thyroid dysfunction is strongly associ-
ated with other metabolic disorders; thus, it is worth noting.

Neurodevelopmental disorders

Autism spectrum disorder (ASD)

Concerns have been raised about whether ART is associated 
with ASD in offspring, as they share similar risk factors, 
such as older parental age and infertility [94–96]. Recently, 
a meta-analysis of 15 studies discovered that ART-born chil-
dren were at a higher risk of ASD; however, the association 
was attenuated and did not reach statistical significance, and 
most studies were restricted to singletons [97]. This is in 
line with a Danish study including 588,967 children, which 
found no risk of ASD after adjusting for maternal age, edu-
cational level, parity, smoking, birth weight, and multiplicity 
[98].
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Based on the same Danish registry cohort, it was found 
that children aged 8–17 years born after ovulation induc-
tion showed a low but significant increase in the risk of 
ASD (1.20–1.05% to 1.37–1.5%) [99]. A national registry 
study of 110,093 males in Israel reported no increased risk 
of ASD for IVF overall but found an association between 
progesterone hormone treatment and increased risk of ASD 
(RR, 1.51; 95% CI, 1.22–1.86) [22]. Furthermore, polycystic 
ovarian syndrome (PCOS)-exposed offspring were found to 
have a higher risk of ASD, and this association was stronger 
in females [100]. These results were consistent with a study 
that found elevated amniotic fluid steroid hormones in chil-
dren diagnosed with ASD [101], which suggested that pre-
natal androgen exposure may contribute to the early abnor-
malities of the fetal brain and cause ASD.

Additionally, several studies have reported an increased 
incidence of ASD in offspring with ICSI [24, 102, 103]. 
Among these studies, the most convincing evidence came 
from a large cohort study with more than 2.5 million infants 
that followed up the offspring for a median of 14 years 
(range, 0.1–26.5 years). This study observed a statistically 
significant increase in ASD risk following ICSI using surgi-
cally extracted sperm (RR, 4.60; 95% CI, 2.14–9.88) com-
pared with that of IVF offspring. Further analysis showed 
that children conceived using surgically extracted sperm 
were more likely to have ASD than those conceived using 
ejaculated sperm (RR, 3.29; 95% CI, 1.58–6.87), indicating 
that male infertility severity and certain invasive ART pro-
cedures may be involved in the development of ASD [24]. 
Similarly, the prevalence of ASD was found to be associ-
ated with any female infertility diagnosis but not infertility 
treatment in a multi-site case–control study (n = 1538) [104]. 
These studies suggest that parental infertility is likely to be 
responsible for the increased risk of ASD in ART offspring.

In contrast, in a population-based study in Massachusetts, 
1539 ART offspring were enrolled. Researchers found that 
the association between ART or subfertility and ASD was 
not statistically significant, and the risk of ASD increased 
by 1% or less through preterm birth [105], suggesting that 
preterm birth may have an indirect effect on the development 
of ASD, which was found to be a risk factor for ASD in non-
IVF studies [106–109]

Attention deficit and hyperactivity disorder (ADHD)

ADHD is a common, childhood-onset neurodevelopmen-
tal disorder. A Swedish study revealed a weak but statisti-
cally significant increase in drug-treated ADHD with IVF, 
after examining the national drug prescription system [110]. 
However, the outcome lost significance when the duration of 
infertility was adjusted, indicating that the risk may be due 
to parental subfertility characteristics. This result was further 
confirmed by Svahn et al. [111] in a large Danish registry 

cohort of more than 2 million children. Subsequently, recent 
research using a Swedish population cohort discovered a 
lower risk of ADHD in ART offspring by age 15 years [23], 
which was then attenuated and even slightly reversed after 
adjustment for parental characteristics and infertility state. 
Maternal PCOS was found to increase the odds of ADHD 
in offspring in a national case–control study [112], as men-
tioned above with regards to ASD, strengthening the evi-
dence that PCOS affects offspring neurodevelopment.

Intellectual disability (ID)

Sandin et al. [24] discovered a small but statistically signifi-
cant association (RR, 1.18; 95% CI, 1.01–1.36); although, 
the association was not significant after controlling for sin-
gletons (RR, 1.01; 95% CI, 0.83–1.24). However, the use of 
ICSI was found to be significantly associated with a higher 
risk of ID than IVF (RR, 1.51; 95% CI, 1.10–2.09) [24]. 
Similar results were observed in a retrospective population-
based cohort study in Western Australia, which found that 
ICSI conception almost doubled the risk of ID in children 
(RR, 1.98; 95% CI, 1.12–3.48) [113]. On the other hand, 
studies [99, 114] have shown that ART offspring are not at 
a higher risk of ID.

Cognitive development

Most of the literature in this area has methodological limi-
tations, such as selection bias and various criteria [115]. A 
systematic review of seven high-quality studies concluded 
that IVF offspring had cognitive development levels com-
parable to those of the general population after adjustment 
[115].

A large Swedish national-based register study discovered 
that SC offspring performed better in the third grade than 
ICSI offspring; however, no differences were found between 
groups in the ninth grade [25]. In subgroup analysis, ninth-
grade children conceived through ICSI using non-ejaculated 
sperm scored significantly lower than those conceived using 
ejaculated sperm [25], indicating that the severity of male 
infertility may be associated with cognitive development in 
ICSI offspring. An animal study also showed that, compared 
with ICSI-conceived mice, SC mice exhibited an overall 
superior performance at 6 months of age, but the difference 
disappeared at 12 months of age [116]. Further follow-up 
studies are required to determine whether the cognitive 
development of ICSI offspring is impaired.

Several studies have found that PGD offspring have 
outcomes comparable to those of conventional IVF in 
terms of cognitive development in children aged 2–5 years 
[117–119]. However, a study that followed PGD offspring 
for up to 7.5 years found that one-fifth of children born 
through PGD showed poorer performance in cognitive and 
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motor functions [120]. In a mouse model, researchers also 
found that biopsied embryos were at risk of defective mem-
ory function later in life [121].

Our team found that children born after ovarian hyper-
stimulation syndrome (OHSS) scored lower in intellectual 
ability tests, which was presumably related to elevated 
maternal serum estradiol levels in OHSS moms compared 
with non-OHSS IVF offspring [122]. A 1:1 matched control 
cohort study based on the gestational age and age of children 
further examined this association. In this study, 4–7-year-old 
children conceived through IVF were investigated, and it 
was discovered that the offspring born to mothers with high 
serum estradiol levels (> 12,000 pmol/L) on the day that 
human chorionic gonadotrophin (hCG) was administered 
scored lower in the language proficiency scale. [123].

Interestingly, a longitudinal cohort study that followed 
ART offspring for 11 years revealed a positive association 
between cognitive abilities and ART, which was strong at 3 
and 5 years of age but disappeared by 11 years of age [26]. 
This effect was further explained by the selective character-
istics of ART parents, such as older age, better educational 
background, and higher socioeconomic status, which have 
been shown to independently influence children’s cognitive 
functioning and adolescent brain development and play a 
critical role in students’ educational achievement [124].

Neurological disorders

Cerebral palsy

Several studies have suggested that ART is associated with 
a higher risk of cerebral palsy (CP) [96, 125–127]. In West-
ern Australia, a registry-cohort study including 211,660 live 
births found that the incidence of CP was at least doubled in 
ART offspring, and the higher risk of preterm and multiple 
pregnancies due to ART may partly explain the increased 
prevalence [27]. Subgroup analysis focusing on full-term 
offspring did not show a higher incidence of CP in ART 
offspring [27]. After the increasing application of single-
embryo transfer combined with surplus embryo cryopreser-
vation, there has been an insignificant declining tendency 
of CP among ART children [128, 129]. A previous study 
observed no difference between ART-conceived and natu-
rally conceived preterm offspring at 3 years of age [130].

Kallen et al. [96] analyzed in detail some possible factors 
that co-varied with IVF and CP. After adjusting for year of 
birth, maternal age, gestational age, and smoking, they con-
cluded that ART was associated with only a modest increase 
in the risk of CP, possibly because of increased neonatal 
morbidity associated with multiple pregnancies. Whether the 
elevated risk is associated with the use of ART, if adverse 
obstetric outcomes are controlled, remains to be studied.

Epilepsy

A potential risk for epilepsy has been reported in chil-
dren conceived through ART [28, 131, 132]. In a Dan-
ish registry-based study, parental infertility was found to 
be associated with the incidence of childhood epilepsy 
[133]. Similarly, an increased risk of idiopathic general-
ized epilepsy, which is a subtype of epilepsy generally 
considered to be of polygenic origin [134], has been found 
in the offspring of infertile couples with or without fertility 
treatment [132], suggesting that the severity of parental 
infertility and ART may increase the risk of epilepsy.

Researchers found a slightly increased risk of epilepsy 
(HR, 1.15; 95% CI, 1.00–1.31) in children born after ovu-
lation induction. The increased risk was associated with 
the use of clomiphene citrate and was more pronounced 
in idiopathic generalized and focal epilepsy [28]. Further-
more, they focused on clomiphene citrate–treated women 
(n = 34,039) and revealed a potential dose–response effect 
[135], suggesting that clomiphene citrate may interfere 
with neural system development.

Psychiatric disorders—anxiety and depression

An early study in Amsterdam found a higher prevalence 
of withdrawn/depressed behavior reported by their parents 
and teachers in children born through IVF at the age of 
9–18 years, which raised concerns regarding depression 
and anxiety levels in ART offspring [136]. However, this 
result could not be reproduced in a follow-up study by 
the same group [137]. A Finnish registry-based study in 
2019 observed a higher risk of anxiety disorders in ART 
offspring born between 1998 and 2006 (HR, 1.39; 95% 
CI, 1.11–1.75) [138]. Similarly, researchers using Swedish 
national registry data found a significantly higher risk of 
anxiety and antidepressant use in ART offspring than in 
all other children (HR, 1.35; 95% CI, 1.20–1.51), but the 
association was no longer present when restricted to indi-
viduals born to couples with known infertility (aHR, 1.02; 
95% CI, 0.89–1.17) [29]. In a mouse model, 18-month-old 
male offspring in the IVF group showed increased anxiety 
and depression-like behaviors compared to the NC group 
[139]. A more severe downregulation of the neurotrophin 
GNDF was observed in the hippocampus of aged mice 
than in young male mice. Furthermore, fresh embryo 
transfer was associated with a lower risk of mood disor-
der compared with non-ART offspring (HR, 0.90; 95% CI, 
0.83–0.97), which provides reassuring evidence for the use 
of fresh embryo transfer [29]. Based on the above studies, 
longer follow-up studies are needed to elucidate the health 
risks of ART in psychiatric disorders.
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Reproductive health risks

As a treatment for infertility, the reproductive health of ART 
offspring is of great concern to parents. Our previous study 
found an increased incidence of de novo Y-chromosome 
microdeletions in male IVF offspring (5.3% of 19 IVF off-
spring) and ICSI offspring (16.7% of 18 ICSI offspring) 
[140]. However, most ART offspring are still relatively 
young and have not yet entered childbearing age.

ICSI is typically used to treat male infertility. An ICSI 
offspring cohort study including 54 ICSI-conceived young 
adult men found that their total sperm count, median sperm 
concentration, and total motile sperm count were signifi-
cantly lower than those in SC men [30]. The levels of repro-
ductive hormones in the IVF and SC groups were similar. 
The antral follicle count and levels of the anti-Müllerian 
hormone were found to be similar between ICSI and SC 
young women [141]. Current limited data show that the fer-
tility of female offspring from ICSI and IVF appears to be 
comparable with that of SC offspring.

Concerns regarding the risk of precocious puberty among 
ART offspring have been raised. Some researchers have 
indicated that an altered intrauterine hormonal milieu may 
affect prenatal development and thus affect the timing and 
progression of puberty [142, 143]. A study found that girls 
born after ART had more diagnoses related to early puberty 
(aHR 1.46, 95% CI: 1.29–1.66) while boys with late puberty 
(aHR 1.55, 95% CI: 1.24–1.95) [144]. A later study reported 
no difference in DHEAS concentrations, precocious puberty 
incidence, or Tanner staging between IVF and SC offspring 
aged 4–14 years [74]. A Dutch study showed increased 
DHEAS, LH concentrations, and advanced bone age among 
IVF girls, but not in boys, compared with controls [145]. 
A study involving 217 singleton ICSI offspring and 223 
SC controls showed that ICSI-conceived women had less 
advanced breast development than the control groups [31].

Current evidence concerning the effect on the gonadal 
function of ART offspring is inconclusive; therefore, fur-
ther long-term follow-up research is warranted, especially 
for ICSI-conceived boys. Moreover, it is difficult to find 
a suitable control group to determine whether the genetic 
background of infertility or ART affects the reproductive 
health of children. Therefore, animal models and siblings 
may provide sufficient information.

Potential causes and mechanisms

The long-term health risks of ART offspring can be attrib-
uted to various factors including parental genetic back-
ground, ovulation induction treatment, ART procedures, 
obstetric and perinatal complications, postnatal environ-
mental exposure, and multiple pregnancies. In the present 

review, we focus not only on the mechanisms by which ART 
treatment itself leads to health risks in offspring but also on 
the possible role that parental infertility may play. To date, 
besides parental infertility, studies have explored several 
possible mechanisms involved in the process, which mainly 
focused on epigenome alterations, placental dysfunction, and 
nonphysical hormone levels.

Parental infertility

Increased risk for a variety of diseases in ART children has 
been consistently reaffirmed by different methods and in 
diverse populations. However. it is uncertain whether posi-
tive associations are accounted for by the ART procedure 
itself or underlying characteristics of ART patients and 
increased incidence of multiple births after ART. Couples 
who perform ART tend to be older and infertile. Male factor 
infertility was the most common diagnosis of ART patients, 
followed by diminished ovarian reserve and tubal factor 
infertility. For both women and men, however, lifestyle fac-
tors such as smoking, excessive alcohol intake, and obesity 
have been associated with higher chances of infertility.

In addition to chromosomal aberrations, children born 
to older women may also be at higher risk for gestational 
diabetes, hypertension, pre-eclampsia, placenta previa, pre-
term birth, low birth weight, and neonatal mortality [146]. 
They may also face an increased risk of health problems in 
adulthood. Studies have found that offspring born to older 
mothers may have higher adult fasting blood glucose levels 
[147], as well as higher diastolic and systolic blood pressure 
levels at the age of 5–7 [148, 149] compared to those born 
to younger mothers.

A study examined the associations between types of 
parental infertility diagnoses with autism among ART-
conceived children. The incidence of autism diagnosis was 
lower when parents had unexplained infertility (among 
singletons) or tubal factor infertility (among multiples) 
compared with other types of infertility [102]. One possi-
ble explanation is that patients with unexplained infertility 
and tubal factor infertility tend to be younger. A prospec-
tive study of 1,221,812 children aged 12–25 years found 
that adolescents conceived with ARTs had a slightly higher 
risk of anxiety and antidepressant use; however, the slightly 
elevated risks were no longer seen when the comparison was 
made only among individuals whose parents experienced 
infertility [29], showing that parental infertility is an impor-
tant confounding factor.

Epigenetic interference

Epigenetic regulation is an important mediating mechanism 
that regulates the effects of environmental stimuli on individ-
ual phenotypes. Two important epigenetic reprogramming 
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events occur in mammalian embryos: one in primordial 
germ cell development and the other in the early embryo 
before and after implantation [150]. Both reprogramming 
processes involve extensive erasing and reconstruction of the 
epigenetic spectrum, which includes several interdependent 
epigenetic layers [151]. The timing of the ART procedure 
and that of embryo epigenetic reprogramming overlap sig-
nificantly when both gametes and embryos are extremely 
susceptible to environmental influence. Exposure to such 
unphysiological manipulations can lead to perturbations in 
the reprogramming process, thereby resulting in epigenetic 
mutations and health risks [152].

Imprinting disorders are a group of rare congenital dis-
eases with common underlying epigenetic etiology [153]. 
Many studies have reported a significantly increased risk of 
imprinting disorders in ART offspring [154–156], indicating 
more potentially extensive epigenetic disruption in ART off-
spring. An increasing number of studies have found altered 
DNA methylation in the genes of ART offspring [157–159]. 
Some of these altered genes are involved in chronic meta-
bolic diseases, such as obesity and type 2 diabetes [160, 
161]. However, our previous study assessed the global meth-
ylome in fetal tissues. The results showed that the global 
DNA methylation level was comparable between the IVF-ET 
and SC groups, although alterations in specific regions war-
rant further studies [162].

Placental dysfunction

Dysregulation of placental function induces adverse peri-
natal outcomes and subsequent long-term health risks in 
offspring, including neurodevelopmental disorders, cancer, 
and metabolic diseases [163]. Many studies have demon-
strated a significantly elevated incidence of placenta-related 
complications following ART, including placental previa 
[39], placental accrete [164], and gestational hypertension 
[165]. Furthermore, ART treatment can result in abnormali-
ties in the morphology and structure of the placenta, which 
usually presents as increased thickness and a higher rate of 
hematoma [166]. In addition, placental weight and placental 
weight/birth weight ratio were significantly increased in the 
ART group [167], which is an important reference for meas-
uring the susceptibility of the fetus to adult chronic diseases 
after birth [168].

Nonphysiologic steroid hormone environment

Elevated maternal serum estrogen level

Estrogen affects all aspects of placental function and fetal 
growth during pregnancy. Elevated maternal serum estrogen 
levels are common after ovulation stimulation (OS), which 
is a regular procedure in ART. We previously reported that 

OS-induced high estrogen levels can persist throughout 
pregnancy and are associated with dyslipidemia in offspring 
[169]. Our previous studies also found that high E2 levels in 
the first trimester can increase the risk of thyroid dysfunc-
tion in children aged 3–10 years born from fresh transfer 
[170]. Our previous research demonstrated that prenatal 
E2 exposure reduced insulin receptors in the hypothalamus 
and elevated neuropeptide Y expression in mouse offspring, 
resulting in insulin resistance and disordered eating. We 
also found that maternal high E2 levels in early pregnancy 
altered promoter methylation of hypothalamic Insr in male 
mouse offspring, and this programming effect impaired insu-
lin signaling in the hypothalamus, thus providing evidence 
for glucose metabolism disorders in adulthood [171]. This 
is consistent with the previous finding that exposure to E2 
early in life had a lifelong effect on DNA methylation [172].

Our group observed a high rate of attachment of human 
choriocarcinoma (JAr) cell spheroids to endometrial epithe-
lial cells (EECs) in a high-estrogen environment  (10−7 M) 
compared with a relatively low-estrogen environment 
 (10−9  M) and subsequently identified 45 differentially 
expressed proteins that may be involved, suggesting that 
endometrial receptivity is affected by high estrogen levels 
[173].

In a retrospective cohort study, pregnancy complications 
associated with placental abnormalities are significantly 
increased in the high E2 group [174], suggesting a link 
between estrogen levels and placental function. Our study 
found that high maternal E2 levels after ART may also 
upregulate the expression of imprinted genes in the human 
placenta through epigenetic modifications [175].

Hyperandrogenism in women with polycystic ovarian 
syndrome

Another major maternal hormonal abnormality associated 
with ART is hyperandrogenism, which is primarily induced 
by PCOS. In our previous study, we found that PCOS is 
associated with poor IVF outcomes [176] and thus may 
affect the long-term health of ART offspring.

In our previous study, we included 156 children of moth-
ers with hyperandrogenism and 1060 controls and followed 
up their glucometabolism for a mean age of 5 years. We 
found that children of mothers with hyperandrogenism 
had increased serum fasting glucose and insulin levels 
and incidence of prediabetes (adjusted RR, 3.98; 95% CI, 
1.16–13.58). We also established rat models and found that 
hyperandrogenism can increase insulin-like growth factor 2 
(IGF2) expression, decrease DNMT3a in oocytes, and alter 
methylation signatures in the pancreatic islets of the off-
spring, indicating that hyperandrogenism may predispose 
offspring to diabetes via epigenetic oocyte inheritance [177].
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Paternal genome integrity

Genetic factors can explain at least 15% of male infertility 
[178], and Klinefelter (or 47, XXY) syndrome and Y-chro-
mosome microdeletions (YCMs) are common genetic causes 
of infertility in men with severe oligospermia or azoo-
spermia as clinical manifestations [179]. PGT of embryos 
produced by ICSI of sperm from men with Klinefelter syn-
drome showed a substantially lower rate of normal embryos 
(54% vs. 77.2%) compared to embryos from couples with 
sex-linked disorders who underwent PGT to determine fetal 
sex, and the study further found that chromosomal abnor-
malities on chromosomes 18 and 21 were at significantly 
increased risk. In addition, YCM can be transmitted verti-
cally from the father to male offspring via the Y chromo-
some, which can lead to impaired fertility in the offspring 
[180]. In addition, some oligozoospermic men with autoso-
mal chromosomal structural aberrations, such as Robertso-
nian translocations, inversions, and reciprocal translocation, 
may have an increased risk of aneuploidy or unbalanced 
chromosomal complements in the fetus [181].

Effects of FET on offspring

Although most studies regard this technology as a very safe 
medical operation, some studies have reported long-term 
health risks associated with FET, such as a slightly increased 
incidence of pediatric cancer [182]. Infants born following 
FET have been demonstrated to have increased rates of mac-
rosomia or large for gestational age (LGA) [183, 184]. LGA 
babies have a higher risk of metabolic disease later in life, 
such as cardiovascular diseases, obesity and overweight, 
insulin resistance, and type 2 diabetes [185].

Several studies have investigated the mechanism by 
which FET affects the long-term health of offspring, includ-
ing epigenetic alterations, cellular impairments, proteomic 
profile changes, and some other potential mechanisms. In 
an animal study, researchers found that vitrification signifi-
cantly decreased the expression of DNA methyltransferase 
1o mRNA in mouse MII oocytes [186]. Such alterations 
strongly indicate possible disruption of the embryonic 
genome-wide methylation pattern, which may provide 
insight into the pathogenesis of the unusually elevated mor-
bidity of imprinting-related diseases among ART children. 
Furthermore, in a clinical study analyzing multi-omics data 
derived from umbilical cord blood samples of FET off-
spring, Chen et al. [187] revealed that FET introduced more 
epigenetic disturbances than traditional ART procedures.

Somoskoi et al. [188] showed that cryopreservation could 
affect the mitochondrial distribution pattern, intracellular 
ROS levels, and energy status in both morula and blasto-
cyst stages [189]. Another study showed that frozen/thawed 
oocytes had decreased electron density in the mitochondrial 

matrix and damaged mitochondrial membranes. Mitochon-
drial impairment can result in elevated oxidative stress and a 
subsequent cascade of cellular dysfunction, thereby leading 
to defective embryo development and long-term health risks.

Apart from epigenomic alterations and cellular impair-
ments, Cuello et al. [190] analyzed the gene expression 
profiles of 30 blastocysts subjected to vitrification. A total 
of 205 differentially expressed genes were identified in the 
treatment group, which were mainly involved in the path-
ways of gap junction, cell cycle, cellular senescence, and 
signaling for Fox, TFG, MAPK, and p53. Another animal 
experiment identified 20 differentially expressed proteins in 
the brain tissue of FET offspring [191], which were mainly 
related to the development of anatomical structure, signal 
transduction, transport, cell differentiation, stress response, 
etc. In addition, our previous animal study demonstrated that 
FET disrupted the PI3K/AKT signaling pathway in the liver 
of adult male offspring, resulting in insulin resistance and 
glucose metabolism dysfunction [192]. Furthermore, our 
previous study identified 92 differentially expressed genes 
in the cord blood of neonates born from embryos with blas-
tomere loss during FET, and downstream analysis of these 
genes predicted the activation of organismal death pathways, 
which implies a potentially detrimental effect on embryo 
development [193].

Strategies to optimize the safety of ART 

ART has improved significantly from an initial implanta-
tion rate of < 5% per replacement embryo to > 50% [194]. A 
study from our team showed that the blood pressure of chil-
dren conceived through ART born between 2000 and 2009 
was significantly lower than that of children born between 
1990 and 1999 [81]. Continuous optimization of ART pro-
cedures and management, such as mild stimulation protocol 
and strict indication for ART application, would benefit both 
mothers and children.

Control of E2 concentration

In fresh embryo transfer cycles, E2 levels can be 10 to 20 
times greater during controlled ovarian hyperstimulation 
(COH) and persist throughout the first trimester of preg-
nancy [195], which was found to correlate with increased 
risks of LBW and SGA in the offspring [196] and may lead 
to chronic disease later in life. E2 levels on the day of hCG 
administration can be a useful marker of E2 levels in early 
pregnancy [195, 196], which can help the OB/GYN take 
steps in time to avoid prolonged exposure of the gametes/
embryos to high E2. In our previous retrospective cohort 
study, we discovered that high E2 levels on the day of hCG 
administration led to increased early pregnancy loss and 
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reduced clinical pregnancies, ongoing pregnancies, and live 
births [197]. If maternal E2 levels are very high on the day of 
hCG administration (E2 ≥ 10 460 pmol/L) [195], physicians 
should seriously consider the risk of adverse outcomes in 
the offspring and adopt FET, but not fresh embryo transfer.

Oral contraceptive pill pre‑treatment for PCOS

For women with PCOS, a blended short-acting oral contra-
ceptive pill (OCP) is usually used before gonadotrophin to 
restore hormonal balance and synchronize follicular devel-
opment [198]. An early study demonstrated that OCP pre-
treatment could increase implantation and pregnancy rates in 
women with PCOS [199]. In our previous retrospective study 
of 500 women with PCOS and 565 controls undergoing 
ART, we found that OCP pre-treatment for three cycles or 
more can significantly increase implantation and pregnancy 
rates and reduce the incidence of small-for-gestational-age 
(p < 0.05) [176]. Besides, a recent propensity score matching 
study indicated that in women with PCOS, gonadotropin-
releasing hormone analogue (GnRH-a) pretreatment was 
significantly associated with a higher live birth rate and a 
reduced risk of neonatal PTB [200]. GnRH-a may dispel the 
intrinsic hormonal abnormalities of PCOS [201]. A meta-
analysis of 9 studies, 8327 patients with PCOS, compared 
endometrial preparations by ovarian stimulation protocols 
and hormone replacement therapy in women with PCOS 
before FET, and found a significantly higher clinical preg-
nancy rate (RR = 1.54, 95% CI = 1.20–1.98) in letrozole 
group [202]. The stimulation protocol might be better than 
the HRT protocol in increasing the live birth rate and reduc-
ing the miscarriage rate.

Single‑embryo transfer

Single-embryo transfer (SET) should be strongly rec-
ommended according to current data, although SET is 
not a priority yet in many areas. SET utilization varies 
from 8.8% in South Korea to 53.3% in Australia [203]. 
Compared with single embryo transfer, multiple embryo 
transfer boosts the live birth rate but also the chance of 
adverse birth outcomes, while the cumulative birth rates 
are similar [204–206]. Twin pregnancies are associated 
with a higher risk of complications such as preterm birth, 
low birth weight, and neonatal mortality compared to sin-
gleton pregnancies. [207] A retrospective study [208] of 
2780 live singletons conceived by IVF or ICSI between 
1991 and 2015 showed a significant increase in birth 
weights due to the application of SET. It was observed 
that 4-year-old twins born after IVF had slightly lower 
total IQ scores than singletons, and twins were lighter 
and shorter than singletons [209]. In addition, their risk 
of hospitalization (OR, 4.9; 95% CI, 3.3–7.0), outpatient 

visits (OR, 2.6; 95% CI 1.8–3.6), and medical procedures 
(OR, 1.7; 95% CI 1.2–2.2) was higher from birth up to age 
5 [210]. Another cohort study conducted by D.M. Kissin 
et al. [102] found that the incidence of diagnosed autism 
was significantly lower in ART singletons compared to 
ART twins. Although only a small number of studies 
reported the long-term benefits of SET, multiple births in 
naturally conceived children pregnancy is a much-reported 
risk factor. A two-sample Mendelian randomization study 
conducted by Yi Jiang et al. [211] based on UK Biobank 
and FinnGen databases has revealed a causal relationship 
between multiple birth and nervous system disease and 
various cardiac disorders. Moreover, it is well established 
that multiple birth is an important risk factor for perinatal 
outcomes [212], and poor perinatal outcomes may lead to 
far-reaching impact on the long-term health of offspring. 
Although the current mainstream view is in favor of SET, 
more evidence is still needed to support its advantage.

Fresh embryo transfer versus FET

At present, there is no consensus on the relative superiority 
or inferiority of fresh embryo transfer or FET, although most 
studies favor FET. A randomized trial conducted in China 
included 1650 patients with a good prognosis and assigned 
them to receive fresh or frozen single-blastocyst transfers. 
The frozen group had significantly higher rates of live births 
than the fresh group (50.4% vs. 39.9%; RR, 1.26; 95% CI, 
1.14–1.41; p < 0.0001) [213]. FET is an important method 
against OHSS [214]. However, not all studies concluded that 
FET is better than fresh embryo transfer. Coutifaris et al. 
[215] found that frozen single-blastocyst transfer was asso-
ciated with a higher incidence of preeclampsia than fresh 
single-blastocyst transfer.

Compared to the abundant studies focusing on short-
term outcomes in FET versus fresh ET, fewer studies dem-
onstrated the comparison of long-term outcomes between 
these two approaches. Some studies found no significant dif-
ference in long-term outcomes between FET and fresh ET. 
A cohort study from Australia followed 391 cases reported 
a comparable status of cognition development in FET and 
fresh ET children [216]. However, some studies indicated 
worse outcomes in FET offspring. A cohort study in Den-
mark, which included 1,085,172 children reported that FET 
children showed a higher incidence of cancer compared to 
spontaneous children, while other types of fertility treat-
ments did not show such a trend [182]. Besides, fetal patho-
logical events, such as pre-eclampsia, increase cardiovas-
cular risk and are associated with premature vascular aging 
during adolescence [217]. Further follow-up studies on the 
advantages and disadvantages of FET and fresh embryo 
transfer should be conducted.
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Vitrification versus slow freezing

Compared to slow freezing, vitrification hardly forms ice 
crystals outside the cells, which is the most significant 
source of injury during cryopreservation. However, vitri-
fication requires relatively high concentrations of cryopro-
tectants, which may induce cellular damage including direct 
toxicity and osmotic damage.

Regarding the comparison between vitrification and con-
ventional slow freezing, Rienzi et al. [218] demonstrated 
that embryos, blastocysts, and oocytes all have a better sur-
vival rate in the vitrification group than in the slow freezing 
group. Studies have also suggested that the application of 
vitrification could elevate clinic pregnancy rates compared 
to slow freezing [218]. Since vitrification has not been 
widely used until recent years, studies focusing on the com-
parison of the long-term effects between vitrification and 
slow freezing are still in shortage. Thus far, vitrification is 
generally recommended. However, more studies are war-
ranted to confirm whether it is better for ART offspring in 
the long run.

Optimize culture medium

Some studies have attempted to improve the outcomes by 
optimizing the culture medium. A study found that the 
selection of an in vitro culture medium for human embryos 
was associated with body weight, BMI, truncal adiposity, 
waist circumference, and waist/hip ratio of the offspring 
[219]. Sacha CR et al. [220] conducted a study comparing 
obstetric and perinatal outcomes for deliveries conceived 
with embryos from single-step versus sequential culture 
media systems. The study found that single-step culture 
was associated with increased odds of LGA (aOR, 2.1; 
95% CI, 1.04–4.22; p = 0.038) [220]. In emerging studies, 
various research has attempted to determine what should be 
added to the medium. Supplementing the embryo culture 
medium with an optimized combination of growth factors 
and cytokines significantly increased trophectoderm cell 
number, total cell number, and blastocyst outgrowth area 
following embryo transfer, fetal weight, and crown-rump 
length in mice [221]. Velazquez et al. [222] explored the 
addition of insulin and branched-chain amino acids to the 
culture medium, which increased the birth weight and 
early postnatal body weight of offspring. However, male 
offspring show relative hypertension and female offspring 
show decreased heart/body weight ratios [222]. A recent 
study demonstrated that melatonin supplementation in the 
culture medium can reverse impaired glucose metabolism in 
IVF mouse offspring [223]. Studies in this area are limited 
in their application. Stronger evidence is required regarding 
this topic.

Embryo biopsy

The most commonly used PGT method requires a biopsy 
of developing embryos to obtain genetic material, which 
increases the potential risk of embryo development and 
long-term consequences [224, 225]. Some studies reported 
a higher incidence of hypertensive disorders and small-for-
gestational-age compared to the unbiopsied group [226, 
227], whereas others reported no increase [228, 229]. 
Recently, scientists have explored techniques for noninva-
sive PGT (niPGT) by correlating the genetic material found 
in blastocyst fluid and spent blastocyst media [230]. This 
technique is a potentially more effective and safer way to 
detect chromosomal abnormalities [231].

Health care for ART parents and offspring

Infertility should be diagnosed and treated promptly, as 
maternal age affects the outcomes of IVF, pregnancy com-
plications, and neonatal health. Moreover, genetic coun-
seling and health promotion treatment should be considered 
before ART. Doctors should inform patients of the risks of 
ART for their offspring [232], to ensure action is taken to 
limit these risks.

Maternal weight control

Obese women are advised to lose weight prior to conception. 
Pre-pregnancy obesity of the mother is associated with an 
increased risk of obesity and overweight at an early age in 
ART offspring and may also affect the risk of ID in offspring 
[233]. Similarly, obesity in lactating mothers is associated 
with faster fat gain in offspring, and infants conceived by 
overweight or obese mothers exhibit a lower response to 
human milk insulin than infants conceived by women of 
normal weight [234]. Additionally, maternal BMI and blood 
lipid levels are associated with an increased risk of ASD.

Feeding

The diet of the offspring may play an important role in accel-
erating the progression of abnormal glucose metabolism in 
ART offspring. Chen et al. [161] found elevated fasting glu-
cose levels, glucose intolerance, and insulin resistance in 
children fed a high-calorie diet. Similarly, in ART-conceived 
mice fed with HFD, ART-conceived mice were more likely 
to develop obesity, fasting hyperinsulinemia, and hypergly-
cemia, and insulin-stimulated glucose utilization was 20% 
lower (steady-state glucose infusion rate) than SC mice. It 
is believed that endothelial dysfunction induced by ART 
through epigenetic alteration of endothelial nitric oxide 
synthase would facilitate glucose intolerance and insulin 
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resistance when challenged with metabolic stress [83]. Our 
recent study found that in a mouse model, after being fed 
with HFD, male ART offspring in the FET group performed 
earlier and had more severely impaired glucose tolerance 
than the ET group [192].

Evidence has shown that postnatal lifestyle interventions 
can ameliorate and reverse adverse epigenetic and pheno-
typic changes induced during pregnancy [235, 236]. Breast-
feeding for at least 6 months can protect children from being 
overweight at the age of 2 years [237]. Formula supplemen-
tation, on the other hand, is associated with faster fat gain 
[234]. Therefore, exclusive breastfeeding is recommended 
for at least 6 months, especially for infants at risk of devel-
oping obesity.

Additional supplements

As demonstrated in this review, ART may be associated 
with an increased risk of diseases, such as asthma, ASD, 
and cardiovascular disorders. Some of these conditions can 
be treated early by the administration of additional supple-
ments. Maternal vitamin D intake can decrease the risk of 
developing asthma [238]. Prenatal vitamins and folic acid 
taken during the first month of pregnancy can reduce ASD 
recurrence in the siblings of patients with ASD [239, 240]. 
After ART, children are advised to use additional supple-
ments. A prospective, double-blind, placebo-controlled 
study including 21 ART and 21 control children showed that 
the administration of antioxidants to ART children improved 
no bioavailability and vascular reactivity in the systemic and 
pulmonary circulation [241].

Conclusion

In our review, we summarized the present knowledge on 
the long-term health risks of ART offspring (Table 1). It 
is suggested that ART offspring have an increased risk 
of NCD, such as malignancies, asthma, obesity, meta-
bolic syndrome, diabetes, cardiovascular diseases, and 
neurodevelopmental and psychiatric disorders. There are 
still many controversies in this field and much remains 
unknown, and further research is needed to monitor the 
long-term health of ART offspring and determine the 
effects of ART on this population in later life. Evidence 
indicates that underlying parental infertility, altered epig-
enome alterations, placental dysfunction, and nonphysical 
hormone levels may contribute to adverse outcomes in 
ART offspring. ART procedures should be developed to 
mimic a natural pregnancy as closely as possible to elimi-
nate these potential risks. Strategies, such as controlling 
E2 concentration and single embryo transfer, that improve 

both perinatal and long-term outcomes have been discov-
ered. Attention should also be paid to health education 
and health care for ART parents and offspring, such as 
maternal weight control and offspring feeding.
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