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Abstract  
Purpose To determine whether convolutional neural networks (CNN) can be used to accurately ascertain the patient identity 
(ID) of cleavage and blastocyst stage embryos based on image data alone.
Methods A CNN model was trained and validated over three replicates on a retrospective cohort of 4889 time-lapse embryo 
images. The algorithm processed embryo images for each patient and produced a unique identification key that was associ-
ated with the patient ID at a timepoint on day 3 (~ 65 hours post-insemination (hpi)) and day 5 (~ 105 hpi) forming our data 
library. When the algorithm evaluated embryos at a later timepoint on day 3 (~ 70 hpi) and day 5 (~ 110 hpi), it generates 
another key that was matched with the patient’s unique key available in the library. This approach was tested using 400 patient 
embryo cohorts on day 3 and day 5 and number of correct embryo identifications with the CNN algorithm was measured.
Results CNN technology matched the patient identification within random pools of 8 patient embryo cohorts on day 3 with 
100% accuracy (n = 400 patients; 3 replicates). For day 5 embryo cohorts, the accuracy within random pools of 8 patients 
was 100% (n = 400 patients; 3 replicates).
Conclusions This study describes an artificial intelligence-based approach for embryo identification. This technology offers 
a robust witnessing step based on unique morphological features of each embryo. This technology can be integrated with 
existing imaging systems and laboratory protocols to improve specimen tracking.
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Background

“To err is human” is a familiar phrase in day-to-day life, 
but is not an acceptable explanation for errors within an 
in vitro fertilization (IVF) laboratory [1]. Although diffi-
cult to accept and extremely rare, human error does occur 
within the IVF lab and can result in loss of gametes, or 
worse, incorrect implantation of mismatched gametes. 
The daily responsibilities of the IVF lab involve complex 
procedures requiring precise multi-step protocols, creat-
ing many opportunities for error especially when handling 
increasing volumes of patients throughout the day. These 
steps include oocyte retrieval (patient identification, dish 
labeling), sperm collection (patient identification, collec-
tion labeling), gamete processing (cumulous cell removal 
prior to insemination, sperm preparation), insemina-
tion (conventional or intracytoplasmic sperm injection), 
embryo culture, assisted hatching, embryo biopsy, vitrifi-
cation and warming, and embryo transfer.

The American Society for Reproductive Medicine 
(ASRM) has identified four key factors that lead to human 
error which include conscious automaticity, involuntary 
automaticity, ambiguous accountability, and stress [2]. 
These factors recognize times when human memory and 
task orientation lack focus and allow for errors to go unrec-
ognized. Errors can be not only emotionally and medically 
devastating to patients, but also can be financially, socially, 
and legally devastating to IVF practices. Of malpractice 
claims made in the field of Reproductive Endocrinology 
and Infertility (REI), 38% of them are quoted to be from 
embryology lab errors [3, 4]. The true rate of occurrence 
for error is difficult to account for, but one large practice 
reported a rate of moderate to severe error (defined as an 
event that negatively affected a cycle or cycle loss due to 
loss/mishandling of gametes or embryos) as 1 per 1735 
procedures or 1 per 429 cycles [5]. The Human Fertili-
zation and Embryology Authority (HFEA) has reported 
adverse event (includes clinical, near misses, adminis-
trative, and laboratory errors) rate of 1% of the 60,000 
cycles of IVF treatment in the UK annually. Out of the 465 
reported events, 114 of them were laboratory events [6].

To thoroughly track patient specimens, the contents of 
each dish need to be monitored at each step of the IVF 
process. National and international organizations such as 
European Society for Human Reproductive and Embry-
ology (ESHRE), ASRM, and HFEA have proposed best 
practices that emphasize accuracy of initial labeling with 
supervision, or a “double witness”, to start the process. 
ASRM recommends double-witnessing to occur at each 
of the following steps: patient specimen labeling, egg 
collection, sperm reception, sperm preparation, mixing 
sperm and eggs or injecting sperm into eggs, transfer of 

gametes between tubes/dishes, transfer of embryos into a 
woman, insemination of a women with sperm prepared in 
the laboratory, cryopreservation of gametes or embryos, 
thawing cryopreserved gametes and embryos, the final 
disposition of gametes or embryos, and transporting gam-
etes or embryos [2]. In addition to the double-witnessing 
protocols, electronic witnessing systems (EWS), such as 
barcode identification or radiofrequency identification [7], 
have also been introduced. These commercial witness-
ing systems are based on the labeling of all labware used 
for each case with barcode stickers, or radio frequency 
identification labels, which can be identified by unique 
computer-based readers. The risk of sample mismatch due 
to human error is minimized when using these systems, 
but as gametes and embryos are moved from one con-
tainer to another several times during an ART cycle, the 
possibility of misidentification still exists. To track dish 
contents instead of individual dishes, manual tagging of 
oocytes and embryos with polysilicon barcodes has been 
proposed [8]. This labeling process, however, is an inva-
sive and time-consuming procedure that adds complexity 
to the IVF workflow. For a gamete and embryo witnessing 
to be well accepted in the field, it needs to be non-invasive, 
simple to use, accurate, and easy to incorporate into any 
IVF laboratory.

Convolutional neural networks (or CNN), an image-
based deep learning neural network, have enormous poten-
tial to aid at every step of the IVF process. CNNs process 
each image as millions of datapoints within a multilayer 
perceptron capable of analyzing visual imagery. Artificial 
intelligence (AI) algorithms have been trained, validated, 
and tested on gamete and embryo images to decipher sub-
tle morphologic markers linked to embryo development 
such as implantation potential [9]. In many cases, these 
neural networks have shown to have superior accuracy and 
consistency in classifying cells when compared to embry-
ologists [10]. This technology has been developed and 
tested to measure sperm morphology, assess egg quality, 
perform fertilization assessments, aid in the alignments 
of oocytes and embryos for micromanipulation, assess 
embryo quality, and predict developmental outcomes from 
every stage of preimplantation development [10–18]. Deep 
learning technology allows the computer to examine and 
process far more features on a cell than can be performed 
by even the most skillful human eye. Given the wide appli-
cation of use for artificial intelligence throughout the IVF 
process, this study aims to assess whether CNNs could 
be used to find unique features among embryos within a 
cohort. Using these subtle morphologic differences among 
embryos affords a non-invasive, streamlined patient iden-
tification tool for safe tracking embryos within the IVF 
laboratory at multiple timepoints. As AI is able to provide 
objective and standardized analyses of embryo images 
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with remarkable accuracy, we aim to show that AI serves 
as a powerful tool for embryo witnessing.

Materials and methods

Data collection and handling

Data was collected from patients who underwent a fresh IVF 
cycle with time-lapse imaging at the Massachusetts Gen-
eral Hospital (MGH) Fertility Center in Boston, MA. After 
obtaining approval through the Institutional Review Board 
(IRB#2017P001339), we evaluated a retrospective cohort of 
4889 time-lapse imaging videos of embryos collected using 
a commercial time-lapse imaging system (EmbryoScope, 
Vitrolife). The imaging system used a Leica × 20 objective 
that collected images at 10-min intervals under illumina-
tion from a single 635-nm LED. Each patients’ cohort of 
embryos was exported as videos (.avi) using the imaging 
system software. Videos of individual embryos were broken 
down into their respective frames to extract images from all 
timepoints post-insemination. The extracted images from 
each timepoint were 250 × 250 pixels that were subsequently 
cropped to 210 × 210 pixels to remove both the timestamps 
and any potential identifiers present within the frame. Out-
of-focus images were included in the datasets and used for 
both testing and training. Only images of embryos that were 
completely non-discernable were removed from the study. 
Since image collection timepoints across all patients were 
not consistent, we binned them into groups of around 18-min 
intervals. In total, imaging data from 400 patients were uti-
lized in this study.

Witnessing software development and Unique 
Identification Score Assignment

We used pre-developed AI models to build the witnessing 
software [11, 13]. Two deep convolutional neural network 

models capable of predicting blastocyst development at 
the cleavage stage and classifying blastocysts based on 
their developmental quality were used in combination 
with a genetic algorithm to generate unique identification 
scores (UIS) for each embryo within a cohort. Develop-
ment of the genetic algorithm (GA) has been described 
in our previous work [12]. The GA scores were used to 
generate a 12-character ID key for each patient assessed by 
the witnessing software. These scores were used to deter-
mine if the embryos originated from the same patient at a 
later timepoint (Fig. 1). Embryos were evaluated on day 
3 cleavage stage and day 5 blastocyst stage at which time 
a UIS was generated specific to patient at that timepoint. 
As a noise mitigation strategy, when evaluating embryo 
cohorts at a secondary timepoint, scores generated for 
every available preceding timepoint were also considered 
for similarity to the initial timepoint.

Identification assessment at the cleavage stage

Cleavage stage embryos were examined and imaged at two 
separate timepoints on day 3 of development at 65 hours 
post-insemination (hpi) and 70 hpi. These times corre-
spond with when our laboratory assesses embryos for 
morphologic development, when we transfer embryos to 
a new dish for extended embryo culture, when we perform 
laser-assisted hatching or when we transfer cleavage stage 
embryos. For each embryo, a UIS was generated for each 
embryo at 65 hpi using the CNN to generate an ID library. 
At 70 hpi, the embryos were reassessed, and assigned a 
unique ID key that was matched to patient ID keys avail-
able within the library. The absolute error value between 
the two timepoints (65 hpi and 70 hpi) was calculated for 
each patient. Minimum error was noted when the UIS gen-
erated for a given patient cohort at both timepoints were 
noted to be of the same patient.

Fig. 1  Schematic of the use of convolutional neural networks to develop a unique patient identification score to track embryos in the laboratory
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Identification assessment at the blastocyst stage

Blastocyst stage embryos were examined and imaged at two 
separate timepoints of 105 hpi and 110 hpi on day 5 of devel-
opment. These times correspond with when the laboratory 
assesses each patient’s embryos for development and when 
embryos are moved to a new dish for embryo transfer, tro-
phectoderm biopsy, embryo vitrification, or to an extended 
culture dish. For each embryo, a UIS was generated for each 
embryo at 105 hpi using the CNN to generate an ID library. 
At 110 hpi, embryos were reassessed, and assigned a unique 
ID key that was matched to patient ID keys available within 
the library. The absolute error value between the two time-
points (105 hpi and 110 hpi) was calculated for each patient. 
Minimum error was noted when the UIS generated for a 
given patient cohort at both timepoints were noted to be of 
the same patient.

Study design and statistical analysis

The system was tested at two time intervals at day 3 (65 hpi 
and 70 hpi) and day 5 (105 and 110 hpi). In both scenarios, 
available images between these timepoints were retrieved for 
each embryo and were presented to the software to generate 
a patient ID key using the unique identification score (UIS). 
In this study, we evaluated the system’s ability to identify 
patients correctly using an independent set of embryos (400 
patients; 2–12 embryos per patient which did not overlap 
with the training data set used in any previous exercise). To 
achieve this, each of the 400 patient cohorts was grouped 
with 7 other randomly selected patient cohort, to form a 
randomly organized sub-pool from the total pool of avail-
able patient data. This allows for evaluation of the AI-based 
ID-witnessing software in clinically relevant numbers 
of patients routinely processed at IVF centers around the 
world. To combat possible bias within the algorithm towards 
pooled patient cohorts, these sub-pools were randomized 
for each of replicate analysis (3 replicates) of each of the 
400 patients. The absolute error between the ID key of the 
evaluated patient at the initial timepoint (~ 65 or ~ 105 hpi) 
and ID keys of all patients within the random sub-pool at 
secondary timepoint (~ 70 or ~ 110 hpi) was calculated and 
used by the software automatically to determine the closest 
matching patient in the sub-pool. When the system identified 
the patient correctly in the secondary timepoint within the 
sub-pool of patients, a “pass” was noted. If the system iden-
tified the incorrect patient, a “fail” was noted. If the system 
cannot arrive at any consistent decision when considering all 
the frames between the initial and secondary timepoint, it is 
considered as an error and was removed from the analysis. 
The overall accuracy across all replicates of the 400 patients 
was calculated for the final assessment of the software.

Results

Of all patients undergoing fresh IVF, 4889 embryos were 
recorded using time-lapse imaging of sufficient quality 
for training and validation of the AI CNN. The AI CNN 
was tested using 8-embryo subsets from 400 patients who 
underwent fresh IVF on day 3 and day 5 of development 
over three replicates. The accuracy of the CNN in cor-
rectly matching the patient identification within random 
pools of 8-patient embryo cohorts on day 3 was 100% 
(n = 400 patients; 3 replicates). The accuracy of the CNN 
in correctly matching the patient ID of embryo cohorts 
within random pools of 8 patients on day 5 was 100% 
(n = 400 patients; 3 replicates).

Discussion

The system we are presenting was able to uniquely identify 
day 3 and day 5 embryos with 100% accuracy through 
400 patient cohorts over 3 replicates, which serves as a 
novel application of AI in the embryo identification. Arti-
ficial intelligence can be utilized to visually recognize 
an individual’s embryos and be an additional identifica-
tion tool for patient’s embryos in the IVF lab. The CNN 
system described above demonstrated 100% accuracy in 
matching patient identification with their embryo and an 
extraordinarily low chance for encountering two patients 
with the same CNN key. This technology could be uti-
lized to decrease the chance of error when handling human 
embryos in the IVF lab.

The current gold standard of identification in the 
embryology lab is double-witnessing. While this system 
is helpful in reducing error, a major limitation of double-
witnessing is the additional time and personnel necessary 
to complete this protocol. Holmes et al. [19] investigated 
the time difference between an EWS protocol and a man-
ual double-witnessing protocol in the IVF laboratory and 
found a three-to-fivefold reduction in witnessing time for 
procedures with EWS. In settings with high clinical vol-
ume, the addition of EWS may help to reduce the time 
burden of a double-witnessing protocol. Rienzi et al. [20] 
performed a failure mode and effects analysis (FMEA) in 
an active IVF clinic to evaluate the utility of EWS in pre-
venting errors in the embryology laboratory. While 99.9% 
of occasions had no error in the IVF lab, there were still 
occurrences, albeit rare. The group analyzed the risk of 
failure after addition of EWS and did see a decline in rates 
of failure by two thirds. The etiology for these errors were 
thought to come from one of the following reasons: “heavy 
clinical work-load and distraction, communication failures 
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between the team, and inadequacy of the labeling system 
used”[ 20]. Forte et al. [21] performed a patient survey to 
understand patient concerns about IVF errors and EWS 
satisfaction and learned that patient concern for error is 
high as is their satisfaction with utilization of EWS to 
reduce this risk.

The current technologies include barcode identifica-
tion, radiofrequency identification, or gamete and embryo 
direct tagging. Barcode identification is a label placed on 
the patient’s wrist band while in clinic/treatment and on 
samples such as embryo culture dish or sperm preparation 
container. The technology requires a scanner for the barcode 
and correctly labeled specimen dishes/containers [22, 23]. 
This technology can also lead to error in terms of printing 
the labels or incorrectly labeling a specimen. Another EWS 
is radiofrequency identification (RFID), but this is still under 
investigation as there is still much to learn about the safety of 
radiowaves for gametes or preimplantation embryos [23–26]. 
Another technology proposed for tracking specimens is 
direct tagging of oocytes and embryos with polysilicon bar-
codes. This invasive method of labeling specimens requires 
reading of the label under the microscope by the embryolo-
gist and risks the label being lost during hatching or other 
embryo handling events [8]. None of these systems replace 
double-witnessing, each have their own limitations, still have 
opportunities for error, and can be difficult to implement into 
an existing IVF lab’s workflow. Adding an element of EWS 
through AI can aid to this process and help reduce chance 
for error [7, 27].

One limitation of this study was that all embryos were 
imaged on the EmbryoScope. Not all laboratories will have 
access to the same imaging platform or be able to use the 
same method of imaging during every step of the IVF pro-
cess. By developing the CNN with only one imaging plat-
form, this may limit the generalizability of our system to 
images from other imaging platforms. For instance, until 
recently, AI algorithms developed using the EmbryoScope 
could not be accurately applied on images captured from 
an inverted microscope. This is due to a shifting of the data 
distribution between the algorithm’s training dataset and the 
dataset from the different imaging system. Additionally, all 
embryos came from one clinic that is geographically con-
fined to the state of Massachusetts, which may introduce 
imperceivable bias into the CNN system, further necessitat-
ing multicenter assessment of the system.

This study has multiple strengths including the large 
cohort of embryos that were tested. We included a total of 
400 patient cohorts within the test set, with random sub-
sets of embryos also used in testing to overcome potential 
bias of pooled patient cohorts. The system was able to have 
100% accuracy with the entire cohort. We used standard 
time intervals for the study that are used in the IVF labora-
tory for morphologic grading of embryos, so the standard 

care for embryo culture was not interrupted by this process. 
Additionally, given these are standard timepoints for embryo 
morphologic assessment during preimplantation develop-
ment, this AI-ID witnessing system can be easily integrated 
into any IVF lab workflow.

EWS exist and are currently utilized in some laboratories 
but are not standardized or routine at this time. This study 
shows the powerful capabilities and increasing promise of 
image-based AI systems for use in gamete and zygote iden-
tification within the IVF lab. This system demonstrates a 
robust electronic witnessing platform that focuses on subtle, 
indiscernible morphologic differences between embryos to 
ensure accurate and precise identification. With this AI-
driven EWS alongside current, standard witnessing prac-
tices, human error in gamete or zygote identification can be 
significantly reduced through a platform that can be easily 
integrated into clinics with Embryoscope time-lapse imag-
ing capabilities.

Conclusions

This study describes the first artificial intelligence-based 
approach for embryo tracking and patient specimen identifi-
cation in the IVF laboratory. This technology offers a robust 
witnessing step based on unique morphological features that 
are specific to each individual embryo. This technology can 
be combined with existing identification/witnessing proto-
cols seamlessly to improve specimen tracking in the ART 
laboratory and avoid human error.
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