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Single nucleotide polymorphism in the UBR2 gene
may be a genetic risk factor for Japanese patients
with azoospermia by meiotic arrest
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Abstract
Purpose To investigate the association between the UBR2
gene and the risk of azoospermia caused by meiotic arrest.
Methods Mutational analysis of the UBR2 gene was
performed using DNA from 30 patients with azoospermia
by meiotic arrest to 80 normal controls.

Results The genotypic and allelic frequencies of c.1,066A>T
variant were significantly higher in patient than control groups
(p<0.001).
Conclusion The c.1,066A>T variant in the UBR2 gene is
associated with increased susceptibility to azoospermia
caused by meiotic arrest.
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Introduction

Genetic causes of azoospermia in humans include Y-
chromosome microdeletions, and specific gene mutations,
for example DAZ, RBMY, USP9Y, SYCP3, PRM1,
SPATA16, AURKC and KLHL10 [1–9]. As Y-chromosome
deletions account for only 16% of men with infertility [10],
azoospermia in many infertile men may be caused by
autosomal gene mutations. Genetic polymorphisms may
also increase susceptibility to some forms of male infertility;
e.g., the human BCL2 and eNOS genes are linked to male
infertility [11, 12]. Defective meiosis during spermatogenesis
is a known cause of azoospermia; however, the mechanisms
leading to defective meiosis remain unknown. Meiosis is a
fundamental process in sexually reproducing species that
allows genetic exchange between maternal and paternal
genomes [13]. Genetic regulation of meiosis is poorly
understood in mammals compared to that in lower eukaryotes
such as yeast.

Several critical genes expressed in mouse meiosis, such
as Dmc1, Fkbp6, Scp3 (Sycp3), Spo11, Msh4 and Msh5,
Meisetz, Cdk2, Hop2, have been identified by disruption
experiments in embryonic stem cells [14–24].
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Capsule c.1,066A>T variant in the UBR2 gene is associated with
increased susceptibility to azoospermia in Japanese men.
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Mouse UBR2, a homolog of UBR1, was identified in
2003 [25]. The substrate-binding properties of UBR2 are
similar to those of UBR1 and it is the second E3 of the
mammalian N-end rule pathway. While most UBR2−/−

female mice die as embryos, UBR2−/− males are viable but
infertile due to the postnatal degeneration of the testes.
Although the gross architecture of UBR2−/− testes is normal
and spermatogonia are intact, UBR2−/− spermatocytes are
arrested between leptotene/zygotene and pachytene by
meiotic failure [25]. UBR2 localizes to meiotic chromatin
regions, including unsynapsed axial elements linked to
chromatin inactivation, and mediates transcriptional silenc-
ing via the ubiquitination of histone H2A [26].

In the present study, we analyzed possible associations
between UBR2 mutations and azoospermia caused by
meiotic arrest (MA) in humans.

Materials and methods

Patients and controls

Azoospermia was confirmed by two consecutive semen
analyses obtained after 5–7 days of sexual abstinence and
by examination of a centrifuged semen pellet. Patients with
defective spermatogenesis following infection, or due to
obstruction of the seminal tract, pituitary failure, or other
causes of possible testicular damage revealed at clinical
examination were excluded from the study. Final diagnosis
was carried out by histological examination. Every patient
would carry out more than one pathologic test. Chromo-
some analysis of peripheral lymphocytes showed a karyo-
type of 46 and XY in all patients. No patients had Y
chromosome microdeletions. A total of 30 Japanese
patients with azoospermia caused by MA were included in
the study; 80 healthy, pregnancy-proven, fertile men were
also examined as controls. All normal controls were
Japanese men and had normal sperm inspections, in
addition to all having a child by spontaneous pregnancy.
However, all of them were medical doctors, indicating their
average intelligence may be higher than the average of the
general Japanese population. All subjects were Japanese
and provided written informed consent for molecular blood
analysis. This study was approved by the local ethics
committee.

Mutation screening

We screened 30 Japanese patients diagnosed with azoo-
spermia secondary to MA for mutations in the UBR2 gene.
Their full-length cDNA sequences (BC024217.2) were
compared to human genomic sequences (NT_007592.15)
by BLAST, and all exon-intron borders were determined.

The following UBR2 primers were used for mutational
analysis. Exon 1: E1F1 and E1R1; Exon 2: E2F1 and
E2R1; Exons 3: E3F1 and E3R1; Exon 4: E4F1 and E4R1;
Exon 5: E5F1 and E5R1; Exons 6: E6F1 and E6R1; Exon
7: E7F1 and E7R1; Exon 8: E8F1 and E8R1; Exon 9: E9F1
and E9R1; Exon 10: E10F1 and E10R1; Exon 11: E11F1
and E11R1; and Exon 12: E12F1 and E12R1. Sequences of
oligonucleotide primers are listed in Table 1.

PCR was performed using primers for each intron region
(Table 1). PCR was performed in a final volume of 25 μl,
consisting of genomic DNA (50 ng), dNTP (0.32 mM
each), each primer (0.2 μM), 0.2 μM Taq polymerase
(0.625 IU) and reaction buffer containing MgCl2 as
follows: initial denaturation at 95°C for 150 s, followed
by 32 cycles of denaturation at 95°C for 30 s, annealing at
(primers Tm −5°C) for 90 s, and extension at 72°C for 90 s.
PCR products were purified using a QIAquick PCR
Purification kit (Qiagen; Tokyo, Japan), and direct sequenc-
ing of each product was conducted. To confirm the role of
the detected polymorphisms in azoospermia, the coding
region of the UBR2 gene of 80 healthy, fertile control men
was also analyzed by direct sequencing analysis. Sequence
analysis was carried out on the patients with polymor-
phisms four times and two times on normal controls; the
patients and controls were sequenced simultaneously.

Genotyping and statistical analyses

Single-locus analysis

To investigate the role of UBR2 polymorphisms in
azoospermia, Fisher’s exact test was used to determine a
meaningful difference. P<0.05 was considered to be
statistically critical. Hardy-Weinberg equilibrium (HWE)
was tested using SNPAlyze software (Dynacom; Chiba,
Japan). Linkage disequilibrium (LD) of all possible two-way
combinations of single nucleotide polymorphisms (SNPs)
with the absolute value of the correlation coefficient (D’) was
tested. P values were determined by χ2 approximation.
Importance was determined with a P<0.05 as described
above. Haplotype frequencies were estimated by the method
of maximum likelihood based on the expectation-
maximization (E-M) algorithm under the assumption of
HWE. Linkage disequilibrium and haplotype frequency were
tested using SNPAlyze software. P values were determined
by χ2 approximation; significance was determined at the
P=0.05 level.

Results

Mutation analysis of the UBR2 gene revealed four
nucleotide changes among the 30 patients: c.322C>T in
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exon 1, c.821C>A (His182Asn), c.829A>T in exon 5, and
c.1,066A>T in exon 6. These SNPs were compared to the
NCBI dbSNP database and all of them were confirmed to
be novel SNPs (Table 2). Among the four cSNPs (SNP1-
SNP4), only SNP2 was non-synonymous. Genotyping for
the UBR2 SNP alleles among the 30 patients and 80
controls revealed significantly different genotype distribu-
tion and allele frequency of SNP4 between the two groups
(Table 2).

At the c.1,066A>Tsite, the proportion of TA heterozygote/
AA homozygote was 0.20/0.80 in the patient group and
0.00/1.00 in the control group (P<0.001). The allele
frequency of c.1,066A>T was 0.10/0.90 in the patient
group and 0.00/1.00 in the control group; the difference
was significant (P<0.001). Haplotype analysis revealed
similar haplotype frequencies estimated for all four poly-
morphisms in the groups (P>0.05). Haplotype estimation and
LD analysis also revealed no critical differences (P>0.05).

Discussion

In this study, we hypothesized that mutations or poly-
morphisms of the UBR2 participate in azoospermia caused
by MA. We could not detect any UBR2 mutations that
directly cause azoospermia in the 30 patients with MA.
Instead, we identified four novel cSNPs in the gene. The
present association study revealed that the genotype
distribution for SNP4 (c.1,066A>T) is significantly different
between Japanese azoospermic patients and healthy controls
(P<0.001). This finding suggests that allele A at nucleotide
1,066 in exon 6, or their flanking regions, may play a role in
the disruption of spermatogenesis in Japanese patients,
although the number of patients analyzed was not large
enough to allow a definitive conclusion to be drawn. In
addition, as the encoded amino acids remain unchanged, the
function of the SNP is unknown. We believe that a cohort of
30 men is far too small for an association study. However,

Forward primer Reverse primer

Exon 1 E1F1: 5′-TGTACCTACAGCACCCAGAA-3′ E1R1: 5′-ATTACCCCACAAGGCGAGG-3′

Exon 2 E2F1: 5′-CGGTGGTGAGTGTTGTAAAC-3′ E2R1: 5′-TTGTAATACAGATTTTTAAGCAG-3′

Exon 3 E3F1: 5′-ATTATGGAGACGCAGGTCCT3′ E3R1: 5′-TCTACACTGGCACCCTATAT-3′

Exon 4 E4F1: 5′-AACATTGAGAGGTTTGGCAT-3′ E4R1: 5′-CAACTGTGTACTATTAGCAAC-3′

Exon 5 E5F1: 5′-TGGTAATGTATAGGATCAAAT-3′ E5R1: 5′-ACAGGAAGAAATCTCCACC-3′

Exon 6 E6F1: 5′-GTAGTATCACAGAGCATAGC-3′ E6R1: 5′-GTTATACCCAATATACATTTG-3′′

Exon 7 E7F1: 5′-CTTGGAAAAGTTAGCATAGC-3′ E7R1: 5′-CTATATCAATCCTACACAGC-3′

Exon 8 E8F1: 5′-GATCTGAATCAAGTAAGGCA-3′ E8R1: 5′-AAAAATATCCAGTATGACCAAA-3′

Exon 9 E9F1: 5′-GTGTGTGATGTGAGATTTGA-3′ E9R1: 5′-ATATAAAGTCCATTTAAGTTGG-3′

Exon 10 E10F1: 5′-AAAATGCTGTGTTGGCTGGG-3′ E10R1: 5′-AGGAGTCTCACGGCTAAAAT-3′

Exon 11 E11F1: 5′-TCTCCCCCTTGTTGTTTAGAA-3′ E11R1: 5′-TACCAGATGACTTTGATATTCA-3′

Exon 12 E12F1: 5′-TTTAGGAAGCACTAACATCTT-3′ E12R1: 5′-TATTCAGGAAGTAAACAAGAG-3′

Table 1 Sequences of oligonu-
cleotide primers used for
mutational screening
of UBR2

Table 2 Genotype and allele frequencies of four coding single-nucleotide polymorphisms (cSNPs) in the human UBR2 gene of 30 azoospermic
patients with meiotic arrest and 80 control individuals

SNP Alteration Genotype frequency Allele frequency

Nucleotide Amino acid Genotype/total no. of samples (%) Minor allele/total no. of chromosomes (%)

(G) MAa Controls p value (A) MAb Controls p value

SNP1 322C>T Synonymous TT 6/30 (20.0) 17/80 (21.3) T 29/60 (48.3) 78/160 (48.8)

0.886 0.956

SNP2 821C>A His182[His, Asn] AC 1/30 (3.33) 1/80 (1.25) A 1/60 (1.67) 1/160 (0.625)

0.468 0.469

SNP3 829A>T Synonymous TA 6/30 (20.0) 16/80 (20.0) T 6/60 (10.0) 18/160 (11.3)

1.000 0.792

SNP4 1,066A>T Synonymous TA 6/30 (20.0) 0/80 (0.00) T 6/60 (10.0) 0/160 (0.00)

<0.001c <0.001c

a (G) indicates genotype. b (A) indicates allele. c Statistically significant
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azoospermia by MA is very rare and our histological
diagnostic criteria are very strict—i.e., we have DNA
samples from more than 5,000 patients with azoospermia,
of which only 30 had azoospermia caused by MA.

In vitro fertilization has been proven to be an efficient
way to resolve infertility due to female factors, but not as
effective for severe oligospermia in the male partner.
Although TESE-intracytoplasmic sperm injection is now
performed for patients with azoospermia, it cannot benefit
patients lacking spermatozoa in their testes due to a
complete failure in spermatogenesis. Therefore, treatment
for infertility due to non-obstructive azoospermia is a
preeminent topic for assisted reproductive technology.

In conclusion, this is the first report showing that UBR2
SNP may predispose men to a defect in spermatogenesis,
although the mechanism of the SNP in azoospermia remains
unclear. Our results may provide insight into the molecular
basis of meiotic arrest as a cause of non-obstructive
azoospermia. It remains to be confirmed whether an
association exists in similar patients from other ethnic groups.
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