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Abstract
Purpose To investigate the correlation between the ooplasmic
volume and the number of mitochondrial DNA (mtDNA)
copies in embryos and how they may affect fecundity.
Method Using real-time PCR, mtDNA quantification was
analyzed in unfertilized oocytes and uncleaved embryos.
The size of the ovum was also assessed by calculating the
ooplasmic volume at the time of granulosa cell removal for
IVF or ICSI. Quantification analysis of the mtDNA in blas-
tomeres was performed by real-time PCR at the 7–8 cell
stage of the cleaved embryos at 72 h after oocyte retrieval.
We calculated the cytoplasmic volume of the blastomeres.
Result Our studies showed a significantly lower mtDNA
copy number in unfertilized oocytes and uncleaved embryos
in women who were older than 40 years of age (p<0.05).
The larger ooplasmic volume was also associated with earlier
and more rapid cleavage (p<0.05). The ooplasmic volume
was also significantly larger in the group achieving pregnancy.
We found a significant positive correlation between blastomere
volume and the number of mtDNA copies (r=0.76, p<0.01,
from Pearson product–moment correlation coefficient).
Conclusions We have shown that blastomere volume is di-
rectly proportional to the number of mtDNA copies.

Therefore, larger cytoplasmic volume, with earlier cleavage
speed, implies more mtDNA copies. Evaluation of mtDNA
quantification and the measurement of ooplasmic and blas-
tomere volume may be useful for selection of high quality
embryo and pregnancy outcome.
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Introduction

How to achieve high pregnancy rates is the main challenge
that we are facing today in assisted reproductive technology
(ART). Gross embryo morphology [1, 2] is one of the most
reliable markers of embryo viability. The correlation be-
tween blastomere uniformity and a positive outcome of
either in vitro fertilization (IVF) or intracytoplasmic sperm
injection (ICSI) procedures is well established. Other mor-
phological features such as variation in zona thickness [3],
the presence of multinucleated blastomeres [4], and the ap-
pearance of the cytoplasm, pronuclei, and polar bodies [5, 6]
have been shown to affect the implantation rate.

In addition to the morphological assessment, cytoplasmic
factors (intrinsic factors) also play an important role in oo-
cyte maturation, fertilization and early development [7, 8].
Live births have been achieved after the transfer of anucleate
donor oocyte cytoplasm into recipient eggs [9, 10]. Major
subcellular organs in the cytoplasm is mitochondria, and
mitochondria account for 23 % of the cytoplasm in the pre-
implantation human embryo. Mitochondria are maternally
inherited organelles that use oxidative phosphorylation to
supply ATP to the cell. Unlike other organelles which are
produced via transcription and translation of nuclear chro-
mosomal DNA, the genetic information for mitochondria is
contained within the organelle itself. Mitochondrial DNA

Capsule In our studies, higher ooplasmic volume was frequently
associated with fecundity. And we found a significant positive
correlation between blastomere volume and the number of mtDNA
copies.
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(mtDNA) is a double-stranded circular DNA molecule of
approximately 16.5 kb in all mammals in which it has been
sequenced [11]. The mitochondrial genome is not transmit-
ted in a pattern of Mendelian inheritance, rather it passes
from one generation to the next by way of the oocyte cyto-
plasm. Therefore, an individual’s mtDNA is entirely derived
from his or her mother as any paternal mtDNA is expelled
from the cleaving pre-embryo at the two cell stage [12].
Usually all the mitochondrial chromosomes in a cell carry
identical copies of mtDNA (homoplasmy) [13]. Due to the
location within the mitochondrial matrix as well as the lack
of histones and intervening sequences, mtDNA is particular-
ly susceptible to the detrimental effects of reactive oxygen
species [14, 15]. The mutation rate of mtDNA is almost 20
times greater than that of nuclear DNA [16]. MtDNA there-
fore accumulates both point mutations and deletions over
time. The proportion of mutant mtDNA varies within differ-
ent organs in a single individual and among individuals
within the same family [17]. Single-cell studies and hybrid-
cell studies both show that the proportion of mutant mtDNA
must exceed a critical threshold level before a cell expresses
a biochemical abnormality of the mitochondrial respiratory
chain (the threshold effect) [18]. Individuals with mitochon-
drial disorders resulting from mtDNA mutations may harbor
a mixture of mutant and wild-type mtDNA within each cell
(heteroplasmy) [19, 20]. The expression of a mtDNA muta-
tion is not proportional to its degree of heteroplasmy. It is
necessary to have a high degree of heteroplasmy in order to
observe the clinical signs of the pathology [21]. Regarding the
number of mtDNAmutation, deletions increase with age [22].

In the context of fertility, an association exists between
maternal age and the rate of mtDNA deletion in human oo-
cytes and granulosa cells [14, 23, 24]. There have been studies
that show the relationship between mtDNA deletion and the
oocyte diameter in human [25],and the relationship between
oocyte diameter and the developmental competence of oo-
cytes [26, 27]. But to our knowledge, there has been no study
that shows how the ooplasmic volume affects fertility and
fecundity in human. Therefore, the importance of mtDNA
content and the ooplasmic volume to human fertilization out-
come and embryonic development needs to be clearly deter-
mined. We focused on the correlation between the ooplasmic
volume and the number of mtDNA copies, and investigated
the fertility and fecundity of human oocyte by quantitative
analysis of the mtDNA and by the ooplasmic volume.

Materials and methods

Collection of oocytes, embryo and blastomeres

Human oocytes were donated with informed consent by 19
patients (31–44 years old) undergoing IVF at Keio

University Hospital from August, 2005 to January, 2011.
The research procedure was approved by the Research Ethics
Committee of Keio University School of Medicine. Follicu-
lar growth was stimulated with FSH/hMG under the admin-
istration of GnRH agonist. Oocytes were collected after
administration of hCG and fertilized under conventional
IVF and ICSI.

We used unfertilized oocytes (with one or no polar body)
and uncleaved embryos (with two polar bodies) (n=29) (31–
44 years old), which had failed to undergo cleavage by 44 h
after oocyte retrieval. Under an inverted microscope the
unfertilized oocytes and uncleaved embryos were rinsed in
a drop of PBS, and transferred into individual PCR tubes
containing cell lysis solution.We grouped subjects according
to age <40 years old (from 31 to 39 years old, n=15) and age
≥40 years old group (from 40 to 44 years old, n=14); and we
compared the numbers of mtDNA copies between the two
groups.

We used degenerated oocytes (n=9) (33–41 years old),
which were classified as degenerated either before or after
IVF or ICSI procedures. Degenerated oocytes were charac-
terized by multiple abnormal morphologic aspects, such
as darkened, vacuolated, and irregular ooplasm [28, 29]
(Fig. 1a, b). Under an inverted microscope the degenerated
oocytes were rinsed in a drop of PBS, and transferred into
individual PCR tubes containing cell lysis solution.

Four cleaved embryos at the 7–8 cell stage were analyzed
at 72 h after oocyte retrieval (Veeck’s classification
Grade1,3). We used a vitrification kit (KIAZATO®) to thaw
frozen cleaved embryos. Then, the embryos were irradiated
by a non-contact 1.48μm diode laser system (OCTAX Laser
Shot®:MTG, Germany) to pierce the zona pellucida. Two or
three short pulses (2.9 ms) were applied, and single blasto-
meres were aspirated with a biopsy pipette. The diameter of
each blastomere was measured under an inverted microscope
(OLYMPUS IX71 Cronus®, U.S.A.). The long axis (D) and
minor axis (d) of each blastomere were measured under an
inverted microscope. We calculated the blastomere volume
using (πd2D÷6, π=3.14) [30]. Under an inverted microscope
the blastomeres were rinsed in a drop of PBS and transferred
into individual PCR tubes containing cell lysis solution.
Whole blastomeres from each embryo were examined.

Measurement of oocyte cytoplasmic volume

To assess the size of the ovum, the ooplasmic volume was
calculated. Human oocytes were donated with informed
consent by 48 patients (28–44 years old) undergoing IVF.
Follicular growth was stimulated with FSH/hMG adminis-
tered in conjunction with a GnRH agonist. Oocytes were
collected after the administration of hCG and fertilized with
conventional IVF or ICSI.
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The diameter of each ooplasm cytoplasm was measured
under an inverted microscope (OCTAX Laser Shot®:MTG,
Germany) at the time of granulosa cell removal. The long
axis (D) and minor axis (d) of each ooplasm were measured
under an inverted microscope. We calculated the ooplasmic
volume using (πd2D÷6, π=3.14).

MtDNA quantification by real time PCR

Quantification of mtDNAwas performed by real-time PCR.We
used a cell line derived from a single human osteocarcinoma cell
with a fixed 9100 mtDNA copy number (ATCC, 143B; CRL-
8303) [31]. We diluted it with purified water, and manufactured
dilute solutions of 100×104copy/μl, 50×104copy/μl, 25×
104copy/μl, 10×104copy/μl, 5×104copy/μl, 1×104copy/μl,
5000 copy/μl, 1000copy/μl, and 500copy/μl.

Quantitative and qualitative analysis for mtDNA were
performed by previous established protocol with real-time
PCR analysis [32]. Real-time PCR primers and fluorescent

probes (TaqMan® MGB probe; Applied Biosystems, USA)
corresponding to sequences of ATPase6 gene were prepared.
The forward primer (5′-CGAAACCATCAGCCTACTCAT
TCAA-3′) spanned from nt 8958 to nt 8982. The reverse primer
(5′-CCTGCAGTAATGTTAGCGGTTAGG-3′) spanned from
nt 9026 to nt 9003. The probe for wild sequences (8993T;
CCAATAGCCC[T]GGCCGT) had “VIC” fluorochrome and
the probe for mutant (8993G; AATAGCCC[G]GGCCGT) had
the “FAM” fluorochrome. 8993 point is in the ATPase6 gene
which is responsible for major energy production for embryo
development. The T8993G point mutation was commonly
found and is responsible for Leigh syndrome.

Each 25μl PCR reaction was prepared with the following
final concentrations: 12.5μl TaqMan Universal PCR Master
Mix, 5μl distilled water, 1μl×2 TaqMan MGB Probe,
2.25μl×2 PCR primer, 1μl specimen or 1μl dilute solutions
of 9100 mtDNA copy with distilled water or 1μl TE buffer
(negative control).

The reactions were performed with the following condi-
tions: initial denaturation at 50°C for 2 min and 95°C for
10 min, and 35 cycles at 92°C for 15 s (denaturation), 60°C
for 1 min (annealing and extension). The allelic discrimina-
tion assay using real-time PCR (ABI PRISM 7000) was used
to measure each fluorescence signal.

Statistical analysis

Continuous data were compared using Student’s t-test or
Welch’s t-test. p<0.05was considered statistically significant.

Results

The number of mtDNA copies in unfertilized oocytes
and uncleaved embryos

The minimum mtDNA copy number found in unfertilized
oocytes and uncleaved embryos was 277,059, and the max-
imum was 1045,000. Copy number was highly variable both
within and between patients. Our studies have shown that the
average number of mtDNA copies in unfertilized oocytes
and uncleaved embryos was 697,176±37,057. The average
number of mtDNA copies was 784,307±48,379 for age
<40 years and 603,822±46,153 for age ≥40 years. Our
studies in unfertilized oocytes and uncleaved embryos in
women who were older than 40 years of age showed signif-
icantly fewer mtDNA copies (p<0.05) (Fig. 2).

The number of mtDNA copies in degenerated oocytes

The average number of mtDNA copies for the nine
degenerated oocytes was 330,513±78,002. In this result, the
number of mtDNA copies in degenerated oocytes showed a

Fig. 1 a, b. Degenerated oocyte. Degenerated oocytes were character-
ized by multiple abnormal morphologic aspects, such as darkened,
vacuolated, and irregular ooplasm [28, 29]. Differential interference
contrast microscopy :objective (x400)
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remarkable decrease in comparison with unfertilized oocytes
and uncleaved embryos (p<0.01) (Fig. 3).

The number of mtDNA copies in blastomeres

The average number of mtDNA copies in blastomeres from7
to 8 cell embryos at 72 h after oocyte retrieval was
673,722±12,952. The number of mtDNA copies varied
widely among individual blastomeres in an embryo. We
evaluated the relationship between the volume and the num-
ber of mtDNA copies in isolated blastomeres from 7 to 8 cell
embryos. We found a significant positive correlation

between blastomere volume and the number of mtDNA
copies (r=0.76, p<0.01, from Pearson product–moment
correlation coefficient) (Fig. 4).

The T8993G point mutation was not detected in any
unfertilized oocytes, degenerated oocytes or blastomeres in
our studies (data not shown).

Ooplasmic volume

We measured the ooplasmic volume in order to evaluate the
correlations with other factors. The speed of embryo cleav-
age and the ooplasmic volume were compared. In embryonic

Fig. 2 The number of mtDNA copies in unfertilized oocytes and
uncleaved embryos. Quantification of mtDNA was performed by real-
time PCR. We grouped subjects according to age <40 years old (from
31 to 39 years old, n=15) and age ≥40 years old group (from 40 to
44 years old, n=14); and we compared the numbers of mtDNA copies

between the two groups. The average number of mtDNA copies was
784,307±48,379 for age <40 years and 603,822±46,153 for age
≥40 years. Our studies in unfertilized oocytes and uncleaved embryos
in women who were older than 40 years of age showed significantly
fewer mtDNA copies (p<0.05)

Fig. 3 The number of mtDNA copies in unfertilized oocytes and
degenerate oocytes. Quantification of mtDNA was performed by real-
time PCR. Our studies have shown that the average number of mtDNA
copies in unfertilized oocytes and uncleaved embryos (from 31 to
44 years old, n=29) was 697,176±37,057. The average number of

mtDNA copies for the nine degenerate oocytes (from 33 to 41 years
old) was 330,513±78,002. The number of mtDNA copies in
degenerated oocytes showed a remarkable decrease in comparison with
unfertilized oocytes and uncleaved embryos (p<0.01)
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development, 3–4 cell embryos showed a normal (early)
cleavage speed. At 44 h after oocyte retrieval, 348 embryos
had reached the 3–4 cell stage and the remaining 326 had not.
The ooplasmic volume was compared between these groups.

At 44 h after oocyte retrieval, the average ooplasmic
volume of the 3–4 cell embryos was 615,222±2,604μm3

and that of those with fewer cells was 605,402±3,145μm3

(p<0.05) (Fig. 5). This significant difference in volume
implies that embryos that cleave at a faster rate have larger
ooplasmic volume. Previous reports have also shown that in
the early cleavage group there was a higher rate of pregnancy
per transfer compared with the late cleavage group [33, 34],

suggesting that early cleavage is a strong indicator of better
embryo quality. We then adopted Veeck’s classification to
further analyze 348 embryos which have reached the normal
(early) cleavage speed at 44 h after oocyte retrieval.
The Veeck’s classification and the average ooplasmic
volume were as follows, respectively: Veeck 1 (n=45),
626,774±6,264μm3; Veeck 2 (n=64), 625,191±5,844μm3;
Veeck 3 (n=75), 611,083±5,549μm3; Veeck 4 (n=164),
610,055±3,938μm3. When comparing Veeck 1 and Veeck
4, the ooplasmic volume was significantly different; the
ooplasmic volume of Veeck1 was significantly larger than
that of Veeck 4 (p<0.05) (Fig. 6a). The comparison between

Fig. 4 Blastomere volume and the number of mtDNA copies at 72 h
after oocyte retrieval. Four cleaved embryos at the 7–8 cell stage were
collected for study at 72 h after oocyte retrieval (Veeck’s classification
Grade1,3). Each single blastomeres (n=29) were aspirated with a
biopsy pipette. The diameter of each blastomere was measured under
an inverted microscope. The long axis (D) and minor axis (d) of each
blastomere were measured under an inverted microscope. We calculated

the blastomere volume using (πd2D÷6, π=3.14). Quantification of
mtDNA was performed by real-time PCR. The average number of
mtDNA copies in blastomeres was 673,722±12,952. We found a signif-
icant positive correlation between blastomere volume and the number of
mtDNA copies (r=0.76, p<0.01, from Pearson product–moment corre-
lation coefficient)

Fig. 5 Comparison of ooplasmic volume at oocyte retrieval and the
speed of embryo cleavage at 44 h after oocyte retrieval. In embryonic
development, 3–4 cell embryos showed a normal (early) cleavage
speed. At 44 h after oocyte retrieval, 348 embryos had reached the 3–
4 cell stage and the remaining 326 had not. The ooplasmic volume was

compared between these groups. At 44 h after oocyte retrieval, the
average ooplasmic volume of the 3–4 cell embryos was
615,222±2,604μm3 and that of those with fewer cells was
605,402±3,145μm3 (p<0.05)
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Veeck 1+2 and Veeck 3+4 also showed a significant differ-
ence in the ooplasmic volume; the ooplasmic volume of
Veeck 1+2 was significantly larger than that of Veeck 3+4
(p<0.01) (Fig. 6b).

The relationship between the rate of pregnancy and
ooplasmic volume was analyzed. The number of embryos
leading to pregnancy was 44, and the average ooplasmic
volume was 625,019±7,448μm3. The pregnancies were
achieved by either fresh or frozen embryos transfer with
conventional IVF or ICSI. The number of embryos leading
to pregnancy excluding miscarriage was 35, and the average
ooplasmic volume was 631,911±8,255μm3. The number of
non-pregnant embryos was 630, and the average ooplasmic
volume was 609,456±2,112μm3. The number of non-
pregnant embryos excluding frozen embryos that were not
thawed was 549, and the average ooplasmic volume was
608,569±2,246μm3. The ooplasmic volume of the pregnant
group was significantly larger (Table 1).

We also analyzed the association between age and
ooplasmic volume. The probability of clinical pregnancy de-
clines with age, with lower rates in women aged 35–39 in
comparison to women aged 30–34 [35]. In the present study,
the former age group (n=209, volume 597,634±3,731μm3)
showed significantly lower ooplasmic volume when com-
pared to the latter age group (n=146, volume
608,572±3,997μm3) (p≤0.05) (Fig. 7).

Discussion

It is commonly known that ovarian aging is associated with
the impairment of specific functions of oocytes and
granulosa cells, along with more global cellular dysfunction
resulting from changes in gene and protein expression pro-
files, and energetic failure [36–41]. Embryo development in
advanced reproductive age may be jeopardized by altered
mitochondrial activity. Our studies showed significantly
fewer mtDNA copies in unfertilized oocytes and uncleaved

Fig. 6 a Comparison of ooplasmic volume at oocyte retrieval and
morphological classification of embryo developed at 44 h after oocyte
retrieval:Grade1 vs Grade4. There was a total of 348 embryos at 44 h
after oocyte retrieval which reached the normal (early) embryonic
development stage. The Veeck’s classification and the average
ooplasmic volume were as follows, respectively: Veeck 1 (n=45),
626,774±6,264μm3; Veeck 2 (n=64), 625,191±5,844μm3; Veeck 3
(n=75), 611,083±5,549μm3; Veeck 4 (n=164), 610,055±3,938μm3.
When comparing Veeck 1 and Veeck 4, the ooplasmic volume was

significantly different; the ooplasmic volume of Veeck1 was signifi-
cantly larger than that of Veeck 4 (p<0.05). b Comparison of ooplasmic
volume at oocyte retrieval and morphological classification of embryo
developed at 44 h after oocyte retrieval: Grade1+2 vs Grade3+4. The
comparison between Veeck 1+2 (n=109), and Veeck 3+4 (n=239) also
showed a significant difference in the ooplasmic volume; the ooplasmic
volume of Veeck 1+2 (625,845±4,278μm3) was significantly larger
than that of Veeck 3+4 (610,377±3,208μm3) (p<0.01)

Table 1 Comparison between the ooplasmic volume at oocyte retrieval—
Pregnant group vs Non-pregnant group

Group No. of
oocytes

Mean
volume ± SE

Pregnancy 44 625,019±7,448a (511,026–723,604)

Pregnancy (excluded
miscarriage)

35 63,911±8,255b (537,143–723,604)

Miscarriage 9 598,217±14,787 (511,026–659,671)

Non-pregnancy 630 609,456±2,122c (443,232–767,134)

Non-pregnancy
(excluded frozen
embryos that
do not thaw)

549 608,569±2,246d (443,232–767,134)

a,d p<0.05, b,c p<0.05, b,d p≤0.01, μm3
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embryos from women who were older than 40 years of age.
This suggests that the number of mtDNA copies decreases
with aging. This low mtDNA copy number may result from
the accumulation of mutations in the mtDNA or an inherent
property of oocytes recruited later in the reproductive
lifespan [42]. These observations allude to a relationship
between mtDNA and oocyte quality. Our studies have shown
that the average number of mtDNA copies in unfertilized
oocytes and uncleaved embryos was 697,176±37,057. Pre-
vious studies reported it as ranging average from 314,000 to
795,000 [23, 42–44]. Our results may be technically more
accurate than those of previous studies, since our quantita-
tion was based on a single standardized human cell with
9,100 mtDNA copies [31]. Previous study [23] has also
reported that the number of mtDNA copies decreases with
aging, which is the same as our study.

In a study performed in mouse, low mtDNA copy number
did not significantly affect fertilization [45]. While others
have shown that mitochondrial activity is crucial for the
activation of development and for embryonic survival [46].
Mitochondrial dysfunction resulting from a variety of intrin-
sic and extrinsic influences, including genetic abnormalities,
hypoxia and oxidative stress, can profoundly influence ATP
generation in oocytes and early embryos, which in turn may
result in aberrant chromosomal segregation or developmen-
tal arrest. In our studies, the number of mtDNA copies in
degenerated oocytes showed a remarkable decrease in com-
parison with unfertilized oocytes (Fig. 2), suggesting that the
extreme low mtDNA copy number present was insufficient
to provide the necessary energetic reserves during follicular
growth, thereby leading to oocyte degeneration.

While the low mtDNA copy does not negatively impact
fertilization in the mouse, it does result in a dramatic reduc-
tion in post-implantation embryonic viability [45]. The post-
implantation state is characterized by a high energy require-
ment, rendering the embryo particularly susceptible to defi-
ciencies in mitochondrial function during this period. In the

mouse, a minimal threshold for mtDNA copy number has
been identified, below which normal post-implantation em-
bryonic development does not occur. Nominimum, however,
has been defined for the human oocyte. The number of
mtDNA copies could be a useful indicator of oocyte quality
in experimental models. Although the method used to deter-
mine the number of mtDNA copies is retrospective analysis,
identifying the standardizing thresholds for mtDNA number
may prove useful in the evaluation of patients with IVF
failures.

Regarding the ooplasmic volume, we found that higher
cytoplasmic volume correlates to younger age and higher
pregnancy rate. Higher ooplasmic volume was also frequent-
ly associated with better morphology, and earlier cleavage. It
is likely therefore that ooplasmic volume affects fecundity.
Larger oocyte diameter is a determinant factor for comple-
tion of meiosis and acquisition of full competence for em-
bryo development in the goat [47]. It has been reported that a
relationship between higher cytoplasmic volume and higher
fertilization outcome in the pig [48]. There has been no study
in humans correlating ooplasmic volume with fertility and
fecundity. Oocyte diameter has been linked to developmental
competence during the germinal vesicle (GV) stage in the
ferret [26] and in human [27]. The configuration of the GV
chromatin correlates with the developmental competence of
oocytes. Chromatin condensation is related to the sequential
achievement of meiotic competencies during oocyte growth
and differentiation, and GV condensation corresponds to an
increase in oocyte diameter. The relationship between
ooplasmic volume and the optimization of nuclei is consid-
ered to be the next subject.

We also evaluated the relationship between the blasto-
mere volume and the number of mtDNA copies in isolated
blastomeres from 7 to 8 cell embryos. Blastomere volume
was directly proportional to the number of mtDNA copies
(r=0.76, p<0.01). This is in accordance with previous re-
ports in the mouse [49]. Additionally, increased

Fig. 7 Ooplasmic volume at
oocyte retrieval between two
different age groups: 30–34 vs
35–39. We analyzed the
association between age and
ooplasmic volume. The 35–
39 year age group (n=209,
volume 597,634±3,731μm3)
showed significantly lower
ooplasmic volume when
compared to the 30–34 year age
group (n=146, volume
608,572±3,997μm3) (p≤0.05)
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mitochondrial number correlates with cytoplasmic volume in
cattle [50], implying that a sufficient supply of ATP is nec-
essary for the development of proper blastomeres. In our
study, the number of mtDNA copies in each blastomere from
7 to 8 cell-stage embryos was uneven. The inter-blastomere
variation of mtDNA contents may occur due to intrinsic
factors, or may be the result of external influences to which
each individual embryo and blastomere are exposed [51, 52].
The asymmetric polar distribution of the mitochondria in
mature oocytes may be retained through cleavage divisions,
resulting in blastomeres with a varying mitochondrial load
[46].

Conclusions

We conclude that higher fecundity is associated with an
increased number of mtDNA copies in the embryo. The
mitochondrion inherited maternally is an important organelle
for reproduction, and mtDNA is a key determinant of its
function. Evaluation of mtDNA quantification might be an
underlying factor to explain the developed oocyte quality,
and this may eventually lead to treatment. In the United
Kingdom recently there is an ethical issues concerning
reproductive-gene-therapy techniques that could prevent
children from inheriting certain genetic diseases caused by
faulty mitochondria. Mitochondrial therapy at the oocytic
level is current burning topic to be discussed all over the
world. Moreover so as it includes the issues about oocyte
aging and capability for fecundity and we need to be pre-
pared for dealing with this ethically sensitive matter. We
found a significant positive correlation between blastomere
volume and the number of mtDNA copies. So, low-invasive
quantification of ooplasmic and blastomere volume is a
novel factor, may be convenient and advantageous predictor
for successful clinical outcome in selecting embryos to be
transferred.
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