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Abstract
Purpose A subset of preimplantation stage embryos may pos-
sess mosaicism of chromosomal constitution, representing a
possible limitation to the clinical predictive value of compre-
hensive chromosome screening (CCS) from a single biopsy.
However, contemporary methods of CCS may be capable of
predicting mosaicism in the blastocyst by detecting interme-
diate levels of aneuploidy within a trophectoderm biopsy. This
study evaluates the sensitivity and specificity of aneuploidy
detection by two CCS platforms using a cell line mixture
model of a mosaic trophectoderm biopsy.
Methods Four cell lines with known karyotypes were obtain-
ed and mixed together at specific ratios of six total cells (0:6,
1:5, 2:4, 3:3, 4:2, 5:1, and 6:0). A female euploid and a male
trisomy 18 cell line were used for one set, and a male trisomy
13 and a male trisomy 15 cell line were used for another.
Replicates of each mixture were prepared, randomized, and
blinded for analysis by one of two CCS platforms (quantita-
tive polymerase chain reaction (qPCR) or VeriSeq next-
generation sequencing (NGS)). Sensitivity and specificity of
aneuploidy detection at each level of mosaicism was deter-
mined and compared between platforms.

Results With the default settings for each platform, the sensi-
tivity of qPCR and NGS were not statistically different, and
100 % specificity was observed (no false positives) at all
levels of mosaicism. However, the use of previously published
custom criteria for NGS increased sensitivity but also signif-
icantly decreased specificity (33 % false-positive prediction of
aneuploidy).
Conclusions By demonstrating increased false-positive diag-
noses when reducing the stringency of predicting an abnormal-
ity, these data illustrate the importance of preclinical evaluation
of new testing paradigms before clinical implementation.
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Introduction

Comprehensive methods for preimplantation aneuploidy
screening have become a common part of infertility care.
The use of preimplantation screening (PGS) and the ability
to diagnose aneuploidy of all 24 human chromosomes and
improvement in the accuracy of amplification strategies rep-
resent important advancements that have clearly improved
outcomes when applied to embryo selection strategies for pa-
tients undergoing IVF treatment [1–4]. The observed im-
provements in clinical outcomes are based on the simple fact
that approximately one third of human preimplantation em-
bryos are chromosomally abnormal. It is well established that
embryonic aneuploidy rates increase dramatically with ad-
vanced maternal age. However, in some cases, post-fertili
zation mitotic errors in chromosome segregation have been
observed [5]. These errors lead to chromosomal mosaicism
within the developing embryo and represent a complex
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diagnostic challenge. For example, most trophectoderm biop-
sies contain between five and eight cells, a relatively small
proportion of a blastocyst-stage embryo which contains a
large number of cells [6–9].

Comprehensive chromosome screening (CCS) platforms gen-
erally quantify chromosome copy number and predict aneuploi-
dy when the relative copy numbers reach a specific threshold for
diagnosing a gain or loss [10]. Recent research has suggested that
intermediate levels of gains or losses from array comparative
genomic hybridization (aCGH) data are indicative of mosaicism
and predictive of reduced reproductive potential of the remaining
embryo. Given that 26–33 % of embryos predicted to have mo-
saic aneuploidy led to successful deliveries, more careful consid-
eration for not only biological phenomenon, but also false-
positive diagnoses should be given [11, 12].

Some have argued that next-generation sequencing (NGS)-
based strategies may provide an enhanced and unique opportu-
nity to predict mosaicism within a trophectoderm biopsy [13],
and one group recently published criteria for predicting mosai-
cismwithin a trophectoderm biopsy using intermediate values of
copy number [14]. Nonetheless, there remains a lack of data
regarding the actual capabilities and comparative performance
of contemporary CCS platforms for predicting aneuploidy in a
mosaic sample. Previous studies have used cell lines and whole
genome amplification (WGA) products to create mixtures of
euploid and aneuploid cells as a model for a mosaic
trophectoderm biopsy [7, 15]. However, these prior studies used
either SNP array or array (aCGH), which are becoming less
utilized with the introduction of more cost effective approaches,
and were limited by a small sample size at each mixture level.
This study evaluated two commercially available CCS platforms,
involving quantitative polymerase chain reaction (qPCR) and
NGS, for their sensitivity and specificity of aneuploidy detection
in a cell line mixture model of a mosaic trophectoderm biopsy.

Materials and methods

In order to establish positive controls for specific levels of
mosaicism, four adult human fibroblast cell lines, GM00321
(46,XX), GM01359 (47,XY,+18), GM03184 (47,XY,+15),
and GM02948 (47,XY,+13), were purchased from the
Coriell Cell Repository (Camden, NJ). Each cell line was
previously characterized for karyotypes by the supplier. The
cells were cultured and passaged once prior to collection as
recommended. Individual cells were obtained under a dissect-
ing microscope and mixed together at specific ratios of six
total cells (0:6, 1:5, 2:4, 3:3, 4:2, 5:1, and 6:0). The euploid
female and trisomy 18 male cell lines were used for one set of
mixtures (Fig. 1a), and the trisomy 13 and trisomy 15 cell lines
were used for another set of mixtures (Fig. 1b). Twelve repli-
cates of each mixture level were collected and then divided
equally and randomly to one of two CCS platforms for

analysis. One protocol involved the use of either SelectCCS
(Foundation for Embryonic Competence Inc., Basking Ridge,
New Jersey), a previously validated qPCR platform [2, 3, 16],
or VeriSeq PGS (Illumina Inc., Santa Clara, CA), a commer-
cially available method involving WGA and next-generation
sequencing (NGS) on a MiSeq. Blinded computational pre-
diction of aneuploidy was made with either (i) previously
established criteria for qPCR [16], termed Bdefault qPCR,^
(ii) as recommended by the supplier utilizing the automatic
aneuploidy calls made by Bluefuse Multi software (BlueFuse,
Illumina Inc., version 4.2(20289)), termed Bdefault VeriSeq,^
or (iii) using previously defined [14] customized criteria for
VeriSeq PGS (which examine changes in the median copy
numbers and override automated calls made by Bluefuse
Multi software), termed Bcustom VeriSeq^. It is important to
note here that the default settings of the software used by these
platforms in this study are not able to be manually altered and,
any further tweaking of criteria must be done post-analysis
with an independent algorithm. Therefore, two platforms were
tested using default settings, and one platform (NGS) was
further investigated using additional published criteria. As
previously defined [13], the custom VeriSeq analysis criteria
predicted additional Bmosaic^ aneuploidies when median
copy number values of the chromosomes were either between
1.2 and 1.8 or between 2.2 and 2.8 [14].

After aneuploidy predictions were made, the samples were
unblinded and evaluated for consistency with the expected
results. Sensitivity was defined as the percentage of samples
which were predicted as abnormal for the correct chromosome
depending on which mixture set was tested (i.e., trisomy 13,
15, or 18, or monosomyX (the change as chromosomeX goes
from being female (disomic X) to male (monosomic X);
Fig. 1) and was determined for each chromosome (n = 24) at
each of the sevenmixture levels for each platform and analysis
setting.. Specificity was defined as the percentage of samples
where euploidy was predicted for all the chromosomes ex-
pected to be normal or disomy (n = 84 for each method: the
number of remaining autosomes (21) multiplied by the num-
ber of sets of samples (4)). Platform performance was com-
pared using a chi-square test for significance at each mixture
level for sensitivity and for overall specificity. For example,
the number of qPCR cases in which trisomy 18 was detected
or not detected in the 17 % trisomy 18 mixture level samples
was compared to the number detected or not detected using
VeriSeq at the same mixture level. The same process was used
at all mixture levels for each of the four chromosomes (13, 15,
18, and X) and each analysis methods tested.

Results

Analysis of qPCR and NGS results demonstrated the ability to
predict an abnormality correctly in samples containing as little
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as 17 % aneuploidy. Increased frequency of detection
was observed as increasing levels of aneuploidy were present
(Fig. 2a). When comparing default qPCR and NGS analysis
settings, there was no difference in sensitivity at any mixture
level, 0 % p = 1, 17 % p = 0.312, 33 % p = 0.637, 50 %
p = 0.771, 67 % p = 0.756, 83 % p = 0.296, and 100 %
p = 0.312 (Fig. 2a). Overall specificity was equivalent at
100 % for both platforms with default methods of analysis
(Fig. 2b). That is, no false-positive predictions of aneuploidywere
made by either platform when standard criteria were applied.

In contrast, when applying custom analysis criteria (not
using automated calls from Bluefuse Multi software), as de-
fined by Vera-Rodriguez et al. [14], and although significantly
improved sensitivity of detecting aneuploidy was observed
from 17 to 66 % aneuploidy levels (p < 0.05) (Fig. 2a), the
gain in sensitivity resulted in a significant increase (p < 0.0
01) in the rate of false positives. The false-positive rate in-
creased from 0 % (0/84), using default qPCR or VeriSeq anal-
ysis methods, to 33 % (28/84) with a custom VeriSeq-based
analysis (Fig. 2b). These results illustrate the balance between
sensitivity and specificity for detecting aneuploidy from inter-
mediate copy number values. Examples of samples which
gave inaccurate predictions of aneuploidy are shown in
Fig. 2c. The first plot shows a sample with a false positive
prediction of mosaic monosomy for chromosome 2. The same
sample also shows that the custom criteria gave better sensi-
tivity to detection of trisomy of chromosome 13 (a true posi-
tive), where default settings failed. The second example shows
a sample with a false-positive prediction of mosaic trisomy of
chromosome 16, a true positive for trisomy of chromosome 13
(83 % mixture level), and a false negative for trisomy of chro-
mosome 15 (17 % mixture level). Overall, one third of the

samples gave similar false positives when applying previously
published custom analysis criteria.

In order to illustrate the performance of each platform, exam-
ple copy number plots for qPCR and NGS are shown in Fig. 3,
which show the expected gradual change as the level of aneu-
ploidy increases in eachmixture. Reproducibility was considered
by evaluating the distributions of copy number assignments for
all replicates for both platforms and are shown in Fig. 4.

Conclusions

Considerable attention has been given to the ability of con-
temporary CCS platforms to detect mosaicism. There are
many factors to consider [17, 18], including predictive value
of the biopsy for the remaining embryo and for actual clinical
outcomes, the limits of detection when mosaicism is present
within an individual trophectoderm biopsy, the developmental
fate of different diploid/aneuploid compositions, and the chro-
mosome specific and monosomy/trisomy-specific impact on
development. This study focuses on the following limits of
detection: the percentage of cells within a multicell sample
that need to be aneuploid to allow detection, how often a
platform can detect the abnormal cells, and how often artifacts
of the technology result in incorrectly predicted abnormalities.
The design was based upon the fundamental concept of eval-
uating preclinical validity with positive control cell lines. A
similar strategy was key to the initial development of an ac-
curate method of qPCR-based CCS for uniform aneuploidy
[16]. While this method was initially designed with the inten-
tion of predicting constitutive aneuploidies, the ability to de-
tect aneuploidy in a mosaic sample was not reported. Despite

Fig. 1 aMixture model experimental strategy illustration for preparation
of samples involving a male trisomy 18 cell line and a female euploid cell
line where increasing levels of trisomy 18 and monosomy X are expected
and b trisomy 15 cells mixed with trisomy 13 cells where inverse changes

in levels of each aneuploidy are expected. Cells are mixed in a single tube
in known ratios of six total cells (0:6, 1:5, 2:4, 3:3, 4:2, 5:1, and 6:0) to
mimic various levels of mosaicism in a trophectoderm biopsy
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unsupported claims that NGS may provide superior capability
to detect mosaicism [13], this study indicates equivalent per-
formance when comparing NGS and qPCR, head to head, in a
randomized blinded fashion. That is, there was not a signifi-
cant difference in sensitivity or specificity of NGS and qPCR
for detecting aneuploidy in mosaic samples. However, given
the low copy number variance and linear response of NGS
testing compared to qPCR (Fig. 4), further manual examina-
tion of itterations of NGS criteria could allow for improved
detection of mosaicism. This linear response is similar to what

is observedwhen a theoretical copy number contribution scale
is created, and illustrates the great potential for these method-
ologies to accurately identify mosaic samples.

Fig. 2 a Sensitivity across three sets of analyses for each mixture level:
qPCR default settings, VeriSeq default settings, and VeriSeq with criteria
defined by Vera-Rodriguez, et al. [14] (custom VeriSeq). Sensitivity is
based on detecting trisomy of 13, 15, and 18, and monosomy of X
(n = 24 at each mixture level for each platform). Asterisks indicate
statistically significant differences. b Specificity across all samples for
the same three analysis methods based on the frequency of detecting a

normal copy number for each of the remaining chromosomes known to
be uniformly normal. Asterisks indicate statistically significant
differences. c Example plots of samples which were given false-positive
predictions of mosaic aneuploidy using previously published custom
settings for VeriSeq PGS data analysis. FP false positive, TP true
positive, FN false negative

�Fig. 3 Example plots from qPCR CCS and VeriSeq PGS analyses of the
trisomy 18male and euploid female (a and c), and trisomy 13 and trisomy
15 (b and d) six-cell mixture sets. Vertical boxes outline chromosomes of
interest in each set. As the level of aneuploidy increases in the sample,
there is a concomitant change in the copy number values of the
chromosomes of interest
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Fig. 4 Box and whisker plots showing the distribution and variance of
copy number assignments for target mosaic chromosomes as the percent
of spike-in aneuploidy increases in the sample with each respective
platform (qPCR and VeriSeq NGS). As the level of aneuploidy

increases in the sample, there in an overall increase in the copy number
of the chromosomes of interest (13, 15, and 18) and a decrease in the copy
number of X as the percentage of female cells decreases in the sample
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It is possible, however, that NGS may provide additional
untapped information allowing for development of more sen-
sitive methods of analysis beyond the default settings. While
many groups have presented preliminary evidence for clinical
predictive value, in some cases, criteria for designating an
embryo as mosaic have not been defined. One recent study
by Vera-Rodriguez et al. [14] described new criteria for
predicting mosaicism in trophectoderm biopsies. However,
although increased sensitivity was gained when applied to
the present dataset, significant concominate loss in specificity
(33% reduction) was observed. This study by Vera-Rodriguez
et al. is an important first step into establishing criteria for
mosaicism and demonstrates the need to further evaluate a
method and its ability to accurately predict aneuploidy in a
mosaic sample through the use of cell lines. Greco et al. [11]
also recently applied a custom algorithm to predict mosaicism
within trophectoderm biopsies using aCGH data. Interes
tingly, when applied to clinical trophectoderm biopsies,
33 % of the embryos predicted as mosaic led to an apparent
healthy live birth. This important observation emphasizes the
fact that the clinical significance and impact of mosaicism on
the ability of an embryo to produce healthy children presently
remains unknown and also indicates that observations which
may be consistent with mosaicism in the preimplantation em-
bryo may not always be accurate. While the authors elected to
attribute the poor predictive value to biological mechanisms of
self-correction of diploid-aneuploid mosaics [19], or that these
embryos were actually uniformly euploid to begin with, and
the mosaic call was simply a technical artifact.

Defining the sensitivity and specificity of an assay is typi-
cally a prerequisite to clinical application. It is also important
to establish before attempts are made at determining the over-
all prevalence of the abnormality, as methods which produce
many false positives may significantly overestimate the over-
all frequency. This is particularly true with respect to mosai-
cism prevalence estimation. In fact, when strict criteria are
used, such as observing trisomy and monosomy of the same
chromosome within multiple biopsies from the same embryo
(reciprocal aneuploidies), the rate of overall mosaicism prev-
alence is only ∼6 % [6, 7, 9, 20].

Beyond the sensitivity and specificity of detection within a
mosaic sample, many other aspects of mosaicism may factor
into the predictive value of a trophectoderm biopsy for the
actual clinical outcome, including the distribution of aneuploi-
dy in the remaining embryo, the level of aneuploidy present,
and which chromosome is involved. Additional preclinical
testing should include evaluating multiple biopsies of the
same embryo in order to establish the predictive value of a
single biopsy for the remaining embryo (i.e., true-positive
rate). A prospective, blinded, non-selection study (as de-
scribed in Scott et al. [21]) should be performed to establish
positive and negative predictive values of a diagnosis for ac-
tual clinical outcomes [21, 22]. Finally, new clinical

interventions should work toward randomized clinical trials
ultimately to establish the efficacy of a diagnosis of mosaicism
as a predictor of reproductive outcome and ongoing treatment
regimes [2–4].
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