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Abstract
Purpose  Spermatogonial stem cells (SSCs) are the source for the mature male gamete. SSC technology in humans is mainly 
focusing on preserving fertility in cancer patients. Whereas in livestock,   it is used for mining the factors associated with 
male fertility. The review discusses the present status of SSC biology, methodologies developed for in vitro culture, and chal-
lenges ahead in establishing SSC technology for the propagation of superior germplasm with special reference to livestock.
Method  Published literatures from PubMed and Google Scholar on topics of SSCs isolation, purification, characterization, 
short and long-term culture of SSCs, stemness maintenance, epigenetic modifications of SSCs, growth factors, and SSC 
cryopreservation and transplantation were used for the study.
Result  The fine-tuning of SSC isolation and culture conditions with special reference to feeder cells, growth factors, and 
additives need to be refined for livestock. An insight into the molecular mechanisms involved in maintaining stemness and 
proliferation of SSCs could facilitate the dissemination of superior germplasm through transplantation and transgenesis. The 
epigenetic influence on the composition and expression of the biomolecules during in vitro differentiation of cultured cells 
is essential for sustaining fertility. The development of surrogate males through gene-editing will be historic achievement 
for the foothold of the SSCs technology.
Conclusion  Detailed studies on the species-specific factors  regulating the stemness and differentiation of the SSCs are 
required for the development of a long-term culture system and in vitro spermatogenesis in livestock. Epigenetic changes  in 
the SSCs during in vitro culture  have to be elucidated for the successful application of SSCs for improving the productivity 
of the animals.
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Introduction

The spermatogonial stem cells (SSCs) are the adult stem 
cell pool capable of self-renewal and differentiation and 
regulates the sustained production of sperm. They form a 
niche in the seminiferous tubules, and the fate of the cells 
for self-renewal, differentiation into sperm, or apoptosis is 
determined by the signals of the testicular microenviron-
ment [1]. SSCs in the testicular microenvironment are regu-
lated by juxtaposed cells, autocrine, and paracrine factors 
essential for maintaining the stem cell reservoir [2]. In mice, 
A-single(As) spermatogonia are single cells that divide and 
produce inter-connected A-paired (Apr) cells, which further 
divide in turn to produce four A-aligned (Aln) cells. A-alin-
ged cells again divide to produce chains of eight cells and 16 

 *	 Balakrishnan Binsila 
	 drbinsila@gmail.com

1	 Reproductive Physiology Laboratory, Animal Physiology 
Division, Indian Council of Agricultural Research-
National Institute of Animal Nutrition and Physiology, 
Bengaluru 560 030, India

2	 Animal Reproduction Division, Indian Council 
of Agricultural Research-Indian Veterinary Research 
Institute, Izatnagar 243 122, India

3	 Indian council of Agricultural Research-National Institute 
of Animal Nutrition and Physiology, Bengaluru 560 030, 
India

/ Published online: 18 October 2021

Journal of Assisted Reproduction and Genetics (2021) 38:3155–3173

http://crossmark.crossref.org/dialog/?doi=10.1007/s10815-021-02334-7&domain=pdf


1 3

cells [3]. These are collectively grouped as undifferentiated 
A-type spermatogonia, expressing most of SSCs markers 
and possessing stem cell properties.

Improving productivity through augmenting reproduction 
is the prime focus of the livestock sector. Production poten-
tial has been accelerated in livestock with the upcoming 
assisted reproductive technology (ART) over the period of 
time. Artificial insemination (AI) is the most successful bio-
technological tool that facilitated faster dissemination of the 
male germplasm using streamlined management of breeding 
bull [4]. SSC technology is a promising area   for faster dis-
semination of superior male germplasm and also facilitates 
the production of transgenic animals with high productive 
and reproductive traits [5–7]. SSC-mediated transgenic ani-
mal production has the advantage of permanent modification 
of the germline. SSC transplantation and cryopreservation 
methods for the restoration of fertility and in vitro sperm 
production attained varying degrees of success. To estab-
lish germ cell transplantation in agriculturally important ani-
mals, identification of factors  produced in testicular SSCs 
niche is essential. The establishment of a reliable and robust 
culture system for SSCs maintenance is of utmost important 
[8]. The factors regulating SSC self-renewal and exponential 
growth with inherent stemness remain elusive. A long-term 

culture system that supports, expands and maintains SSCs 
from livestock is yet to be developed [9].

Present scenario of SSC technology in farm 
animals

SSC research has various applications in livestock such as 
mining factors regulating male fertility, SSC transplanta-
tion and faster dissemination of superior germplasm as an 
alternative to AI, understanding the process and the path-
ways associated with SSC self-renewal and differentiation 
and preservation of the genetic material of valuable male 
[5, 10] and endangered species [11] (Fig. 1). Production 
of good-quality sperm from infertile animals is possible 
through transplantation of SSCs from superior fertile bulls 
[6]. In vitro spermatogenesis though successful in rodents 
[12] and fishes [13], still has not gained momentum in live-
stock and humans. However, with the help of advanced bio-
engineering technology, 3D scaffolds  are developed that 
support the complete differentiation of SSCs into sperm 
[14]. Germ cells transplanted from donor to a recipient testis 
resulted in donor-derived spermatogenesis and fertile sperm 
production in rodents, monkeys, and livestock [15, 16], and 
offspring with donor germplasm was produced through 

Fig. 1   The various applications of SSCs culture are, a propagation of 
superior germplasm through transplantation of SSCs from the high 
fertile to the low fertile animals, b transgenic animal production, 
c in  vitro differentiation of SSCs into the functional sperm, d char-
acterization of SSCs in vitro to understand the physiology of SSCs, 

unveiling the possibility to predict fertility and to study the genetic 
and epigenetic changes associated with long-term  culture, e under-
standing the spermatogenesis process by unraveling the mechanism 
of SSCs self-renewal and differentiation, f cryopreservation of valu-
able male germplasm
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natural breeding in rodents and livestock [15, 17]. Hence, 
SSC technology has great potential for the production of 
superior beef and dairy animals through natural breeding. In 
humans, SSC technology is advocated for prepubertal cancer 
patients that enable  to restore the fertility at a later phase 
once the treatments are over. Research is being undertaken 
for testicular tissue grafting and xenografting, testicular tis-
sue organ culture, and de novo testicular morphogenesis in 
rodents and humans [18–20] for facilitating the production 
of donor-derived spermatogenesis and restoration of fertility, 
but to a less extent in livestock. Gene editing in mouse SSCs  
using CRISPR-Cas9 technology corrected male infertility  
due to genetic defects and sex chromosome-linked dominant 
genetic diseases [21]. Such applications indicate the impor-
tance of SSC-based fertility-related research in the future, 
and attempts are carried out in livestock recently [15]. The 
researches on the isolation, purification, characterization, 
and culture of SSCs in livestock are advancing in many live-
stock species such as cattle [17], buffalo [22, 23], goat [24], 
sheep [25], and pig [26]. However, identification of specific 
SSC markers, long-term SSC culture and cryopreservation, 
and SSC transplantation procedures need refinement for suc-
cessful application in livestock [15, 27, 28].

SSC isolation

The testis consists of various types of cells  such as Sertoli 
cells, Leydig cells, different stages of differentiating germ 
cells, and the SSCs. Undifferentiated SSC pool and cell 
kinetics are identified using prevailing models such as As, 
Apr and Aal spermatogonia, based on SSC clones in rodents 
[3]; and Adark and Apale spermatogonia in humans, based 
on nuclear morphology and hematoxylin staining [29]. In 
livestock, only limited studies on SSC pool and self-renewal 
dynamics were conducted as compared to rodents and 
humans. The subset of SSCs is rare in germ cells popula-
tion in the testis, as 0.03% in mice [30], 4% in monkey [31], 
22% in humans [32], and 0.2 to 0.3% in bovine [33]. The 
population of SSCs in the testis of other livestock species 
such as sheep, goats, pigs, and buffaloes is not documented. 
However, we could isolate 7.33% promyelocytic leukemia 
zinc finger  (PLZF +)cells from prepubertal sheep testis 
using enzymatic method [34].

SSCs were isolated from the testis using mechanical and 
enzymatic digestion methods with high viability in bovine, 
caprine, porcine, and bubaline [28]. An enzymatic method 
using collagenase IV, trypsin, DNase I, and hyaluronidase is 
commonly adopted for the dissociation of livestock testicular 
cells. Since a single enzyme is not sufficient to  isolate effec-
tively SSCs, two-step, three-step, or sequential enzymatic 
digestion with different enzymes have been carried out [24].

In the mechanical isolation method, tunica albuginea and 
visible connective tissues are removed, and seminiferous 
tubules are mechanically dissociated using scissors and for-
ceps. Seminiferous tubular cells are dissociated by repeated 
vigorous pipetting and passing through a 10-ml hypodermic 
syringe fitted with a 22G needle. The cells are then filtered 
through 70- and 40-micron nylon meshes [35]. Enzymatic 
digestion of testicular tissues yields a higher number of 
SSCs than mechanical dissociation [36]. The STA-PUT 
method of SSC isolation combines the enzymatic method 
with velocity gradient separation [37]. This method yields 
a higher number of SSCs  from the testis as compared to 
fluorescence-activated cell sorting (FACS) and is also less 
expensive than a cell sorter or an elutriator methods of iso-
lation [37]. STA-PUT is an assembly of specialized glass 
apparatus, wherein SSCs are separated by a linear BSA 
gradient and sedimentation velocity at unit gravity. SSCs 
get separated based on the size and mass of the cells [38]. 
The advantages of STA-PUT method are low cost as it only 
involves the assembly of specialized glassware but yields 
SSCs with increased purity and doesn’t require specific bio-
marker [39]. SSCs from mice [40, 41], humans [39], bovine 
[42], and porcine [43] are isolated using STA-PUT method. 
A combination of the STA-PUT and magnetic-activated cell 
sorting (MACS) can be used for isolating the subpopulation 
of SSCs expressing a particular marker [44].

SSC characterization

Characterization of isolated, cultured, or transplanted SSCs 
is performed using the cell morphology, biochemical assays, 
or molecular markers. The morphological characterization 
of SSCs based on cell shape, size, nuclear to cytoplasm 
ratio, and chromatin condensation status has been carried 
out in mice [45], humans [46], bovine, porcine, caprine, 
and ovine [28, 47–49]. Undifferentiated spermatogonia 
contain euchromatin while differentiated spermatogonia 
have heterochromatin in mice [45]. Alkaline phosphatase 
activity is markedly high in undifferentiated spermatogo-
nia as compared to differentiated cells and other testicular 
cells in humans [50], rodents [51], porcine [52], bovine 
[53], caprine [54], ovine [34], and bubaline [55]. Though 
morphological and biochemical methods are used for the 
initial characterization of SSCs, it cannot be confirmatory 
in nature. Hence, various biomolecules have been estab-
lished as markers, which are expressed on the cell surface, 
cytoplasm, and nucleus (Fig. 2, Supplementary table 1). 
SSC markers have been identified in cattle [PLZF, Dolichos 
biflorus agglutinin (DBA), protein gene product 9.5 (PGP 
9.5), Thy-1 cell surface antigen (THY1) and GDNF family 
receptor alpha 1(GFRα1)] [56–58]), buffalo (PLZF, PGP 
9.5 and THY1) [22], goat [(α6 integrin (ITGA6), PLZF, 
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β1 integrin (ITGB1), Octamer binding transcription factor 
4 (OCT-4) and THY1)] [24, 59], sheep [(PLZF, PGP 9.5 
and Cadherin 1(CDH1)], and pig (PLZF, DBA, PGP 9.5 
and GFRα1) [26, 60]. Even though independent studies have 
reported these SSC markers in livestock, species-specific 
markers to differentiate between SSCs and other cell types 
are still lacking [28]. ITGA6 was reported to be a nonreliable 
SSC marker when compared to GFRα1 in bovine [58, 61]. 
PLZF and GFRα1 showed a similar pattern of expression in 
domestic cat SSCs [62]. Inhibitor of DNA binding 4 (ID4) 
is an established SSC marker in rodents [63] and humans 
[64], but not well characterized in livestock. Undifferenti-
ated embryonic cell transcription factor 1 (UTF1), an SSC 
marker reported in rodents, humans, and monkeys [65, 66], 
is also conserved as a marker in stallion [67] and pig [68] 
but has not been documented in other species. It is also to 
be noted that SSC lineage-wise markers have been estab-
lished in rodents and humans [69], but not in livestock. The 
identification of species-specific SSC markers is critical for 
enrichment and in vitro culture [70]. In addition, identifi-
cation of SSC surface marker is necessary for isolation of 
viable cells through FACS or  MACS method. Apart from 
molecular markers, retrospective studies such as tracing the 
SSC efficiency by teratoma formation and transplantation 
capability are performed as functional assays [71].

SSC enrichment/purification

Since the SSC population is very less in the testicular cells 
isolate, several methods of enrichment procedures have 
been tried to obtain sufficient cell numbers for culture work. 
Some of the techniques utilized are MACS, FACS, differ-
ential plating, selection with extracellular matrix (ECM), 
and velocity sedimentation or density gradient centrifuga-
tion [58, 72, 73]. The combination of enrichment techniques 
also significantly augment the purity of spermatogonia [74]. 
The selection of enrichment method is crucial for successful 
culture and downstream applications of SSCs.

Magnetic‑activated cell sorting

MACS uses the immune magnetic method for the separa-
tion of the interested cells population based on their  sur-
face markers. The knowledge of the surface marker and 
its expression in the cells are needed to obtain a sufficient 
specific cell population for culture and other down-stream 
applications. In humans, MACS has been efficiently used 
for isolation of SSCs utilizing markers such as G protein-
coupled receptor 125, (GPR 125), CD49f, and THY1 [19]. 
THY1 (CD90) is used as a marker to isolate SSCs from 
cattle, pigs, and goats [75–77]. THY1 is a reliable surface 
marker for goat [77, 78], pig [75], and cattle [76]. How-
ever, THY1 is not specific to humans SSCs, and the sort-
ing efficiency using FACS also varied between humans and 
porcine [79]. GFRα1 is used for the isolation of pig SSCs 
[26]. Surface marker, ITGA6 in humans [73], yielded 3-fold, 
while DBA-FITC in bovine yielded 4.6-fold [74] and c-kit in 
rodents yielded 4–7-fold [80] enrichment of SSCs through 
MACS. This approach is a high-throughput method involv-
ing less operational cost and time when compared to FACS. 
MACS microbeads do not alter the structure, function, and 
viability and will not interfere with the culture characteris-
tics of sorted cells. However, the purity of cells for certain 
cell type is not adequate in MACS when compared to FACS 
due to the sorting of cells based only on cell affinity [81].

Fluorescent activated cell sorting

FACS is a more specific and efficient method employed for 
the purification of SSCs based on multiple parameters such 
as cell size, density, viability, and numerous SSC markers. 
Hence, SSCs can be sorted with high accuracy from the 
mixture of cells isolate by employing FACS technique [81]. 
Further,  sorting using various surface markers enables to 
enrich the subset of stem cell population from the whole 
testicular cell isolates. The surface markers, ITGA6, THY1, 
GFRα1, and DBA are targeted for SSC separation in rodents 
and livestock. The enrichment efficiency is high using FACS 

Fig. 2   Spermatogonial stem cell markers are identified on the cell 
surface, cytoplasm, and nucleus. Cell surface markers such as THY1, 
ITGA6,  ITGB1, GFRα1, CD9, PLD6, IGFBP3, SSEA1, CD14, 
CDH1, CD209, and GFR125; cytoplasmic markers such as UCHL1, 
OCT4, KLF4, UTF1, FOXO1 and PLZF; and nuclear markers such as 
FOXO1, OCT4, KLF4, UTF1, and PLZF are pictorially represented 
on the SSC
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(12-fold) when compared to MACS (3.3-fold) [73]. In mice, 
selection of cells based on FACS employing light-scattering 
properties and expression of the cell surface markers ITGA6, 
ITGAV, and the c-kit receptor resulted in 166-fold enrich-
ment of SSCs [82]. In bovine, sorting by FACS increases 
in DBA-positive SSCs from 12.3% in the input sample to 
50.5% in the sorted fraction [74]. When coupled with molec-
ular marker screening and the stem cell transplant assay to 
validate sorted fractions, FACS  becomes a powerful tool for 
dissecting the molecular phenotype of SSCs [73]. Identifica-
tion of a greater number of specific surface markers in live-
stock enables to enrich SSCs more efficiently using FACS.

Differential plating

Different extracellular matrix substrates are used for the 
enrichment of SSCs. Laminin is used for the positive selec-
tion [70], while lectin and gelatin are used for the negative 
selection of SSCs [34]. Laminin is secreted by Sertoli cells 
as an adhesion molecule and contributes to the basement 
membrane. Laminin binds to ITGα6/β1 receptors on the 
spermatogonial cell surface, and this property is used for 
purifying the SSCs by differential plating. SSCs are plated 
on such matrixes for improving self-renewal and prolifer-
ation for a long time [34, 83, 84]. The enrichment using 
laminin yielded a higher percentage of SSCs when compared 
to gelatin. Ficoll gradient centrifugation in combination with 
laminin differential plating further improved the purity to 
64% in the testis of cats [85]. Datura stramonium agglutinin 
(DSA),  a lectin that especially binds to β(1-4) linked oli-
gomers of N-acetyl-D-glucosamine in Sertoli cells is used 
for the isolation and purification of Sertoli cells [86]. The 
testicular cells isolated are enriched over DSA lectin (5 μg/
mL for 1 h),  yielded 2.8-fold (VASA+) enriched SSCs [87]. 
The overnight incubation in flasks coated with 20 μg/ml 
DSA results in a 3.6-fold increase in bovine typeA sper-
matogonia in the nonadherent fraction [74]. Where as in 
goat DSA- lectin enriches the SSC population up to 11.23% 
in goat [88]. In addition, combining Percoll density gradi-
ent centrifugation with DSA enrichment, the purity of SSC 
increased up to 60% in buffalo [22]. Gelatin is obtained from 
the matrix component and favors the attachment of somatic 
cells, whereas the nonadherent cells are enriched with SSCs 
[26, 72, 83, 89]. The floating cells from a gelatin-coated 
plate after 1 day of incubation relatively enriched mouse 
male germline stem cells for long-term proliferation in mice. 
In most of the studies, the concentration of gelatin used for 
differential plating is 0.2% [26, 72, 83], and enrichment effi-
ciency improved on increasing the incubation duration of 
differential plating.

Combined enrichment methods

A multiparameter selection was adopted to improve the puri-
fication efficiency. Isolation of SSCs using multiple param-
eters such as intracellular complexity along with marker 
selection α6-integrin+, c-kit -, and α v-integrin -(CD51-) 
enriched SSCs up to 152- to 166-fold in FACS [82]. A com-
bined enrichment method employing extracellular matrix, 
laminin, and gelatin effectively purified undifferentiated 
cells to 2.7-fold from monkey testis [90]. The purity of the 
SSCs after the combination of Percoll, laminin and gelatin 
was the highest with 90% [91], while gelatin alone yielded 
moderate purity of 73.7% [92] and 55% [22]. Centrifuga-
tion with 17% Nycodenz (new non-ionic iodinated gradient 
medium) followed by differential plating with fibronectin 
and poly-D-lysine coating enriched the purity of piglet gono-
cytes to >90%. Overall, the variations in the purity levels 
observed between studies are attributed to the developmental 
stage of the testis, differences in purification protocols, and 
selection of the markers for the enrichment of the cells [93].

SSC culture in livestock: nascent stage

The development of a cell culture medium capable of main-
taining stemness and proliferation is a prerequisite for the 
establishment of SSCs technology. Even though SSCs have 
an important role in animal reproduction, the factors that 
regulate self-renewal, proliferation, and stem cell fate are 
least understood. There is a gradual decrease in the prolif-
eration of putative SSCs during subculture over a period of 
time, as differentiation and apoptosis dominate the cellular 
events [28]. So research is focusing on the supplementation 
of appropriate additives, growth factors, matrix substrates, 
and serum-free supplements in the culture media favoring 
SSC self-renewal and proliferation in vitro [28]. As the cul-
ture conditions are unique for each species, recent studies are 
oriented towards developing the protocols and components 
for a particular species [27].

Short‑term culture

Short-term SSC culture have been reported in caprine (7 
days) [94], sheep (14 days) [59], and bovine (11 days to 
3 months) [56, 57, 95, 96]. In livestock, SSC culture sys-
tem was optimized by the addition of culture media with 
additives and other growth factors [24, 56, 97, 98]. In these 
studies, serum was used as an important component in the 
culture medium for survival and self-renewal of culture 
cells. Undefined factors in serum might induce cell differ-
entiation [18] and at higher concentrations had detrimental 
effects on SSCs expansion in culture [87]. Hence, defined 
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culture media without serum and feeder have been developed 
recently to overcome this problem [99].

Long‑term culture

Long-term culture systems are essential for propagating 
SSCs at an exponential rate for downstream biotechnological 
applications. Long-term SSCs cultures have been developed 
in rodents, for maintaining the stemness over 2 years with 
the capability to undergo spermatogenesis after transplanta-
tion into the testis [18, 89, 100–102]. In livestock, though 
few long-term SSC culture has been carried out [89, 92, 95], 
the culture conditions are not optimized when compared to 
the rodent models [9]. Few studies have reported a long-
term culture system that supports continuous proliferation 
of bovine gonocytes in vitro; however, the culture duration 
is less from 1 [92] to 3 months [95]. The evidences of epi-
genetic stability of cell line, transplantation efficiency,and 
production of donor-derived offspring are lacking in live-
stock [89] due to the gap in knowledge for the requirement 
of the culture media for the maintenance and proliferation 
of SSCs in domestic animals [9, 27, 103, 104].

Culture on feeder system

Sertoli cells are mainly used as a feeder system for SSC 
culture. Feeder cells facilitate the cell’s attachment and pro-
vide paracrine support for the survival of the cells. SSCs 
co-cultured using Sertoli cell monolayer as feeder layer 
increased the self-renewal process in bull [56] and buck 
[24]. Due to the interactions between SSCs and Sertoli 
cells, the undifferentiated state of SSCs is maintained [56, 
105]. These colonies are also able to regenerate new colonies 
upon subculturing [106]. The other feeder layer generally 
used are Sandos inbred mice (SIM) embryo-derived thio-
guanine-and ouabain-resistant, mouse embryonic fibroblast 
and laminin-coated plates. The SIM embryo feeder layer is 
efficient for in vitro propagation of bovine testicular germ 
cells when compared to mouse embryonic fibroblast, bovine 
Sertoli cells, and laminin-coated plates [96]. The addition of 
growth factors like glial cell line-derived neurotrophic factor 
(GDNF) enhanced the self-renewal of the SSCs [56, 105]. 
Serum supplemented at lower concentration (1%) in culture 
medium maintained stemness for a week, while at higher 
concentrations, it had detrimental effects on SSC expansion 
[87].

Feeder and serum‑free culture

To develop a more efficient and long-term SSC culture 
medium, several feeder- and serum-free culture systems have 
been tested and found superior to the conventional culture 
[107]. Feeder and serum-free culture media with additives 

like lipid-rich albumin (Albumax), fetuin (blood proteins), 
and knock-out serum replacement improved the culture 
medium and maintained the stemness of SSCs in culture 
for 5 months in mice [107]. The enriched undifferentiated 
bovine spermatogonia maintained on bovine fetal fibroblast-
conditioned medium sustained stemness for 1 month [92]. 
Such culture systems avoid unknown variable factors in the 
media and prevent the growth of contaminating somatic cells 
[103].

Additives in SSCs

The survival, stemness, and proliferation of cells in vitro 
depend on the growth factors, hormones, vitamins, and other 
additives supplied in the medium [108]. The media such as 
DMEM, MEMα, and DMEM/F12 are most widely used for 
the culture of SSCs in domestic animals. Stem cell-specific 
media like StemPro-34 and knockout serum  used for SSC 
culture in rodents [107] are proved to support SSCs from 
livestock species [103]. Apart from the basal media, growth 
factors such as GDNF, epidermal growth factor (EGF), fibro-
blast growth factor 2 (FGF2), leukemia inhibitory factor 
(LIF), colony-stimulating factor (CSF), vascular endothe-
lial growth factor (VEGF), and insulin-like growth factor 
1 (IGF1) are supplied in the SSC culture [108–111]. Other 
additives with unique function for cell survival and division 
are hormones such as FSH [33], insulin [51], beta-estradiol, 
and progesterone [112]. The energy substances such as 
D-(1)-glucose, pyruvic acid, DL lactic acid and transferrin, 
vitamins including ascorbic acid, and amino acids such as 
minimum essential medium amino acids and L glutamine 
and buffer Hepes [57], and polyamines like putrescine for 
cell proliferation are also added. The reducing agents such as 
sodium selenite and 2-mercaptoethanol are incorporated in 
the media for preventing the effect of oxygen-free radicals. 
Further, the culture medium contains antibiotic-antimycotic  
for preventing microbial contamination. Interestingly, sup-
pression of LH levels in the culture media promotes SSC 
self-renewal by reducing the expression of WNT5A, and 
such knowledge can be considered while deciding the com-
position of the culture media [113].

Growth factor as supplements

Growth factors play a crucial role in regulating the fate of 
SSCs in the testicular microenvironment. Several  factors 
including GDNF, LIF, EGF, and FGF2 in the culture medium 
have been reported to positively influence the expansion and 
stemness of the SSCs [89, 114]. VEGF enhanced SSC pro-
liferation in bovine [115] and mice [110]. Growth factors 
promote the self-renewal, proliferation, and survival of SSCs 
through autocrine regulation. The combinations of growth 
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factors  appropriate for the culture medium are different for 
the rodents and bovines [27] and hence need to be studied 
for a particular species for establishing long-term culture.

Glial cell line‑derived neurotrophic factor

GDNF was identified as the major growth factor to main-
tain stemness and self-renewal of SSCs [56, 105]. The dose 
of GDNF used for SSC culture ranges from 1 to 100 ng/
mL [26, 35, 56, 92]. GDNF knockout mice had depleted 
spermatogonia, while overexpression of GDNF produced 
clumps of undifferentiated spermatogonia. Gonocytes pro-
liferate to form clusters of cells in the presence of GDNF and 
LIF [116]. Supplimentation of these growth factors  culture 
medium resulted in SSC proliferation and long-term culture 
of SSCs in rodents.

GDNF signals act through GFRα-1 and RET tyros-
ine kinases in various cell types. GFRα-1 and RET are 
expressed in gonocytes, SSCs, and differentiated spermato-
gonia. GDNF produced by Sertoli cells has receptors on the 
SSCs, acts in paracrine signaling pathways, and mediates 
SSCs self-renewal [117]. The signaling pathways regulated 
by growth factor GDNF mainly include Src signaling and 
Ras signaling pathways. Four Src family kinases are con-
nected in SSC proliferation through RET activation namely 
Src, Yes, Lyn, and Fyn. Among these, Src and Yes sensitizes 
the primary SSCs to respond to GDNF. Further, Src activates 
a PI3K/Akt signaling pathway which in turn leads to N-myc 
expression and promotes SSC proliferation [117–119]. 
GDNF also activates the Ras/ERK1/2 pathways that result in 
phosphorylation and activation of transcription factors such 
as Creb-1, Atf-1, and Crem-1 for the proliferation of SSCs 
[117]. GDNF and FGF2, in the testicular microenvironment, 
have been shown to directly control the expression of tran-
scription factors namely Id4, Etv5, and Bcl6b to stimulate 
self-renewal in SSCs. There is also an intrinsic mechanism 
that regulates the expression of those factors inhibiting/sup-
pressing the differentiating process [120]. Knockout studies 
revealed that long noncoding RNAs such as, lncRNA033862 
regulate SSC fate, as the lncRNA regulates Gfra1 expression 
levels by interacting with Gfra1 chromatin [121]. Increased 
GDNF signaling led to  phosphorylation of AKT3 but not of 
AKT1 or AKT2, in undifferentiated spermatogonia suggest-
ing that AKT3 functions in SSC self-renewal or progenitor 
cell expansion [88].

In rodents, the long- and short-term culture of SSCs 
with GDNF are established either alone or in combina-
tion with other growth factors or additives [88]. In buffalo, 
7–10 [122] and 15 days [123] of SSC culture were carried 
out. The undifferentiated spermatogonial colonies were 
maintained in culture for 15 days using the combination of 
GDNF, EGF, and FGF2 than with the same concentrations 
of GDNF alone or GDNF plus either EGF or FGF2 [123]. 

The highest numbers of spermatogonia were obtained in cul-
tures when a combination of growth factors like GDNF, LIF, 
EGF, and FGF2 was used in the culture medium [57, 96]. 
FSH hormone was found to stimulate GDNF production by 
Sertoli cells [124]. The cocktail of growth factors GDNF and 
FGF2 maintained SSC self-renewal and are used in long-
term cultures in rodents [117]; however, no such beneficial 
effects upon addition of FGF to SSCs culture system in live-
stock are reported [109].

Epidermal growth factor

EGF has been used in the SSC culture media [57]. The 
receptors for EGF have intrinsic tyrosine kinase activity, 
and such receptors are present in SSCs [125]. The EGF and 
EGFR can promote the overexpression of cyclo-oxygenase 
2, which can improve the mitotic activity in SSCs [126]. 
EGF activates cSrc/STAT pathway of SSCs in vitro and 
enhances the proliferation of SSCs [127]. The effect of the 
addition of EGF to the culture medium either as a single 
growth factor [128], or in combination with other growth 
factors [59] and additives [129], has been studied with suc-
cess. Various doses of EGF ranging from 0.1 to 20ng/ml 
as a single factor or with other factors have been reported 
to improve stemness and proliferation of the stem cells 
[128–130]. EGF had a positive effect on PLZF expression 
levels in porcine SSCs [109]. A nonadherent culture system 
containing growth factors EGF along with GDNF and FGF2 
favored in vitro short-term culture in mice and dogs [131].

Fibroblast growth factor

In rodents, the combinations of bFGF with other growth fac-
tors, GDNF and EGF, are required for the long-term culture 
of germ cells [18, 132]. The concentrations of FGF used in 
livestock are ranging from 5ng/ml in goats [94] to 10 ng/ml 
in bulls [133] and porcine [109]. However, studies reported 
the possibility of the negative effect of FGF on porcine and 
bovine SSC stemness unlike rodents [27, 109]. In bovines, 
the addition of FGF2 to the culture system enhanced somatic 
cell proliferation and induced differentiation of the gono-
cytes [27], whereas in pigs, FGF decreased the expression 
of PLZF in the culture system [109], although the exact dif-
ference in the mode of action is least understood. FGF can 
induce the production of GDNF and GFRα1 in neural cells, 
and these act in autocrine pathways to decrease apoptotic 
signaling [134] and such mechanisms may determine the 
fate of the cultured cells [18].

Insulin‑like growth factor 1

Insulin-like growth factor-1 (IGF-1) secreted from Leydig 
and Sertoli cells impart stemness to the spermatogonial 
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cells. The blockage of IGF-1 pathway resulted in reduced 
alkaline phosphatase activity [51]. IGF1R signaling is essen-
tial for the proliferation of SSCs by promoting the G2/M 
progression of the cell cycle [135]. The molecular mecha-
nism, i.e., the cross talk between IGF1/IGF1R and SDF1/
CXXR4 signaling has been elucidated to induce self-renewal 
of SSCs under the hypoxic microenvironment in mice [136]. 
Such studies open up a new window for manipulations of 
the SSC culture system. IGF1 (100 ng/mL) in culture media 
increased the numbers and diameters of SSCs colonies on 
day 16 and also improved cryosurvivability in bovine [137]. 
In combination with GDNF and bFGF, IGF1 improves 
in vitro proliferation of goat SSCs, while preventing the 
uncontrolled proliferation of somatic cells [138]. Further, 
IGF-1 promotes spermatogenesis by increasing the round 
and elongated spermatids and decreasing the apoptosis of 
germ cells in the culture of mouse testicular fragments [139].

Leukemia inhibitory factor

LIF in combination with other growth factors such as GDNF, 
EGF, and FGF supplemented in SSC culture systems [57, 59, 
109, 138] enhanced the self-renewal capacity. LIF is known 
to maintain the pluripotency of SSCs [140]. In humans, 
the combination of bFGF (1 ng/mL) and LIF (1500 unit/
mL) produced the largest diameter of SSC colonies [141]. 
SSCs co-cultured with Sertoli cells with the addition of LIF 
enhanced the alkaline phosphatase activity and the expres-
sion of SSC specific genes [142].

Advanced culture conditions

Recent studies provided insights for modulating the bioen-
ergetics of SSCs culture. Apart from the use of additives for 
improvising the SSCs culture conditions, optimization of 
the oxygen tension and metabolic pathways may improve 
the SSC proliferation in vitro and transplantation efficiency 
in vivo. SSC culture conditions with reduced oxygen tension 
maintained stemness for a long term is a progressive step 
for maintaining stemness [92]. The exact role of oxygen on 
SSCs remains unknown; few studies established that hypoxia 
by modulating the expression levels of Hif genes and reac-
tive oxygen species promoting the self-renewal of SSCs 
[143]. Optimizing the SSC culture conditions that favor gly-
colytic activity and modulating similar culture environments 
is essential for maintaining functional integrity [102]. For 
instance, omission of lipid from SSCs culture enhances gly-
colysis pathway, which helps in proliferation of SSCs [102]. 
The addition of 6-bromoindirubin-3′-oxime, an inhibitor of 
glycogen synthase kinase-3α, enhanced the proliferation of 
SSC in long-term culture of SSCs in bovine [95]. Though 
the doubling time for SSCs in culture is relatively slow, the 

SSCs can multiply 1:2 to 1:4 every 7 days once the culture 
micro milieu is optimal. Hence, the time required to gener-
ate sufficient SSCs needs careful planning [144]. Advanced 
systems including a three-dimensional (3D) culture system 
that mimics the testicular architecture in vitro and provide 
ECM support for the proliferation are also beneficial. Three-
dimensional materials such as nanofiber matrices [145] and 
soft agar culture system [146] are also used for the culture of 
the SSCs. ECM from homologous species provides the best 
bioenvironment for SSCs culture in vitro [147].

SSC cryopreservation and transplantation

Successful cryopreservation and transplantation of SSCs are 
essential procedures that need to be standardized in livestock 
for wider application of SSC technology and research has 
been focused in this direction in rodents [148, 149]. The 
extent of application of SSCs depends on the success of 
long-term storage of cultured cells by employing the cryo-
preservation technique. During cryopreservation, cooling 
and thawing process induce damage to cells and tissue 
which directly affect their viability [150]. The selection of 
appropriate cryoprotectant and the cryopreservation proto-
col is necessary for preserving the cell structural and func-
tional integrity. The permeating cryoprotectants are small 
molecules less than 100 dalton including DMSO, ethylene 
glycol, glycerol, glucose, propylene glycol, diethyl glycol, 
proline, etc. which can penetrate the plasma membrane and 
prevent excessive dehydration of cells during freezing [151]. 
The non-permeating cryoprotectants are large in size and 
can protect the cells from cryoinjury are usually of poly-
mers, polyvinylpyrrolidone, polyethylene glycol, trehalose, 
sucrose, etc. [152, 153]. Further, the time taken for freezing 
the cells from room temperature also affects the viability 
of SSCs. In this direction, cryopreservation of SSCs using 
cryoprotectants by employing slow freezing with rapid thaw-
ing protocol has been successfully tested [148, 154]. Appro-
priate selection of cryopreservation protocol for SSC storage 
should reduce DNA fragmentation, mitochondrial damage, 
oxidative stress, and osmotic stress during cryopreservation 
[155, 156].

The success of cryopreservation may also depend on spe-
cies-wise optimization of cryoprotectants, additives, freez-
ing method and selection of sample type, either cultured 
cells or testicular tissue. On comparing fast freezing, slow 
freezing and vitrification methods in livestock species, slow 
freezing has been suggested as an ideal freezing protocol 
for testicular tissue cryopreservation in terms of protecting 
cellular integrity and resumption of spermatogenesis [153, 
157, 158]. However, vitrification was found effective than 
slow freezing in rodents [159] humans [160]  sheep [161] 
and cats [162]. The post-thaw recovery and transplantation 
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efficiency were better in testicular tissue freezing as com-
pared to cell freezing in bovine and porcine [153, 158].

In bovine, DMSO either alone [163] or in combination 
with sucrose [148] or trehalose, [153] have been used for 
cryopreservation of SSCs. DMSO, with sucrose as cryo-
protectants in bovine [148], sheep [164], and pig [165], 
yielded 70% post-thaw viability and cultured with optimum 
prolificacy. DMSO in combination with FBS and 200 mM 
trehalose as compared with sucrose and polyethylene glycol 
are effective cryopreservation media in terms of post-thaw 
recovery and transplantation efficiency in bovine [153] and 
porcine [158]. DMSO and glycerol combination was effec-
tive for the vitrification of cat testicular tissue [162]. The 
combination of DMSO (10%), knockout serum replace-
ment (10%) with trehalose (20%) using slow-freezing main-
tained cell viability, reduced apoptosis, and cell integrity of 
bovine SSCs [166]. Cryomedia containing DMSO (10%) 
and knockout serum replacement (KSR) (5–10%) along 
with FBS (5%) are also used for cryopreservation of bovine 
SSCs [167]. In horse, DMSO-based cryomedia coupled with 
the slow-freezing method is equally good for maintaining 
the structure, function, or colony-forming abilities when 
compared with ethylene glycol and freezing (fast freezing, 
vitrification) protocols [168]. Testicular tissue from piglets 
vitrified in cryomedia containing ethylene glycol, polyvinyl 
pyrrolidone, and trehalose did not affect the viability. In this 
tissue, sperm have been produced following xenotransplan-
tation and offspring through assisted reproductive technique 
[169]. Recombinant human serum albumin (5%) as serum 
replacement in the cryopreservation media improved pro-
liferation potential and maintained SSC characteristics, and 
after post-thaw, the cells were cultured and colonized in the 
testis upon transplantation of SSCs in mice [170].

In rodents, many additives such as quercetin [156], caf-
feic acid [171], vitamin E [172], catalase [173], and hypo-
taurine [155] have been incorporated to reduce oxidative 
stress and improve cyotolerance, post-thaw proliferation, 
and transplantation capacity. Additives such as vitamin E 
and C were used for the cryopreservation of sheep SSCs 
[174]. Incorporation of apoptosis inhibitors as additives dur-
ing cryopreservation resulted in varied success in terms of 
the post-thaw recovery rate of SSCs, as one study reported 
beneficial [175], whereas another study reported no effect 
[155]. The effect of apoptosis inhibitors in livestock SSCs 
is yet to be elucidated. To reduce oxidative stress, additives 
such as melatonin are used in goat SSC cryomedia [176].

In livestock, there is a need for refinement of cryo-
preservation technique in terms of identifying the best 
combination of freezing methods and the cell or the tissue 
type. The ideal method of freezing to be adopted for cry-
opreservation of testicular cells or tissue is still not clear. 
Further, spermatogenesis capability of  cryopreserved SSC 

following transplantation, and the genetic and epigenetic 
stability needs to be established in livestock.

Donor-derived spermatogenesis was possible through 
SSC transplantation in cattle, sheep, and goats, and live 
progeny has been produced from sheep and goats [74, 106, 
177]. Xenotransplantation of bovine SSCs could colonize 
and proliferate in the seminiferous tubules of the mouse 
but did not progress through the complete process of sper-
matogenesis [153, 178]. The development of appropriate 
recipients is also essential for colonization of donor SSCs 
in the recipient testis, donor-derived spermatogenesis, and 
production of live offspring through the transplantation of 
SSCs. NANOS2 gene knock models were produced in mice, 
goats, pigs, and cattle which can be used as an ideal surro-
gate recipient for the spermatogonial stem cells transplanta-
tions [15]. The knockout males lacked the endogenous SSCs 
and other germ cell population but had intact seminiferous 
tubule and other somatic cell populations [179, 180]. Donor-
derived spermatogenesis through allogenic transplantation 
was possible in mice, pigs, and goats [15]. Other than germ 
cell–depleted genome-edited animals, chemotoxic drugs 
such as busulfan and localized testicular X-ray irradiation 
can be used for developing recipients for germ cell trans-
plantation [149, 153]; however, these treatments also dam-
age the other cells.

SSC colony characterization and cell 
morphology

Spermatogonia are round cells with a high nucleus/cytoplas-
mic ratio. These cells have a spherical nucleus containing 
one to three dense nucleoli and many cytoplasmic inclu-
sions that are mostly concentrated at one side of the cell in 
humans [182], rodents [183], and livestock [59]. During the 
first week of culture, the spermatogonia appeared as single, 
paired, aligned, and cluster forms [59]. The morphology of 
6-week-old mice SSCs cultured with 0.2% BSA plus 10% 
KSR were grape-shaped colonies. These colonies were posi-
tive for specific germ cells markers, αGENA and TRA98. 
Culturing of SSCs on mouse embryonic fibroblast feeder 
cells with 10% KSR, substantial cell growth was observed 
with a doubling time of 5.5±2.7 days, while the addition 
of 0.2% BSA with 2 or 10% KSR advanced the doubling 
time to approximately 4 days [184]. Pig SSC colonies were 
maintained with undifferentiated morphology for more than 
2 months and passaged more than 8 times with doubling 
time between 6 and 7 days. The colony characteristics were 
similar to mice SSCs [35]. These results revealed the fact 
that the growth rate of the colony is influenced by the sup-
plements and their concentration in culture.
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Maintenance of stemness: problems 
and possible solutions

The major challenge in establishing the long-term SSC cul-
ture system is the maintenance of stemness and preventing 
differentiation and apoptosis over a period of time. Under-
standing the pathways influencing stemness is of importance 
for the in vitro modification of the culture system for suc-
cessful self-renewal. In addition, the knowledge on SSC dif-
ferentiation and apoptosis pathways are essential to adopt 
better strategies for the long-term maintenance of stemness. 
Few pathways associated with stemness in SSC have been 
identified in the recent past. For example, the p38 MAPK 
pathway has a key role in maintaining the self-renewal in 
mouse mGSCs [185]. Myc-mediated glycolysis increases 
the SSC self-renewal and proliferation rate of germline stem 
cells [186]. Blocking of Ras/ERK1/2 pathway by MEK1/2 
inhibitor (PD0325901) prevents the proliferation of goat 
SSCs and downregulated the ETV5 and BCL6B  genes 
[187]. In mice, constitutive WNT signaling from the gono-
cytes stage onwards stimulates their proliferation, while 
forced WNT signaling in germ cells causes spermatocytes 
to undergo apoptosis [188]. SSCs cultured in the presence 
of BMP4 underwent differentiation (BMP4/Smad signaling 
pathway), characterized by downregulation of SSC self-
renewal markers such as PLZF and upregulation of SSC 
differentiation marker like c-kit [189].

Several microRNAs, genes and proteins have been  upreg-
ulated in testicular stem cells and regulating the pathways 
towards the maintenance of SSCs stemness (Table 1). Micro-
RNA  (miR-224) overexpression increases the expression of 
SSCs markers such as PLZF and GFRα1 [190] and enhances 
the proliferation of cultured SSCs [191]. The pathway regu-
lated by matrix mellatoprotein2 and mediated via Chd1l-
miR-486-MMP2 regulatory axis increased β-catenin nuclear 
translocation and stemness gene expression [192]. So far the 
complete pathways involved in the maintenance of stemness 
and inducing differentiation remain elusive particularly in 
livestock. In-depth analysis on stemness regulators  may help 
to alter the SSCs fate in terms of self-renewal, differentia-
tion, or apoptosis.

Epigenetic modifications in SSCs

Many studies have demonstrated that epigenetic modifica-
tion plays an important role in maintaining pluripotency of 
SSCs and its lineage differentiation [193, 194]. A previous 
study in mice has reported that embryonic stem cells (ESCs) 
cultured in commercial media gave rise to abnormalities in 
offspring, which may be due to alteration in imprinting genes 
[195]. It was predicted that SSCs grown culture may be more 

prone to epigenetic changes due to exposure to growth fac-
tors and  media [196]; however, there is no experimental 
evidence to support the epigenetic changes in SSCs cultured 
in vitro. Both DNA methylation [197] and histone modifica-
tion [198] are major changes reported during the isolation 
and expansion of SSCs. Histone modifications are involved 
in the differentiation of SSCs to more advanced sperm cells, 
but only during S-phase  the canonical histone synthesis take 
place, which plays a key role during the cell cycle [199]. 
Many locus regions involved in pluripotency maintenance 
and function show a stage-specific differential methyla-
tion pattern [200]. Spermatogenesis can proceed with the 
transcription of certain DNA methylated promoters  [201]. 
However, during spermiogenesis core histone proteins are 
replaced by transition proteins which are further replaced 
by protamines resulting in hyper-compaction of chromatin 
[202].

SSCs platforms: an inexorable technology 
for future

SSC platforms may play a pivotal role in the male fertil-
ity research in humans and for improving productive and 
reproductive performance in animal husbandry sectors. SSC 
researches on transgenesis, genomic-level modifications, 
and in vitro sperm production are the thrust areas in the 
near future. For the first time, transchromosomic mice were 
produced by the introduction of megabase-sized large DNA 
fragments into SSCs using the retro-microcell-mediated 
chromosome transfer method, with superior chromosomal 
stability when compared to embryonic stem cells [186]. 
In vitro sperm production may have significant implications 
in farm animal industries, human fertility restoration, pres-
ervation of endangered species, and many other  technolo-
gies related to mammalian reproduction. The economics of 
animal management in the cattle industry can be reduced if 
renewable SSC pools from elite bulls produce high numbers 
of sperm  from small biotechnological facilities [103].

Conclusion

Though SSC research started decades back, the pace of 
advancement of the technology is very slow, especially in 
mammals. In-depth knowledge on species-specific factors 
affecting stemness and differentiation of SSC is required 
for the development of the long-term culture system and 
in vitro spermatogenesis in livestock. The identification of 
stemness regulators that may alter the SSCs fate in terms 
of self-renewal, differentiation, or apoptosis in the culture 
system is very much essential. Epigenetic changes definitely 
can happen during the culture and differentiation of SSCs 
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in vitro; however, the impact of such alterations on fertility 
needs to be investigated. The success rate of SSCs trans-
plantation using the cultured and cryopreserved SSCs is low. 
In vitro differentiation of sperm from SSC culture though 

developed in rodent model remains a challenge in human 
and farm animals.

Table 1   Spermatogonial stem cells regulators and their functions in rodents, humans, and livestock

Sl.no Regulators Species Function References

1. Chromodomain helicase/ATPase 
DNA binding protein 1-like 
(Chd1l)

Mouse • Chd1l-miR-486-MMP2 regulatory axis increases β-catenin nuclear trans-
location and SSCs stemness gene expression

[192]

2. Chd1l Mouse • Supports SSC survival and self-renewal partially through a GDNF signal-
ing pathway.

• Regulates expression levels of Oct4, Plzf, Gfrα1, and Pcna genes

[203]

3. miRNA-21 Mouse • Regulates the transcription factor ETV5, critical for SSC self-renewal [204]
4. microRNA-224 Mouse • Regulates WNT/β-catenin signaling pathway for SSC self-renewal [190]
5. miRNA-10b Mouse • Mediates SSC proliferation through Kruppel-like factor 4 [191]
6. Foxos Mouse • Effectors of PI3K-Akt signaling in SSCs

• SSC self-renewal and differentiation
[205]

7. RNA-binding protein DND1 Mouse • Mediates target mRNA destabilization in adult murine spermatogonia and 
SSCs

[206]

8. Nodal Mouse • Is a member of the TGFβ superfamily which activates Smad2/3 phospho-
rylation, Oct-4 transcription, cyclin D1, and cyclin E expression

[119]

9. Dead end (RNA-binding protein) Mouse • Interacts with some of NANOS2-target mRNAs in undifferentiated sper-
matogonia.

•  NANOS2 independent role in differentiated spermatogonia

[207]

10. Dead end1 (DND1) Mouse • Directly interacts with NANOS2 to load unique RNAs into the CNOT 
complex and mediates male germ cell development.

[208]

11. Ets related molecule (ERM) Mouse • Located in Sertoli cells in the testis and is required for SSCs self-renewal [209]
12. TET1 Mouse • Interact with PCNA and HDAC1 and promote self-renewal and prolifera-

tion
[210]

13. Pten Mouse • SSCs maintenance by regulating the expression of PLZF and UTF1 [211]
14. Pelota Mouse • Necessary for the transition of gonocytes to SSCs [212]
15. IncRNA AK015322 Mouse • SSC self-renewal by attenuating the repression of ETV5 [213]
16. miRNA-663a Human • SSCs proliferation, DNA synthesis and suppresses early apoptosis by tar-

geting NFIX via cell cycle regulators cyclin A2, cyclin B1, and cyclin E1
[214]

17. P21-activated kinase 1(PAK1) Human • Promotes the proliferation and inhibits apoptosis of human SSCs via 
PDK1/KDR/ZNF367 and ERK1/2 and AKT pathways

[215]

18. miRNA-20 and miRNA-106a Human • Promote renewal at the post-transcriptional level via targeting STAT3 and 
Ccnd1

[216]

19. Lin28a Goat • Self-renewal and proliferation of SSCs through regulation of mTOR and 
PI3K/AKT

[217]

20. Lin28a Goat • NANOG transcriptional regulation via epigenetic DNA modifications to 
maintain the stemness of germline stem cells

[218]

21. Tet1 Goat • DNA methylation/demethylation and regulation of epigenetic modifica-
tions in SSCs

[219]

22. PLZF Goat • Downregulated mir146a and upregulated the expression of CXCR4 protein 
for germ stem cell proliferation

[220]

23. miRNA-544 Goat • Regulates the self-renewal and differentiation of mGSCs via targeting 
PLZF

[221]

24. miRNA-302 Goat • Enhanced the cell proliferation ability and the attachment ability, also, 
promoted the expression level of CD49f and OCT4

[222]

25. DDX4 and c-KIT Porcine • DDX4 and cKIT are putative markers of undifferentiated spermatogonia in 
the prepubertal porcine testis

[223]

26. EOMES (T-box transcription factor) Mouse • Contribute to long-term maintenance of A-single spermatogonia and 
steady-state spermatogenesis

[224]
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