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Abstract
Trophectoderm biopsy is increasingly performed for pre-implantation genetic testing of aneuploidies and considered a safe
procedure on short-term clinical outcome, without strong assessment of long-term consequences. Poor biological information
on human trophectoderm is available due to ethical restrictions. Therefore, most studies have been conducted in vitro (chorio-
carcinoma cell lines, embryonic and pluripotent stem cells) and on murine models that nevertheless poorly reflect the human
counterpart. Polarization, compaction, and blastomere differentiation (e.g., the basis to ascertain trophectoderm origin) are poorly
known in humans. In addition, the trophectoderm function is poorly known from a biological point of view, although a panoply
of questionable and controversial microarray studies suggest that important genes overexpressed in trophectoderm are involved
in pluripotency, metabolism, cell cycle, endocrine function, and implantation. The intercellular communication system between
the trophectoderm cells and the inner cell mass, modulated by cell junctions and filopodia in the murine model, is obscure in
humans. For the purpose of this paper, data mainly on primary cells from human and murine embryos has been reviewed. This
review suggests that the trophectoderm origin and functions have been insufficiently ascertained in humans so far. Therefore,
trophectoderm biopsy should be considered an experimental procedure to be undertaken only under approved rigorous exper-
imental protocols in academic contexts.
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Introduction

The trophectoderm (TE) is the external cell mass of the blas-
tocyst that develops into the placenta and the other extraem-
bryonic membranes. For implantation to occur, the embryo
needs to acquire a well-differentiated functional TE, whose
aim is to interact with the endometrium, start implantation,
and provide a proper placental development. Due to ethical
restrictions, research on the human embryo is scant and con-
ducted on very few embryos [1–3] sometimes obtained from
in vitro matured oocytes [4, 5] which do not necessarily reflect
the physiological counterpart. Studies on TE cells have been
preferentially undertaken on animal embryos and in vitro
models (choriocarcinoma cell lines, embryonic and pluripo-
tent s tem cel ls) as they are more avai lable and

morphologically similar to the human counterpart.
Nevertheless, these models display marked differences in
gene expression, epigenetic changes, chromatin remodeling,
transcriptional activity, genome activation, timing of polariza-
tion and compaction, blastocyst formation, implantation, and
placental development compared with humans [6–9].

TE biopsy coupled with pre-implantation genetic testing
for aneuploidy (PGT-A) is increasingly used to select euploid
blastocysts and is intended to increase in vitro fertilization
(IVF) success rates. The rationale for moving from blastomere
to TE biopsy is based on evidence that the blastomere biopsy
is detrimental to the embryo [10]. However, the safety of TE
biopsy is still controversial and its long-term sequelae are
presently unknown [11, 12]. Furthermore, PGT-A has failed
to demonstrate any clear advantage over the sequential trans-
fer of untested embryos [11, 13], and its clinical value is con-
troversial based on a number of unanswered questions includ-
ing the real association of embryo aneuploidy with IVF failure
and the reliability of a small number of focally biopsied TE
cells in reflecting the genetic/chromosomal status of the inner
cell mass (ICM) [rev. in [14]. Manipulation of a delicate cell
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layer like the human TE should be based on sufficient knowl-
edge of its embryological origin and function due to the pos-
sible serious impact of early embryo manipulation on the sub-
sequent embryo-fetal development. This review aims to dem-
onstrate that such knowledge is not available to date because
biological data on human embryo compaction, polarization,
TE function, cell junctions, intercellular communication, and
the biological sequelae of TE biopsy is poorly ascertained
from a biological perspective.

Polarization

In the murine model, polarization occurs in committed blas-
tomeres within 1–3 h from compaction [15]. At the 8-cell
stage, a polar blastomere side with dense microvilli and few
cell junctions is detected opposite a basolateral cell side with
fewer microvilli and rich in cell junctions [16]. Upon asym-
metric blastomere division, the polar side is inherited by only
one of the cell couplet and two different daughter cells are
generated which occupy either the outer or the inner part of
the embryo [17]. Together with surface polarization, cytoplas-
mic polarization also occurs, characterized by the spatial reor-
ganization of the actin cytoskeleton, endocytic organelles, and
the nucleus leading to a preferential endocytic activity local-
ized at the apical rather than the basolateral cell side [17].
Polarization thus relies on the action of the cytoskeleton [18]
and it is strictly dependent on Ca2+ and cell-cell contacts [15,
18–20]. At the 8-cell stage, an apical domain is established at
the polar side of blastomeres playing a pivotal role in TE
differentiation [rev. in 21]. Briefly, the apical domain is main-
ly composed of the actin-binding protein Ezrin and the com-
plex between partitioning defective proteins Par3-Par6 and
atypical protein kinase C (aPKC) [22], a common mechanism
required for apico-basal cell polarity in different epithelial cell
types [23]. The apical domain becomes progressively local-
ized at the polar side of blastomeres while the adhesion mol-
ecule E-cadherin, concentrated in the adherens junctions (zo-
nula aderentes), localizes at the basolateral cell side together
with Par-1, junction adhesion molecules (JAM), and Na+/K+
ATPase. Starting at compaction, E-cadherin and catenins re-
locate to the contact cell points at the basolateral cell side [24].
Post-translational events activate both E-cadherin, which
binds homotopically on the external cell surface, and catenins
which bind E-cadherin to the actin cytoskeleton [25]. The
presence or absence of an apical domain dictates the diverging
fate of blastomeres leading to either TE or ICM differentiation
[21]. These programs are mainly regulated by the Hippo/Yes-
associated protein (YAP) pathway in synergy with Notch sig-
naling [22, 26–28] and angiomotin (Amot) [29]. AMOT is a
scaffold protein whose main function is to tether the Hippo/
YAP signaling. In polar cells, AMOT is sequestered at the
apical domain. This interferes with the activation of the

Hippo/YAP signaling cascade and YAP phosphorylation.
The unphosphorylated YAP is thus free to migrate into the
nucleus and activate the TE cells transcription programmainly
mediated byCdx2 [29]. Polarized distribution ofmitochondria
and regulatory proteins is also observed inmurine blastomeres
[30, 31].

In humans, the timing of polarization is controversial.
Some have found signs of polarization at the 2-cell stage be-
fore genome activation [32] while others have observed no
polarization until the 8-cell stage, similarly to the murine mod-
el [33, 34]. The blastomeres at the 2-cell stage display signs of
both surface and cytoplasmic polarization. An apical region
free of cell junctions, rich in microvilli, and displaying active
endocytotic membrane transport has been observed, together
with a basolateral region with abundant cell junctions, loss of
microvilli, and no sign of active endocytotic membrane trans-
port [32]. No study has been found on the apical domain and
Par proteins in human embryos. Conversely, E-cadherin and
JAM have been described in human compacted blastomeres
[35–38]. In normally compacting embryos, E-cadherin relo-
cates from the blastomere cytoplasm to the cell-cell contact
points leading to adherens junction assembly. Conversely, in
abnormally compacted fragmented embryos, relocation fails
to occur, E-cadherin is described as “erratic” or “absent,” and
polarity fails to be stabilized [35]. To the best of our knowl-
edge, YAP and AMOT have not been described in human
blastomeres. At the blastocyst stage, it has been found that,
differently from the murine model in which the transcription
coactivator YAP is excluded from the nuclei of ICM cells
[39], in human embryos YAP is localized in the nuclei of both
ICM (“diffuse pattern”) and TE (“more heterogeneous pat-
tern”). YAP is considered important for the maintenance of
pluripotency in human TE [40], differently from the murine
model where it induces TE differentiation [39]. In the human
embryo, AMOTL2 is localized in the TE lateral adherens
junctions; its knockout does not affect differentiation while
blocking blastocyst hatching from the zona pellucida [41].
Similarly to the murine model, a polarized distribution of mi-
tochondria and regulatory proteins has been observed in hu-
man blastomeres [31, 42, 43].

Compaction

In mice, compaction starts at the 8-cell stage and relies on two
diverging models. The first is based on the function of
filopodia, E-cadherin-rich plasma membrane protrusions of
11 μm long also including α- and β-catenins (binding E-
cadherin to the cytoskeleton), F-actin, and myosin-X [44].
The protrusions can be observed as from the 8-cell stage and
disappear at the 16–32-cell stage. The blastomeres extend
filopodia cyclically and retract them from the neighboring
cells only before dividing. Slightly fewer than 60% of cells
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form filopodia; of these, about 70% divide symmetrically,
while the others divide asymmetrically. Upon elongation of
filopodia, the blastomeres acquire a flattened shape, while
they revert back to a round shape upon filopodia retraction
or laser ablation. E-cadherin, catenins, or myosin knockout
decreases the number of filopodia without abolishing them,
suggesting that compensatory mechanisms may intervene. On
the contrary, the ablation of F-actin completely inhibits
filopodia formation and compaction [44]. According to the
second model for compaction, E-cadherin clears actomyosin
from the blastomere contact points. This decreases the con-
tractility forces at the cell-cell contact points, thus facilitating
the cell-autonomous contraction of the contractile shell at the
cell-medium interface [45]. E-cadherin knockout mice fail
compaction, TE formation, pre-implantation development,
and implantation [46, 47].

In humans, the knowledge of compaction is mostly based
on a panoply of observational and time-lapse studies [48–62]
while molecular mechanisms remain obscure. Compaction
initiates traditionally at the 10–18-cell stage [63], but more
recent time-lapse studies have shown an earlier start at or just
after the 8-cell stage similarly to the murine model [64]. Most
embryos initiating compaction earlier than the 8-cell stage
develop into poor quality blastocysts with high incidence of
cytokinetic failure and multinucleated blastomeres [53]. At
compaction, human blastomeres display a flattened shape,
with reduced clefts between each other. At the morula stage,
most embryos are compacted although not homogenously:
75% blastomeres are compacted and display an increased den-
sity of microvilli over the free surface, while uncompacted
blastomeres display a lower microvilli density. In the contact
areas of partially disaggregated blastomeres, small abundant
vesicles of unknown significance are also observed [33].
Single blastomeres isolated from embryos at the 4-cell stage
undergo normal compaction and cavitation and differentiate
into both the ICM and the TE generating small blastocysts
[65]. In human embryos, filopodia have not been described.
However, long “microvilli” extending over adjacent blasto-
meres have been observed in baboon embryos by scanning
electron microscopy [66].

The establishment of cell junctions

In the murine model, adherens junctions mature in blasto-
meres at the compaction stage, playing a pivotal role in the
polarization and differentiation processes. They are main-
tained equally in both the TE and the ICM [67]. Once the
TE and ICM cell fates have diverted, the embryo starts to be
filled by fluid. This process requires the establishment of tight
junctions and desmosomes which are critical for the differen-
tiation of the TE lineage and the formation of the blastocyst
[68–70]. Mature tight junctions are observed at the

compaction stage and maintained later only in the TE cell
layer just apically to the adherens junctions. Tight junctions
mature by progressive synthesis and assembly of constitutive
proteins, including the transmembrane proteins occludin,
claudins, and JAM and the cytoplasmic proteins ZO-1, ZO-
2, and ZO-3, together with cingulin (which contributes to
binding the tight junctions to the cytoskeleton) and Rab13
(involved in intracellular transport processes). The maturation
process of tight junctions involves E-cadherin adhesion whose
inhibition however does not affect cell adhesion or polariza-
tion probably by residual maternal transcripts [46, 69, 70].
Once tight junctions are matured, paracellular permeability
is blocked and the morula progresses to blastocyst by fluid
accumulation and blastocoel formation [71]. Actin rings sta-
bilize adherens and tight junction components [72], while in-
creased hydraulic pressure leads to the maturation of function-
al tight junctions mediated by vinculin, a membrane protein
involved in the linkage of integrin adhesion molecules to the
actin cytoskeleton [73]. Later on, at the 32-cell stage, desmo-
some (macula aderentes) formation starts contributing to the
maintenance of the epithelium integrity during blastocyst ex-
pansion. Similarly to the tight junctions, the desmosomes are
localized only in the TE cell layer and are composed of
plakoglobin, desmoplakin, and the membrane glycoprotein
desmocollin 2 (DSC2) [rev. in 67]. Gap junction (nexus) as-
sembly initiates at the 8-cell stage in mouse embryos and
involves post-translationally regulated proteins. Gap junctions
are composed of connexins, a family of integral membrane
proteins classified according to their molecular mass [74].
The role of gap junctions in the normal development of mouse
embryos is controversial [75–78]. However, their roles in cell
communication mediated by the passage of low-molecular-
weight molecules or ions and in post-implantation events are
established [75, 79].

In the human embryo, the assembly of cell junctions starts
at the 2-cell stage, i.e., before the genome activation which is
apparently not required for the formation of adherens and gap
junctions, while it is essential for tight junction assembly and
embryo viability [32]. In cleavage-stage human embryos, E-
cadherin is distributed in blastomere cytoplasm; later on, it
relocates to the cell-cell contact points in normally compacting
embryos, while in abnormally compacted fragmented embry-
os, relocation fails to occur and E-cadherin is described as
“erratic” or “absent.” At the blastocyst stage, normal TE cells
are surrounded by a strong band of cadherin fluorescence
(“belt” pattern) which is not observed in disorganized TE
[35]. Mature tight junctions are detected first in the cavitating
human morula and located apically in TE cells [80].
Coxsackievirus and adenovirus receptor (CAR), a member
of the junctional adhesion molecule family of adhesion recep-
tor, is necessary for the adherens and tight junction assembly/
biogenesis during pre-implantation development being there-
fore critical to blastocyst formation. In humans, CAR has been
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found in all stages of pre-implantation development, located
in the nucleus in earlier stages, then co-localized with tight
junction proteins (occludin and ZO-1) starting from the com-
paction stage, finally relocated back from the membrane to
nucleus in hatching blastocysts [81]. Gap junctions have been
first detected in apposing cell membranes at the 4-cell stage
and found increasingly organized and functional as develop-
ment proceeds [82]. Gap junctions are not involved in inter-
cellular communication until the morula stage, while in blas-
tocyst, they contribute to the communication between TE and
ICM cells where they are localized with different patterns [83,
84]. In human blastocyst, connexins 31 and 43 are the main
co-expressed isoforms in early and late pre-implantation
stages of development, while connexin 45 is less translated
until the 4-cell stage and connexins 32 and 26 are observed
occasionally in the TE of late blastocysts [84]. Connexin 40,
which is expressed by the extravillous trophoblast in the early
human placenta, was not found to be expressed in TE from
which placental trophoblast develops [85]. Interestingly, ex-
pression levels of gap junction proteins are variable in mor-
phologically normal embryos which often show either as ex-
tensive, disorganized overexpression or as reduced expression
suggesting that a normal embryo morphology may not be a
reliable indicator of future viability [84]. Desmosome-like
structures have been observed in human embryos at the 2-
cell stage of development [86]. Controversially, others found
desmosome-like structures starting from the 6-cell stage [34],
while desmosomemRNA and protein have been detected only
at the blastocyst stage [36, 83]. Together with tight junctions,
TE desmosomes contribute to intercellular sealing and tissue
integrity, critical for vectorial transport and blastocoel cavity
formation. In the implantation process, endometrial epithelial
cells share desmosomes with TE cells before displacing later-
ally to allow TE cells to form a penetration cone [87].
Desmosomes fail to anchor to TE cells in abortive human
blastocysts unable to hatch [88].

Failure to form proper cell junctions negatively impacts
embryo viability without any detectable morphological com-
promise [38, 89]. Also, in vitro culture and abnormal meta-
bolic activity have been found to impair the assembly of cell
junctions and embryo development without any evident mor-
phological compromise [37, 38, 90]. Human embryos cul-
tured in vitro show a relatively inefficient membrane assembly
of junction proteins compared with the murine model [38, 90].

TE differentiation and functions in the human
embryo

Similarly to the murine model, also in humans, a complex
network of transcription factors intervenes in ICM and TE
lineage specification, including OCT-4 and NANOG1
(markers of ICM) and CDX2 and GATA3 (markers of TE);

however, significant differences in human have been found
compared with mice [2, 3, 91, 92]. Most information on TE
lineage specification derives from a human embryo in vitro
culture [93–96]. In humans, no stemness marker specifically
identifies cells allocated to ICM or TE [3]. The nuclear ex-
pression of NANOG (some not all cells) and SOX2 appears
restricted to the ICM only after lineage segregation which
occurs at the late blastocyst stage [4]. In human blastocysts,
OCT-4 and its stemness isoform are expressed in both the TE
and the ICM [1, 2, 5, 97–100] in accordance with studies on
animal models [101–103]. However, unlike in primates, in
which NANOG expression precedes that of OCT-4 [104],
OCT-4 has been found to co-localize with NANOG in human
blastocysts [105]. Interestingly, in humans, disaggregated TE
cells from pre-hatched blastocysts are able to express
NANOG upon re-positioning in the center of the embryo be-
coming unable to revert back to TE [100]. This is in accor-
dance with studies on the murine model, in which TE cells are
able to relocate to the inner position and acquire ICM charac-
teristics by downregulating CDX2 expression finally contrib-
uting to the ICM [106]. Human TE cells also regain Cyclin E1
and NANOG under embryonic stem cell culture conditions
[107]. Interestingly, CAR has been found to express in both
TE and ICM, thus suggesting a role in maintaining
pluripotency in TE cells [81].

All the above data, although limited, suggest that in pre-
hatched blastocysts of humans and other species, TE cell de-
velopmental direction may not yet be definite while it com-
mits to differentiation only in hatched blastocysts concomitant
with the expression of CDX2 [106, 108]. Also, TE cells retain
stemness genes common to embryonic stem cells and ICM.
Available data also indicates that the animal model poorly
reflects TE lineage specification.

The study of human TE functions has been attempted by
transcriptome analysis based on low numbers of
immunosurgically or mechanically dissected embryos. The
main studies are summarized in Table 1 [1–5] and suggest
that (1) a complex and still unclear network of transcription
factors intervenes in polarization and TE lineage specification;
(2) many genes are overexpressed in TE cells compared with
day 3 blastomeres; (3) stemness genes are expressed in both
ICM and TE, but none is able to identify the totipotent cells
during human pre-implantation development; (4) TE cells
overexpress many genes linked to protein biosynthesis, regu-
lation of cell growth, and differentiation including apoptosis,
DNA damage repair, DNA methylation, cytoskeleton, cell
junction biogenesis, blastocoel formation, placental function,
and trophoblast invasion; (5) TE cells show overexpression of
genes linked to glycolysis, sterol biosynthesis, and androgen,
lipid, and estrogen metabolism suggesting important metabol-
ic and endocrine functions; (6) the number of genes that are
expressed exclusively in immunosurgically isolated ICM or
TE is rather low; and (7) many TE-specific genes have no
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Table 1 The main studies of human TE functions

Main genes overexpressed in TE Function Material and method Author

SFN (stratifin) Cell proliferation and apoptosis Immunosurgically dissected TE from n = 2 in vitro
cultured embryos until day 6

[1]
ATP1B3 Blastocoel formation
WNT
CSNK1A
DAAM1
NOTCH

Polarization
Pluripotency

HCG/CGB5
KRT18
HAND1
PSG3
CDX2
TBX1
BMP4

Trophoblast differentiation

DSC2
PCDH7
PCDH11
PCDHB7
CDH19
CDH24
CDH22
TJP1
TJP2
CLDN2
CLDN16
CLDN10
CELSR2

Cell junctions

DNMT3L
EZH2
EED
CTCF

Epigenetic transcriptional control
TE differentiation
Maintenance of pluripotency

H19
GRB10
SNURF
MEST
NAP1
UBE3A
DLX5
MAGEL2
OSBPL5/OBPH1
ATP10A
IPL

Imprinted genes
Regulators of nutrient supply at the feto-maternal interface
Growth and development of the early embryo

MCL-1
CASP 3
CASP 6
CASP 9
BAG6
CASP2
ANXA3

Apoptosis
Cell death and proliferation

Mechanically dissected TE from n = 8
blastocysts (day 5)

[2]

DNMT3B
LIN28
PHF17
SEPHS1
UGP2
PIM2

Stemness

STS
HSD17B1
CYP19A1
CYP11A1
HSD3B1
FDX1
PTGES
SRA1

Steroidogenesis
Lipid metabolism

BRCA1
TDG
FANCG
FEN1
XRCC5
XRCC6
XPC
MUTYH
XPA
SMUG1
POLD2

Epigenetic modifications
DNA repair

DNMT3L
SMARCA4
SMARCE1
SMARCC1

Epigenetic modifications Chromatin remodeling
Specification of the TE lineage
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Table 1 (continued)

Main genes overexpressed in TE Function Material and method Author

DNMT3A
PMRT5
DNMT1
DNMT3B
GATA2
GATA3

Transcription factors

PGF
TFAP2A

Placental development

Keratin 18
Keratin 19

Cytoskeleton-associated genes

S100P
S100A6, 10, 13, 14 and 16

S100 calcium-binding proteins

NR2F2
NR2F6

Retinoid receptor–related testis-associated receptors

CCKBR B receptors
Laminins LAMA1, LAMA5, and LAMC1
Integrins (ITGB4 and ITGB5)

Extracellular matrix proteins

Gene ontology (GO) Metabolic and steroid biosynthetic processes
Oxido-reductase activity

GCM1
TGFBRIII

Differentiation of pluripotent stem cells to trophoblast cells

GCDH
HPGD

Metabolism

FZD5
AXIN1
TCF3

WNT signaling

DNMT3L
GAGE2
GATA3

Functional role in the placenta lineage Mechanically dissected TE from n = 5
blastocysts (day 5)

[3]

CDK1/CDC2
MCM7
NMYC

Cell division and cell proliferation

LIN28
ZFP42

Pluripotency

CGA
PGF
ALPPL2
PPARG

Functions of the human placenta

Gene ontology (GO) Cell protein synthesis
LAMA1, A5, B1, and C1 Blastocoel cavity formation

ICM cell TE-dependent growth
Trophoblast invasion

ABCG2 Efflux of xenobiotics
Cancer/testis (CT) antigens (GAGE3) Transcription activation or repression
CCKBR Cell proliferation migration

Trophoblast invasion
GCM1
NR6A1/RTR
PPARG

Placental development

GCM1
GATA3
PPARG
TFEB
GATA2
TP63
MSX2
CEBPA
TFAP2C
MXD1
DLX4
PPP1R13L
KLF5
MAFK
ELF3
PPARD

Functions of the human placenta

NANOG
SOX2
SALL4

Pluripotency N = 8 blastocysts assessed as unsuitable
for transfer or cryopreservation, or obtained by
applying ICSI on in vitro matured oocytes
Immunostaining and confocal microscopy

[4]

KRT18 TE lineage
OCT-4 Pluripotency Mechanically dissected TE from n = 10 blastocysts obtained

after conventional IVF or ICSI or obtained by applying
ICSI on in vitro-matured oocytes

[5]
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known function. Other studies show differences between the
murine model and humans; in particular, transcription of
FGFRs is rarely observed in humans, and FGFR2 protein is
not detected in human blastocysts, while being strongly
expressed in mice blastocysts [109].

Interestingly, in murine blastocysts derived by
intracytoplasmic sperm injection (ICSI) versus IVF, the ex-
pression of genes was found to differ including those regulat-
ing structural and organ-specific processes, several metabolic
pathways, and signaling and transport mechanisms [110,
111]. In addition, several studies have shown that genes in-
volved in the implantation process are overexpressed in hu-
man TE allowing for distinction among viable implanting
blastocysts and those which fail to implant [112–115]. TE
biopsy implicates an extended embryo culture to blastocyst
without any clear clinical advantage over day 3 culture
[116]. However, it has been shown that human embryos are
highly sensitive to the environment under in vitro culture con-
ditions which can alter the gene expression pattern [117–119].
Interestingly, it has been shown that cryopreservation, quite
mandatory in PGT-A due to the time necessary to get the
results of comprehensive chromosome screening, affects the
normal pattern of gene expression in human pre-implantation
embryos [120, 121]. Importantly, in the murine model, TE
produces approximately 80% of the energy generated in the
embryowhich is mainly consumed by the Na(+), K(+)ATPase
and is responsible for 90% of amino acid turnover compared
with the ICM [122].

Embryonic intercellular communication

In the murine model, long filopodia transverse the blastocoel
and maintain the communication between mural abembryonic
TE cells and ICM, probably by the exchange of freemolecules
[123]. Also, TE cells connect to each other by thin filopodia
[124]. In addition, filopodia traversing the blastocoelic cavity
display receptors for growth factors including the fibroblast
growth factor (FGFR). FGFR2 is known to be localized
on mural TE, and its ligand (FGF4) is released by ICM
to maintain TE cell mitotic activity [125]. The establish-
ment of a communication system between ICM and TE
was supposed long time ago in which ICM induces a
high rate of proliferation in the polar TE which migrates
to the proximal and distal mural regions [126–128].
Also, TE processes modulate the totipotency of ICM
cells [129].

In humans, very poor information about the communica-
tion system was found. TE cells are linked by dense arrays of
gap junctions between them, while ICM cells are linked by
small, punctate gap junctions, as stated above [82, 83]. In
human embryos, filopodia have not been described.

TE biopsy: biological effects

In both human and animal models, the biological effects of TE
biopsy are limited to the observation of simplistic parameters
like blastocoel re-expansion, hatching from the zona
pellucida, and embryo survival which are apparently
reassuring [130–138]. However, these parameters may not
be fully informative regarding the biological status of the em-
bryo, as is the case of “assisted” hatching which does not
necessarily reflect the capacity of the embryo to hatch spon-
taneously if left untouched and can artificially rescue embryos
otherwise not developing [80, 139]. Several studies of both
the animal and human models have suggested impairment in
developmental capacity and a lower percentage of live birth
rates after TE biopsy [11, 12, 128, 132, 138, 140–142].
Importantly, in both the primate and the human models, in-
creasing the number of TE cells biopsied from both high and
low morphological grade blastocysts impacts negatively on
proteins involved in implantation like hCG and VEGF and
decreases both the implantation potential and the live birth
rate [143–148]. The only randomized study specifically de-
signed to ascertain the biological safety of TE biopsy in
humans has been performed by removing only up to five cells
[10], a number with no demonstrable impact on implantation
potential and live birth rate [146] but nevertheless considered
insufficient to determine embryo ploidy [149]. Therefore, the
study setting is not applicable to routine cycles where the
exact number of cells removed is technically difficult to ascer-
tain due to the uncertain visualization of the cell nuclei and
therefore may well exceed five (Fig. 1).

Discussion

Polarization, compaction, and TE differentiation are poorly
known in humans. Timing of polarization is controversial
and the knowledge of surface and cytoplasmic polarity is lim-
ited to observational studies while the molecular mechanisms
of polarization are presently unknown. Components of the
Hippo/YAP signaling cascade have been sporadically studied
in human embryos, demonstrating localization and functions
differently from the murine model. A panoply of observation-
al and time-lapse studies have described the shape changes in
blastomeres at compaction and attempted inconclusively a
correlation with IVF outcome, while the molecular mecha-
nisms of compaction remain to be elucidated in humans.
The origin of mechanical forces leading to the flattening of
blastomeres is presently unknown in humans compared with
the murine model, where convincing models have been pro-
posed suggesting that sufficient tensile forces by either
filopodia or the contractile shell at the cell-medium interface
are sufficient to modify the cell shape. However, filopodia

2705J Assist Reprod Genet (2020) 37:2699–2711



have not been detected in the human embryo, although similar
structures have been found in non-human primates.

In humans, subtle modifications and assembly of cell junc-
tion proteins may cause severe impairment of embryo devel-
opment mostly linked to metabolic factors, without any mor-
phological detectable compromise. The disruption of the
“belt” pattern of TE cadherin distribution is associated with
a disorganized TE, with reasonable consequences on embryo
viability and implantation. Tight junction assembly and main-
tenance in the TE cell layer impact paracellular sealing and
blastocoel formation. Gap junctions are localized in both TE
and ICM, and although their role in pre-implantation embryo
development is presently uncertain, they take part in the TE
and ICM communication system and play a pivotal role in
post-implantation development. Together with tight junctions,
TE desmosomes contribute to intercellular sealing and tissue
integrity, critical for vectorial transport and blastocoel cavity
formation. As well as gap junctions, desmosomes play a piv-
otal role in the implantation process. Surprisingly, we were
unable to find data on more subtle consequences of TE biopsy
on cell junctions in the human embryo which, similarly to the

epithelial models, would not be revealed by simplistic mor-
phological observations.

Complex data on lineage specification and TE cell differ-
entiation have been reported in detail elsewhere. For the pur-
pose of this review, I focalized on the stem cell nature of TE at
the time of blastocyst biopsy. When TE is biopsied, its devel-
opmental fate is not yet definite. Reversal of TE destiny is
easily obtainable both in vivo and in vitro and TE can acquire
ICM characteristics. Also, in humans, TE and ICM are not
strictly distinguishable on the basis of their molecular pattern.
TE cells maintain a stem cell state, whose significance is pres-
ently unknown but certainly not negligible. It cannot be ex-
cluded that TE is involved in the maintenance of ICM cell
load. Therefore, the subtraction of an even limited number
of TE cells by biopsy may bear consequences of unknown
significance.

The exploration of human TE functions has been attempted
by microarray technology on very few dissected embryos,
generating a panoply of studies aimed to define a “TE signa-
ture.” Although many genes overexpressed in TE have no
known function, TE cells seem to possess multiple important

Fig. 1 Schematic description of
some unanswered questions on
both the safety of the TE biopsy
and the clinical value of PGT-A.
(a) Assisted hatching: potential
rescue of abnormal embryos. (b)
Uncertain number of biopsied TE
cells. (c) Higher number of
biopsied TE cell: impaired HCG
and VEGF secretion and in-
creased risk of implantation fail-
ure. (d) Tight junction disruption
and developmental compromise.
(e) Focally biopsied TE cells do
not necessarily reflect the ploidy
of the ICM. (f) The developmen-
tal fate of TE cells is uncertain at
the time of biopsy. (g) Impaired
ICM cell load following TE cell
extraction. (h) Cell communica-
tion system disruption. ICM, in-
ner cell mass; TE, trophectoderm;
ZP, zona pellucida; HCG, human
chorionic gonadotropin; VEGF,
vascular endothelial growth fac-
tor; AH, assisted hatching; TJ,
tight junction; PGT-A, pre-
implantation genetic testing for
aneuploidy
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functions, including metabolic and endocrine functions, com-
mon cell cycle mechanisms, cell junction biogenesis, blasto-
coel formation, placental function, and trophoblast invasion.
Themain functions of human TE aremetabolic, endocrine and
involved in the implantation mechanism. It may be speculated
that the disruption of the TE cell layer by biopsy may perturb
the physiological TE functions by modulation of the implicat-
ed genes. Interestingly, in murine blastocysts derived by ICSI
versus IVF, the expression of many genes differ including
those regulating structural and organ-specific processes, sev-
eral metabolic pathways, and signaling and transport mecha-
nisms. It can be speculated that, in a context of no clear clinical
advantage of PGT-A compared with standard IVF cycles, the
use of ICSI in PGT-A may perturb the embryo functions by
altering gene expression. Also, TE biopsy implicates an ex-
tended embryo culture and cryopreservation, mandatory in
preferred PGT-A protocols due to the time necessary to get
the results of comprehensive chromosome screening, which
may affect the normal pattern of gene expression in pre-
implantation embryos.

Intercellular communication is virtually unknown in the
human embryo. In the murinemodel, however, an active com-
munication system has been ascertained between TE and ICM
cells, mediated by cell junctions and filopodia. Importantly,
ICM seems to maintain the TE cell load by active release of
growth factors and polar TE cell migration to proximal and
mural regions. It may be postulated that the subtraction of
mural TE cells by biopsy may induce a greater ICM activity
which can finally result in depauperation of the ICM cell load.
Conversely, TE cells modulate the pluripotency of ICM cells,
which may also be changed by TE biopsy. I was unable to find
data on the sequelae of the disruption of the cell junction
communication system in humans. Importantly, in the murine
model, in accordance with the strongmetabolic activity of TE,
80% of the embryo energy is generated by the TE and destined
to the formation of blastocoel. Again, it may be inferred that
the decrease of the TE cells caused by the biopsy, although
limited, may have a negative impact on the overall embryonic
energy burden and subsequent events including implantation.
To the best of our knowledge, in humans, none of these topics
has been addressed so far.

PGT-A is currently performed by TE biopsy as a routine
procedure in many private IVF centers, despite the fact that its
efficacy has not been demonstrated [11, 13]. The reason for
this has to be seen from several points of view, including an
economical one. Data on the short-term safety of TE biopsies
seems reassuring; nevertheless, no strong evidence has been
provided on the long-term consequences [150]. In vitro stud-
ies on the impact of TE biopsy and PGT-A on embryo viabil-
ity are observational, sometimes using simplistic uninforma-
tive “safety” parameters like hatching from the zona pellucida
and blastocyst short-term morphological recovery. However,
PGT-A clinical outcome (biochemical/clinical loss rate,

delivery rates, etc.) is the object of misinterpretation due to a
number of factors including embryo selection biases indepen-
dent from ploidy.

The safety of TE biopsy needs a more careful evaluation
which may take advantage from the basic knowledge acquired
from the animal models and the human embryo long-term
culture systems. These models, although different from the
human model, may nevertheless offer a study system useful
to address some unanswered questions still open. Possible
alternatives to invasive diagnosis of the human embryo are
currently under study and may prove effective in selecting
euploid embryos. For example, the analysis of cell-free
DNA in spent culture media sounds encouraging [151, 152].

In the light of the data provided by this review, which
demonstrates insufficient knowledge of the origin and func-
tion of TE, no attempt should be made to disrupt this delicate
and unknown cell layer, outside strictly approved experimen-
tal protocols in academic contexts.
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