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Abstract

Purpose To establish if preimplantation genetic testing for aneuploidy (PGT-A) at the blastocyst stage improves the com-
posite outcome of live birth rate and ongoing pregnancy rate per embryo transfer compared to conventional morphological
assessment.

Methods A systematic literature search was conducted using PubMed, EMBASE and Cochrane database from 1st March
2000 until 1st March 2022. Studies comparing reproductive outcomes following in vitro fertilisation using comprehensive
chromosome screening (CCS) at the blastocyst stage with traditional morphological methods were evaluated.

Results Of the 1307 citations identified, six randomised control trials (RCTs) and ten cohort studies fulfilled the inclusion
criteria. The pooled data identified a benefit between PGT-A and control groups in the composite outcome of live birth rate
and ongoing pregnancy per embryo transfer in both the RCT (RR 1.09, 95% CI 1.02—-1.16) and cohort studies (RR 1.50, 95%
CI 1.28-1.76). Euploid embryos identified by CCS were more likely to be successfully implanted amongst the RCT (RR 1.20,
95% CI 1.10-1.31) and cohort (RR 1.69, 95% CI 1.29-2.21) studies. The rate of miscarriage per clinical pregnancy is also
significantly lower when CCS is implemented (RCT: RR 0.73, 95% CI 0.56-0.96 and cohort: RR 0.48, 95% CI 0.32-0.72).
Conclusions CCS-based PGT-A at the blastocyst biopsy stage increases the composite outcome of live births and ongoing
pregnancies per embryo transfer and reduces the rate of miscarriage compared to morphological assessment alone. In view
of the limited number of studies included and the variation in methodology between studies, future reviews and analyses
are required to confirm these findings.
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Introduction

Despite significant advances within the field of in vitro
fertilisation (IVF) and assisted reproductive technologies
(ART), the majority of IVF cycles remain unsuccessful
with respect to achieving a live birth. Subsequently, embry-
onic aneuploidy is often the primary reason associated with
poor reproductive outcomes, clinically manifested by repet-
itive implantation failures or recurrent pregnancy loss [1].
This is increasingly common with advancing maternal age,
particularly above 37 years old [2, 3]. To mitigate the high
failure rate associated with aneuploidy, multiple embryos
are often transferred to achieve a single live birth [1]. How-
ever, this practice is associated with high multiple preg-
nancy rates, along with its related obstetric and neonatal
burdens [4]. As such, subsequent efforts have since focused
on selecting the best quality single embryo for transfer [5].

Traditional methods to assess embryo quality include
morphological assessment. However, embryo evaluation at
the blastocyst stage cannot accurately predict aneuploidy
status, as exemplified by the finding that almost half of the
top-quality blastocysts are aneuploid [6]. Further studies
have reaffirmed that traditional methods of morphologic
embryo selection are unable to detect aneuploidy reliably
[7]. Since 1993, pre-implantation genetic testing for ane-
uploidy (PGT-A), previously termed pre-implantation
genetic screening (PGS) however, has utilised a number of
methodologies for genetic testing to overcome such chal-
lenges [8]. The procedure offers an opportunity to screen
embryos for certain chromosomal abnormalities in order
to prioritise embryos with euploid (putative diploid) test
results for transfer, thereby improving IVF outcomes [9].

Previously, fluorescence in situ hybridisation (FISH)
was the most frequently adopted technique used for PGT-
A, following blastomere biopsy of cleavage stage embryos.
However, a number of studies failed to show any benefit
in the live birth rate, especially amongst older women
[10-12]. Furthermore, the mosaic nature of cleavage stage
embryos, in addition to the ability to only screen a lim-
ited number of chromosomes, contributed to the poor ini-
tial outcomes following PGT-A using FISH and thus the
decline in implementation of this technique [13]. The evo-
lution of genetic testing techniques nonetheless has enabled
methods such as comprehensive chromosomal screening
(CCS), which entails the analysis of all the chromosomes,
offering a much greater degree of utility when compared to
FISH techniques [14]. CCS can be performed using array
comparative genomic hybridisation (CGH), single nucleo-
tide polymorphism (SNP) arrays, quantitative polymerase
chain reaction (qPCR) and next-generation sequencing
(NGS). CCS can also be undertaken on biopsies taken at
different stages of embryo development, including day 1
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zygote (polar bodies), day 3 cleavage-stage (1 or 2 blasto-
meres), or day 5 or 6 blastocyst stage embryos (3-10 tro-
phectoderm cells). Biopsy of the trophectoderm is deemed
to be less traumatic and associated with a lower rate of
mosaicism, when compared with biopsy of the blastomere
during the cleavage stage [14]. Consequently, biopsy at the
blastocyst stage is the most commonly used approach, with
NGS as a method of PGT-A.

Despite the theoretically beneficial reproductive outcomes
following PGT-A, evidence in favour of such methods remain
variable and contradictory [15]. This is despite a number of
double-blinded randomised control trials (RCTs) assessing
the use of aneuploidy in all 24 chromosomes, from both sin-
gle and multiple centres included in metanalyses, with over-
all inconsistent conclusions drawn [11, 12, 16]. The Human
Fertilisation and Embryology Authority (HFEA), the UK
regulatory body for ART, refers to a traffic light system to
rate various add-on treatments, to describe whether the treat-
ments are considered effective at improving the chances of
having a livebirth. Green-rated add-ons have been proven
by more than one high-quality randomised controlled trial
(RCT); amber is rated when evidence from RCTs is conflict-
ing, and red when no evidence from RCTs has been estab-
lished. As such, the HFEA still stipulates that there is no
evidence to suggest that PGT-A on a day 5 embryo is effec-
tive and safe [17]. A study assessing the outcomes of PGT-A
and non-PGT-A cycles between 2016 and 2018 taken from
the HFEA however, has since challenged the HFEA red traf-
fic light guidance, by demonstrating the significant benefit
of PGT-A compared to morphology [8]. The study however
has been rebutted by various authors who have also analysed
HFEA data taken from the same period [18, 19]. In one par-
ticular study comparing all PGT-A cycles to a control group,
including those that could have had PGT-A had the option
been available, the treatment effect of PGT-A was different,
with an overall odds ratio (OR) for a live birth event quoted
as 0.82 (0.68-1.00) using > 1 transferrable embryo control
and 0.80 (0.64—0.99) when using > 5 embryos created as con-
trols [18]. Thus, the analysis demonstrated an overall reduc-
tion in live birth rates following PGT-A when comparing
like-for-like groups [18]. A separate study utilised data from
7 individual clinics reporting at least 50 PGT-A cycles com-
pared to IVF/intracytoplasmic sperm insemination (ICSI)
frozen cycles, taken from the same period as the 2016-2018
HFEA report [19]. The study demonstrated that PGT-A had a
potential benefit in differentiating between a viable and non-
viable embryo to reduce the risks of clinical pregnancy loss
in women > 35 years old (1.97 (1.82-2.12) > 35 years vs 1.12
(1.01-1.24) < 35 years) [19]. The risk ratios for pregnancy
losses from clinical pregnancies were similar between clin-
ics, with PGT-A also being favoured in older women (0.51
(0.39-0.68) > 35 years vs 1.09 (0.78-1.54) <35 years) [19].
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Remarkably, the HFEA annual report on IVF trends and
figures for 2017 and 2018 did not provide any outcome data
for PGT-A. Given that clinicians in the UK are guided by
limited and conflicting evidence [20, 21], the effectiveness of
PGT-A is not well understood and further studies are required
to improve understanding of the reproductive outcomes.

The primary aim of this manuscript is to perform an up-to-
date systematic review and meta-analysis to evaluate whether
LBR and ongoing pregnancy rates (OPR) per embryo transfer
improve with CCS-based PGT-A at the blastocyst stage, when
compared to conventional morphological assessment.

Materials and methods
Search strategy

During the undertaking of this review, PRISMA guidelines
were adhered to [22]. Electronic searches of studies conducted
from 1st March 2000 to 1st March 2022 were performed using
PubMed, EMBASE and the Cochrane database. The search
was limited to studies conducted in humans and written in the
English language. Case studies, commentaries, reviews and
editorials were excluded. The following search terms were
used: (preimplantation genetic screening, PGS, preimplanta-
tion genetic testing, PGT-A, PGT, comprehensive chromo-
some screening, CCS, comparative genomic hybridisation,
CGH, array comparative genomic hybridisation, aCGH, sin-
gle nucleotide polymorphism, SNP, polymerase chain reac-
tion, PCR and next generation sequencing, NGS). All article
abstracts were reviewed for relevance, with subsequent refer-
ence lists and bibliographies of included studies examined.
Furthermore, a manual search of published cases was per-
formed to identify any other relevant cases. The study was not
registered and a review protocol was not prepared.

Study selection and data extraction

Following the removal of duplicate publications, three
authors (LSK, ET, DM) independently examined the elec-
tronic search results, checking the titles, abstracts and full
text for further detail. Any disagreements were resolved by
a fourth author (JBN).

Published trials eligible for inclusion included observa-
tional or randomised studies comparing women undergo-
ing IVF with PGT-A using CCS technology (any type) and
trophectoderm biopsy at the blastocyst stage (defined as
CCS group), to women undergoing IVF with standard care
without PGT-A (control group). Studies performing CCS at
cleavage or polar body stage were excluded. There was no
distinction made between the type of CCS technology (NGS,
CGH, SNP, gPCR) used or between fresh and frozen cycles.
Studies that did not report LBR or OPR were excluded.

Quality assessment

All studies were assessed for quality using predetermined
criteria based on the Newcastle—Ottawa Scale (NOS) [23]
and Cochrane handbook for observational and cohort studies
[24] by two authors (LK, ET). The NOS looks at 3 different
metrics: selection, comparability and outcome. A maximum
of 2—4 points are awarded depending on the category. Total
higher scores (7 or more) equate to higher quality. The RCTs
were assessed for quality using the following criteria: ran-
dom sequence generation, allocation concealment, blinding
of participants and personnel, incomplete outcome data,
selective outcome reporting and other potential sources of
bias, such as selective reporting of subgroups or potential
influence from funders.

Main outcomes

Amongst the studies included, large heterogeneity regard-
ing the outcome measures and definitions evaluating PGT-A
was observed. In this meta-analysis, a composite outcome
of LBR and OPR per embryo transfer was the primary out-
come measure, as most pregnancies beyond 20 weeks go on
to achieve live birth [25]. In addition, the delivery rate was
considered synonymous with LBR. Secondary outcomes
included implantation rate (IR), miscarriage rate and mul-
tiple pregnancy rate.

Biochemical pregnancies were defined as a positive
serum b-hCG level (>5 MIU/mL) without ultrasound con-
firmation of a gestational sac. A clinical pregnancy was
defined as the presence of an intrauterine gestational sac
with a viable foetal pole on ultrasound. Implantation rate
was defined as the number of intrauterine gestational sacs /
total number of embryos transferred per patient. The clinical
miscarriage rate was defined as the number of miscarriages
divided by the number of clinical pregnancies. A miscar-
riage was diagnosed only after confirmation of a clinical
pregnancy. The multiple pregnancy rate was also analysed,
when available. Recurrent implantation failure (RIF) was
defined as >3 failed IVF cycles, despite the transfer of high-
quality embryos. Recurrent miscarriage (RM) was defined
as > 2 idiopathic miscarriages.

Statistical analysis

The effect of PGT-A versus non-PGT-A on each outcome
measure was analysed separately, where p <0.05 was consid-
ered statistically significant. Pooled estimates of risk ratios
(RRs) with their 95% confidence intervals were calculated
for each study according to a fixed-effects model. The RCTs
and cohort studies were analysed separately to minimise
selection bias. Statistical heterogeneity amongst the studies
was examined by assessing the scatter in the data points and
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checking for overlap in confidence intervals. In addition, it
was tested formally using both the Cochran’s Q test and the
% index. The Higgins study suggests low, moderate and high
heterogeneity corresponding to /? values of 25%, 50% and
75% respectively [26]. When heterogeneity was considered
high (>75%), a random-effect model was used to combine
the results; otherwise, a fixed-effect model was used. Review
Manager 5.4 (Revman version 5.4; Nordic Cochrane Center)
was used to combine data and perform the statistical analy-
sis. Forest plots were created for comparison.

Results
Literature search and study selection

After the initial search, 1307 studies were retrieved and abstracts
were subsequently reviewed. Thirty-seven studies were selected
for detailed assessment. The main reasons for exclusion were
the following: lack of control group (n=4), biopsies performed
at the cleavage or polar body stage or embryo transfers per-
formed on day 3 (n=13) and the LBR or OPR not documented
(n=2). A further 2 studies were excluded, as the women in
the study were carriers of chromosomal rearrangements. From
the selected studies, five stated their exclusion criteria included
either single gene diagnosis cycles [27-29], abnormal chro-
mosomes in either or both partners [30] or a plan to undergo
PGT-A for monogenic disease or parental chromosomal struc-
tural rearrangements [31]. The remaining studies in this meta-
analysis did not document whether cycles for chromosomal
rearrangements had been excluded or not.

Finally, six RCTs [25, 31-35] and 10 cohort studies
[27-30, 36—41] that assessed LBR and/or OPR per embryo
transfer in both PGT-A and non-PGT-A groups fulfilled the
inclusion criteria and thus included in the meta-analysis.
It is worth noting that the study by Forman et al. was a
randomised non-inferiority trial, to determine if the disad-
vantage of single embryo transfer (SET) relative to double
embryo transfer (DET) could be overcome by PGT-A [33].
The study selection process is summarised in Fig. 1.

Trial characteristics

The main characteristics of the six RCTs and 10 cohort
studies are displayed in Tables 1 and 2 respectively. For
each study, the design, indication for PGT-A, embryo
biopsy stage, CCS platform used, type of embryo transfer
(fresh/frozen) and main outcomes are presented. Overall,
the 16 included studies accounted for 5793 ART cycles in
women ranging from 20 to 43 years old. Of these studies,
8 were performed in America [27-29, 33, 34, 36-38], four
were based in Europe, [31, 35, 39, 40], two were under-
taken in Asia [30, 41] and two included data from multiple
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centres worldwide [25, 32]. Over half the studies did not
require a formal indication for PGT-A such as the follow-
ing: advanced maternal age (AMA), RIF or RM. Indeed,
the two largest RCTs predominantly included women with
good prognosis: less than two prior failed IVF attempts
with a good ovarian reserve and at least two—three high-
quality blastocysts available [25, 31]. Amongst the RCTs,
gPCR was the most common platform utilised to perform
CCS, whilst aCGH accounted for the most frequently used
in the cohort studies. Indications for undertaking PGT-A
included AMA [27, 38, 41], RIF [30, 41] and RM [30, 41]
whereas several studies cited no specific indications for
PGT-A [29, 31, 35, 39].

Quality assessment

Amongst the 6 RCTs, the study design and quality varied.
All studies used a random number generator or function
[25, 31-35]. Of these, three used block randomisation
[31, 33, 34], with one using separate randomisation tables
for each maternal age group [34]. One study randomised
patients using an electronic data capture system and ran-
domisation module according to patient age group [25].
The method of allocation and concealment was described
explicitly amongst three studies only [31, 33, 34]. One
study reported blinding of the provider, patients and lab
[25], whereas 3 studies did not blind patients [31, 33, 35],
one study blinded patients only [32] and one study did not
describe methods to blind adequately [34]. Table 3 reports
the risk of bias summary and Table 4 reports the risk of
bias graph for the RCTs.

The 10 cohort studies included in the present meta-analy-
sis had a NOS score between 6 and 9 (median 7). All studies
described the selection of patients in both the PGT-A and
control group. Only two studies matched the PGT-A group
to a suitable control group prior to analysis [30, 36], which
may raise concerns about comparability bias in the remain-
ing studies. The primary outcome was well-defined in all
studies with sufficient follow-up. Table 5 reports the risk of
bias for all cohort studies.

Composite outcome live birth rate and ongoing
pregnancy per embryo transfer

All studies included in this meta-analysis provided details
of LBR or OPR as their primary outcome. There was vari-
ation in the definition of ongoing pregnancy amongst the
studies, with some using a foetal heart > 20 weeks and oth-
ers > 24 weeks. Given the stillbirth rate is very low, it is
highly likely that ongoing pregnancies > 20 weeks proceed
to live births, as demonstrated by one of the largest RCTs in
this meta-analysis [25]. As highlighted in Fig. 2, the PGT-A
group had higher pooled LBR/OPR per embryo transfer in
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Fig. 1 Flow chart of study selection

both the RCT (RR 1.09, 95% CI 1.02-1.16; p=0.01) and
cohort studies (RR 1.50, 95% CI 1.28-1.76; p <0.001).

Live birth rate per embryo transfer

Twelve studies [25, 28-31, 34-36, 38—41] provided details
on the LBR per embryo transfer (Fig. 3).

In one study, the live births plus sustained pregnancies could
not be differentiated from the OPR figure [27]. Ongoing preg-
nancy was defined as an ongoing pregnancy > 24-weeks gesta-
tion. Whilst most pregnancies over 24 weeks result in a live
birth, there may be a small number of stillbirths, which may
alter the accuracy of the results. For this reason, the study by
Forman et al. was included only in the composite outcome live
birth rate and ongoing pregnancy per embryo transfer analysis
and not in the live birth rate per embryo transfer analysis.

The benefit of using PGT-A to improve live births in the
RCTs (RR 1.08, 95% CI 1.01-1.16) was statistically signifi-
cant (p =0.03). In the cohort studies, the benefit was also
demonstrated (RR 1.57, 95% CI 1.26-1.96; p <0.001).

Ongoing pregnancy rate per embryo transfer

Over half the studies (n=8) used OPR as their primary
end outcome, including 4 RCTs [25, 32, 33] [31] and
4 cohort studies [27, 37, 39, 40] (Fig. 4). Two RCTs
reported both LBR and OPR and therefore appear in both
sub analyses [25, 31]. It should be noted that the STAR
study was an intention-to-treat study, and the data used in
the analysis reflects the actual intervention provided [25].

The pooled OPR per embryo transfer was higher in the
PGT-A group compared to the control in the RCTs (RR 1.08,
95% CI 1.00-1.16; p=0.04). This benefit was also consid-
ered statistically significant in the cohort studies (RR 1.38,
95% CI 1.25-1.52; p<0.001).

Implantation rate
The majority of studies (n=12) reported IR or provided clin-

ical pregnancy data and the number of embryos transferred
(Fig. 5) [25, 27-29, 32-34, 36-38, 40, 41].
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Studies excluded from this analysis were those where
only LB per embryo transferred was reported [39], or where
no data was available [30, 35]. Both the pooled results of
the RCTs (RR 1.20, 95% CI 1.10-1.31; p <0.001) and the
cohort studies (RR 1.69, 95% CI 1.29-2.21; p<0.001)
showed a statistically significant higher IR in the PGT-A
group compared to the control group.

Miscarriage rate per clinical pregnancy

Five RCTs [25, 31-33, 35] and 5 cohort studies [27, 29, 30,
38, 41] evaluated miscarriage as an outcome (Fig. 6).

Three studies were excluded from this analysis because
the data was either conflicting [28, 37], incomplete or the
definition of missed abortion was not clearly defined [37,
40]. The pooled RCT data showed a trend for higher miscar-
riage rate in the control group, which was statistically sig-
nificant (RR 0.73, 95% CI 0.56-0.96; p=0.02). The pooled
analysis of the cohort studies (n =1089) also demonstrated a
statistically significant higher miscarriage rate in the control
group (RR 0.48, 95% CI 0.32-0.72; p=0.0004).

Miscarriage rate per embryo transfer

The miscarriage rate was analysed per embryo transfer
amongst 10 studies (Fig. 7).

The pooled analysis for the RCT studies [25, 31-33, 35]
showed a statistically significant trend for a higher miscar-
riage rate in the control group (RR 0.74, 95% CI 0.56-0.98;
p=0.04), as well as in the pooled analysis of cohort studies
[27,29, 30, 38, 41] (RR 0.61, 95% CI 0.41-0.92; p=0.02).

Multiple pregnancy rate

Only four cohort studies reported data concerning multiple
pregnancy rates (Fig. 8) [27, 29, 38, 39]. Although the study
by Coates et al. is included in this analysis, it is important to
acknowledge that the numbers provided represent twin live
birth rates and not multiple clinical pregnancy rates [39].
Two RCTs in particular were not included in this analysis for
the following reasons. The first used a single untested blastocyst
for transfer in the control group [31] and the second used two
embryos for transfer [33]. Amongst the pooled cohort studies,
higher multiple pregnancy rates were observed in the control
compared to PGT-A groups, but this did not reach statistical
significance (RR 0.64, 95% CI 0.22-1.90; p=0.42).

PGT-A for specific indications
Two studies specifically analysed outcomes in women
with either RIF or RM [30, 41]. As the study by Lee et al.

[41] did not include a control group, a pooled analysis
was not feasible.

@ Springer

AMA was commonly cited as an indication for PGT-
A, with several cohort studies evaluating its effect on
LBR and or OPR. However, studies are not consistent
with regard to age stratification using the following: <35
vs >35[25], <38 vs >38 [29, 41] and more complex strat-
ifications such as the following: <34, 35-37, 38—40, 4142
and >43 [27, 28]. As such, the variation in age classifica-
tion makes the pooling of results impractical.

Heterogeneity analysis

The I test result for heterogeneity of the pooled risk esti-
mates varied from 0 to 94% amongst the cohort and RCTs.
The heterogeneity was overall higher amongst the cohort
studies.

Discussion

To the best of our knowledge, this is the first meta-analysis
to systematically review all studies comparing CCS-based
trophectoderm biopsy PGT-A on blastocysts only to a con-
trol group.

We demonstrate herein that CCS-based PGT-A is associ-
ated with a statistically significant higher LBR per embryo
transfer and OPR per embryo transfer in both the RCT and
cohort studies. Conversely, however, a previously published
systematic review assessing the use of FISH to screen an
arbitrary number of chromosomes, and, or, use cleavage-
stage biopsies, failed to demonstrate similar improvements
[12]. However, it should be acknowledged that the primary
outcome measure in the aforementioned study was LBR per
woman following PGT-A and not per embryo transfer.

Previously published systematic reviews which have not
demonstrated improvements in LBR may be attributed to
the fact that the majority of studies included in the anal-
yses assessed earlier methods of PGT-A, with significant
discrepancies between the techniques for genetic testing
implemented between studies. Reproductive outcomes fol-
lowing the implementation of CCS PGT-A have improved
significantly as technology has evolved, and therefore, it is
inappropriate to combine earlier outcomes with those fol-
lowing the use of recent newer techniques. Consequently,
our findings are consistent with a more recent meta-analysis
focussing on modern CCS-based techniques, including both
cleavage and blastocyst stage biopsies, whereby increased
clinical pregnancy rate, OPR and LBR per cycle associated
with PGT-A were also demonstrated [42].

Amongst studies whereby improved LBR with PGT-A are
not recognised benefits, the success of PGT-A was deemed
to be age-dependent. This is exemplified by one study
whereby improved rates with PGT-A were only observed
in women above 35 years old [43]. This has also been
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Table 3 Risk of bias summary for RCTs

Forman 2013

Munne 2019

Ozgur 2019

Scott 2013

Yan 2021

® D S S ®| @ |selectvereporting (reporting bias)

® D D S S| @ | Incomplete outcome data (attrition bias)
® DS S S| @ oterbias

® D S S | @ blindingof outcome assessment (detection bias)

~ @ @®| > |~ | @ |Alocation concealment (selection bias)
QO - | @O ®| @ sindingofparticipants and personnel (performance bias)

® O S S| @ ® Randomsequence generation (selection bias)

Yang 2012

demonstrated in various studies, whereby there were higher
OPR observed not only in young women < 35 (p=0.01), but
also in women > 40 years using PGT-A (p=0.03) compared
to controls [27, 28]. Similarly, in the Whitney et al. study,
the LBR per embryo transfer was higher in women aged

between 38 and 42 years old (p=0.01) receiving PGT-A
[28]. Evidently, the overall benefit of PGT-A is overshad-
owed by the favourable outcomes demonstrated in young
healthy couples, and where success is only deemed signifi-
cant in high-risk groups, such as AMA and RIF [44].

It is also important to acknowledge that the relative
risk for the composite ongoing pregnancy and live birth
rates amongst the RCT and cohort studies was 1.09 and
1.50 respectively. This may not be considered a signifi-
cant improvement, considering the potential risk of loss
of embryos following biopsy between the studies, lack of
euploidy and the additional expense of the procedures. It
is important therefore for clinicians to effectively counsel
couples regarding the risks and benefits of PGT-A in a non-
biased manner, whilst considering the patients’ priorities and
the variation of risks between clinics.

The current meta-analysis also demonstrates a signifi-
cant increase in IR when using CCS-based PGT-A. This is
in keeping with two systematic reviews, consisting of three
RCTs [45, 46]. It is well established that blastocysts have
a higher implantation rate than cleavage-stage embryos
because of the ability to aspirate more cells [47]. It has
been argued that blastocyst biopsies contain a compara-
tively higher content of DNA templates compared to the
cleavage stage, which is believed to improve the sensitiv-
ity and specificity of PGS [46]. As such, the cells sam-
pled from the trophectoderm can accurately predict the
chromosome complement of the inner cell mass and are
therefore less vulnerable to mosaicism [48], with notably
statistically significant increased LBRs per embryo transfer
[43]. Conversely, cleavage-stage biopsy is associated with
increased traumatic injury and a 39% reduction in implan-
tation rate [49]. Thus, given that the studies included in
this meta-analysis assessed trophectoderm biopsies from
blastocysts only, this provides further evidence for these
positive outcomes.

CCS-based PGT-A was also found to significantly reduce
the miscarriage rate per clinical pregnancy and per embryo
transfer in both the cohort studies and RCTs. It should be

Table 4 Risk of bias graph for
RCTs

Random sequence generation (selection bias)

Allocation concealment (selection bias)

Blinding of participants and personnel (performance bias)
Blinding of outcome assessment (detection bias)
Incomplete outcome data (attrition bias)

Selective reporting (reporting bias)

Other bias

0% 25% 50% 75%  100%

[ Low risk of bias

[Junciearrisk of bias [l High risk of bias
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g acknowledged however, that the causes of miscarriage are
2 multifactorial, and therefore, in order to interpret the rela-
g Q22T QDO tionship between miscarriage rate and the use of PGT-A,
= B O I~ 06 O N N 6 O o© .. . . P
significantly larger sample sizes are required for analysis in
s ? order to generalise conclusions.
3 § We also demonstrate lower multiple pregnancies fol-
g L‘i lowing PGT-A compared to the control group amongst
_;'; ; the cohort studies only. Although DET is associated with
<2 P improved LBR [1], the increased risk of multiple gestations
_ B along with maternal and neonatal complications has led to a
=] :o E trend in undertaking SET, using the highest quality embryo,
E %0 % facilitated by the use of PGT-A. Although the mean number
£ 5§ of embryos transferred per patient was higher in the control
g g groups, only 4 studies used SET exclusively in both arms
B ° B I . S SR CHEE R R .
of the study [27, 29, 38, 39]. Amongst these studies, one
5 reported the multiple pregnancy rate, in which there was one
E case of multiple pregnancies described in both arms [27].
qg g g This is in keeping with the low rates of multiple pregnan-
2|2 % cies associated with SET [39]. Given the improvement in
cl<s FOOROROR R OR R OE XX implantation rate observed with PGT-A therefore, it is per-
2 _go haps feasible to recommend single euploid embryo transfer
g‘ é‘ g -;.‘i in women undergoing IVF as standard of care, in order to
{g & g f . overcome the associated risks of multiple pregnancies.
& é fo) ; g Most studies did not undertake PGT-A for a specific indi-
S S5 8 g % .k . ow B ¥ cation and presented findings from women with a good prog-
nosis. For example, the RCT from the STAR Study Group
=% B ? included women aged between 25 and 40 years old [25].
% g ; § In addition, they excluded cases with diminished ovarian
§ % ; é reserve, more than two failed IVF cycles and more than one
g ; & 22 miscarriage or severe oligospermia. The two studies that did
BEEEZ| % # + + = = % = = = evaluate RM and LBRs per embryo transfer found a ben-
o efit with PGT-A; however, it was not possible to deduce
g the overall effect in this meta-analysis due to a lack of con-
é g 0 trol groups for comparison. With regard to RIF, one study
2 £ 2 deduced that the LBR per embryo transfer almost doubled
= 2 & with CCS-based PGT-A [30]. Contrariwise, such relation-
i) < 3 ® % % % % % % % % % K X X
S ships were not observed amongst studies using FISH on
8 - cleavage stage embryos [50, 51].
= g % In previous practice, embryos deemed to be abnor-
:Z: § 55 mal due to mosaic chromosomal losses and gains were
é 3 § § v s w m ow m ow w ow w excluded from transfer [25], which potentially reduced
§ - the overall chances of livebirth, as less blastocysts were
% 2 available for transfer. In a recent study assessing live
z E % births following the transfer of chromosomally abnormal
3 5 % £ embryos aft<'3r PGT-A, it was appa.rent that the percent-
g § 8 “‘i g age of all estimated cycles transferring abnormal embryos
g‘f 2 &‘3‘ g § differed substantially between centres worldwide, includ-
P! s = ing Europe, Asia and USA and Canada comb.ined, with
% 2 a3 e _ rates of 7%, 11.6% and 67.4% reported respectlyely [52].
g =S <= -© § lc:D s~ & Thus, the percentage of abnormal embryos identified from
i . g % g = S = S = Z g PGT-A varies significantly between clinics internation-
2 f,g é g é % %n é g P % 2 ally. Furthermore, recent evidence suggests approximately
S |3 SE3 38885388 41% of mosaic embryos transferred were associated with
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Risk Ratio

Weight M-H, Fixed, 95% CI

Fig.2 Forest plots showing the Experimental Control
results of the meta—analysis on Study or Subgroup  Events  Total Events Total

. . Forman 2013 54 86 56 86 82%
composite outcome of live birth Munne 2019 137 274 143 313 196%
rate and ongoing pregnancy per Ozgur 2019 45 80 85 111 8.0%
embryo transfer, comparing the Scott 2013 61 12 56 83 7.6%

.. . Yan 2021 382 576 369 594 53.4%
effect of traditional morphologi- Yang 2012 18 55 20 48 34%
cal methods (control) and CCS
based PGT-A Total (95% Cl) 1143 1235 100.0%
Total events "7 709

Heterogeneity: Chi*= 8.50, df= 5 (P= 0.09); F=47%

Test for overall effect: Z= 2.56 (P = 0.01)

0.96[0.77,1.21]
1.090.92,1.30)
0.96 [0.75,1.23]
1.26 [1.05,1.50]
1.07[0.98,1.16)
1.66[1.14,2.42)

1.09[1.02,1.16])

Risk Ratio
M-H, Fixed, 95% CI
I
Hil-
L g
05 07 15 2

Favours [Control]

Favours [PGT-A]

Experimental Control Risk Ratio Risk Ratio
Study or Subgroup  Events  Total Events Total Weight M-H, Rand: 95% Cl M-H, Random, 95% CI
Coates 2017 210 294 59 103 11.9% 1.25[1.04,1.50] -
Forman 2012 77 140 76 182 11.0% 1.32[1.05,1.69) I
Kang 2016 92 159 471 893 1256% 1.10(0.95,1.27) e
Lee 2015 24 49 78 344 85% 2.16[1.53,3.09) SE——
Lee 2019 33 61 20 61 7.0% 1.65[1.08, 2.53] ——
Liss 2018 47 96 20 85 659% 2.08[1.35,3.21] —_—
Sato 2019 26 45 21 78  658% 215[1.38,3.34] —_—
Schoolcraft 2010 34 44 78 113 11.5% 1.12[0.91,1.37] .
Schoolcraft 2013 208 347 167 390 127% 1.40[1.21,1.62) =2
Whitney 2016 104 134 58 153 111% 2.05(1.64, 2.56) e —
Total (95% Cl) 1369 2402 100.0% 1.50 [1.28, 1.76] -
Total events 855 1048
Heterogeneity: Tau*= 0.05; Chi*= 42.11, df= 8 (P < 0.00001), F=79% 0=5 057 1¢5 é

Test for overall effect: Z= 4.97 (P < 0.00001)

ongoing implantation [53], and indeed, a small proportion
of such embryos may be viable and consequently achieve a
live birth [25, 54-56]. This is supported by evidence from
a recent double-blinded prospective non-selection trial
which demonstrated similar rates of live birth and miscar-
riage across 484 euploid, 282 low-grade mosaic and 131
medium-grade mosaic embryos [57]. Given that obstetric
and neonatal outcomes were also similar between study
groups, this suggests that low—medium mosaic embryos
have the same potential to develop as fully euploid ones,
mostly because the mosaicism in the trophectoderm occurs
after the trophectoderm and inner cell mass differentia-
tion [57]. In Sato’s study, 5 patients out of 41 receiv-
ing PGT-A only had euploid embryos with suspicion of

Favours [C'ontroll
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mosaicism available. These were transferred and resulted
in 3 live births [30]. More recently, non-invasive methods
to analyse the genetics of the embryo using embryonic
cell-free DNA released into the culture media have been
proposed as an alternative to the current invasive testing
of the embryo. Although concordance rates between cur-
rent methods of PGT-A and newer non-invasive methods
(niPGT-A) are variable however, the latter are associated
with promising results [58].

Strengths and limitations

Despite a large number of studies assessing if CCS-based
PGT-A improves IVF outcomes, due to the heterogeneous

Fig, 3 Forest plots showing Experimental Control Risk Ratio Risk Ratio
the results of the meta—analysis Study or Subgroup  Events Total Events Total Weight M-H, Fixed, 95% CI M-H, Fixed, 95% CI
. . Munne 2019 137 274 143 313 221% 1.08[0.92,1.30] — 1T
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transfer, comparing the effect Scott 2013 61 72 56 83 86%  1.26([1.051.50]
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methods (control) and CCS Total (95% CI) 1002 1101 100.0%  1.08[1.01,1.16] <

based PGT-A Total events 625 633
Heterogeneity: Chi*= 3.68, df= 3 (P = 0.30); F=18% 0f7 ) 985 132 135
Test for overall effect: Z=2.19 (P = 0.03) : Favours'[Comroll Favours [-PGT-A] :

PGT-A Control Risk Ratio Risk Ratio
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Fig.4 Forest plots showing PGT-A Control Risk Ratio Risk Ratio
the results of the meta—analysis Study or Subgroup  Events Total Events Total Weight M-H, Fixed, 95% CI M-H, Fixed, 95% CI
. ; Forman 2013 54 86 56 86 95%  0.96[0.77,1.21)
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number of outcomes used (delivery rate, LBR, clinical
pregnancy rate, biochemical pregnancy rate, IR, OPR)
and differences in definitions of each outcome measure,
many studies did not fulfil the inclusion criteria for this
meta-analysis. There was also variation in the number of
embryos transferred and whether fresh or frozen embryos
were used. It could be argued however that the compos-
ite primary outcome of OPR and LBR utilised herein,
facilitated the inclusion of greater numbers of studies
within this meta-analysis, whilst specifically assessing
blastocyst biopsy, resulting in more robust and focused
findings.

Many authors have criticised studies using a primary
outcome measure per embryo transferred to determine
the effects of PGT-A. This is based on the argument that
embryos selected by PGT-A have a higher potential for suc-
cessful implantation, but the process itself results in fewer

Favours [Control] Fav.ouré [PGT-A]

embryos selected for transfer. Given that women who have
aneuploid or unsuitable embryos identified by PGT-A do
not undergo embryo transfer, if a study only reports on the
women having an ET or on outcomes per embryo trans-
fer, there is a resulting bias in the study design, in favour
of PGT-A [11]. This is because by default, all women who
do not have an ET and therefore do not get pregnant are
excluded from the analysis. It has been argued that in order
to draw fairer comparisons, all embryos should be consid-
ered, including treatments that could have had PGT-A, such
that treatment outcomes should be calculated per woman
(including all women going for treatment), or per started
treatment cycle, which is reflected by the cumulative LBR,
as this would determine whether the embryos not used fol-
lowing PGT-A were rightfully excluded [11]. This would
allow for a more accurate interpretation of the overall ben-
efit, or harm, following PGT-A.
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logical methods (control) and
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It has also been proposed that due to significant bias in
the design of previously published studies, what can be
deduced from the evidence so far is that PGT-A is merely
effective in differentiating viable from non-viable embryos,
as supported by superior LBR and ongoing pregnancy rates
demonstrated per embryo transfer, as the euploid embryos
transferred are more likely to implant, resulting in successful
clinical pregnancy outcomes due to the reduced likelihood
of altered chromosomal material resulting in an adverse
outcome [19]. Whilst we acknowledge that OPR and LBR
outcome per cycle was not assessed in this meta-analysis,
this was because our primary intention was to investigate
the impact of PGT-A on OPR and LBR per embryo transfer.

Moreover, it is well recognised that both the timing
of the biopsy and the type of chromosomal screening
implemented impact outcomes [59]. Due to a relative

paucity of studies, all newer forms of CCS were con-
sidered in this meta-analysis with only blastocyst-stage
biopsies performed. Live birth rates per embryo transfer
were significantly increased amongst day 5 biopsy groups
when outcomes from days 3 and 5 biopsies have been
compared [49]. Our own statistically significant find-
ings, therefore, may be attributed to the nature of positive
outcomes associated with day 5 biopsies. Furthermore,
recent studies have compared different types of CCS
methods, whereby NGS has been shown to be effective
at detecting whole and segmental aneuploidies and dem-
onstrated an improvement in pregnancy outcomes com-
pared to other forms of CCS [60]. This supports our own
findings, especially as the majority of studies included in
the meta-analysis employed NGS CCS exclusively. With
the widespread use of NGS, future studies are required to
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Fig. 8 Forest plots showing the PGT-A Control Risk Ratio Risk Ratio
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investigate the specific benefit of PGT-A, as well as the
potential for harm, when only using NGS for CCS.

Furthermore, it should be acknowledged that heteroge-
neity was higher amongst the cohort studies (0-94%) com-
pared to the RCTs (0-52%), despite the statistical signifi-
cance demonstrated. It is important therefore to consider
variation in the results between studies when drawing over-
all conclusions of the effects of PGT-A on the outcomes
described. This also reflects the demand for further high-
quality standardised RCTs assessing the effect of PGT-A,
such that conclusions drawn can then be generalisable. This
is particularly important considering the contradictory evi-
dence so far regarding PGT-A and the need to improve the
overall understanding of the outcomes.

Conclusion

In conclusion, this study showed an overall improvement
in the composite outcome of live birth and ongoing preg-
nancy per embryo transfer between CCS-based PGT-A at
the blastocyst stage on day 5 embryos, compared to quality
assessment using morphology alone. In addition, PGT-A
was associated with an improvement in implantation rate
and a reduction in miscarriage rate. It is essential that future
studies evaluating these newer CCS techniques use rigorous
standardised approaches and outcome metrics to facilitate
appropriate comparisons.
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