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  ACCURACY IMPROVEMENT OF GEOGRAPHICAL 
INDICATION OF RICE BY LASER-INDUCED BREAKDOWN 
SPECTROSCOPY USING SUPPORT VECTOR MACHINE 
WITH MULTI-SPECTRAL LINE

P. Yang,* H. T. Liu, Z. L. Nie, UDC 543.423:633.18
and X. N. Qu

Mislabeling and adulteration are problems in the food industry. Considering the frequent occurrence of safety aff airs 
in agricultural products, it is necessary to establish a traceability system for the quality and safety of agricultural 
products. The aim of the present study was to establish a rapid detection method for distinguishing rice samples from 
ten diff erent products of geographical indication in China using laser-induced breakdown spectroscopy (LIBS). A 
support vector machine (SVM) is used to calculate the recognition rate of single spectral lines and multi-spectral 
lines of the geographic origins of rice. The adjusting spectral weighting of the multi-spectral line composition of 
mineral metal elements is higher, which can eff ectively improve the identifi cation rate of the origin of the rice. The 
results show that the classifi cation accuracies of single spectral line recognition and multi-spectral line recognition 
are 90.8 and 94.6%, respectively. It can be concluded that the LIBS technique combined with SVM should be a 
promising tool for rapidly distinguishing diff erent geographic origins of rice.
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Introduction  . Rice is one of the main food products in the population's diet. Being rich in carbohydrates, vitamins, 
and mineral elements, rice supplies varieties of micronutrients and becomes the fundamental foodstuff  for human beings. 
  Mislabeling and adulteration are problems in the food industry. Wuchang rice is originally from China, and is mostly grown 
under rain-fed conditions, especially in the northeast region of Heilongjiang. It commands a considerably premium price 
in the rice market and the phenomena of mislabeling and adulteration are becoming more and more serious in the market. 
They threaten the credibility of the producers and traders and the rights of the consumers. Distinguishing rice quality and 
geographic origin has become signifi cant, and classifi cation of rice using eff ective detection methods is necessary.

The chemical composition of rice changes depending on the variety of rice, its geographic origin, and weather 
conditions. Certifi cation of geographical indication is one of the most important parameters for protecting the production and 
origin of agricultural products [1]. The use of a geographical indication may act as a certifi cation that the product possesses 
certain qualities. It is particularly important to rapidly control the unhealthy tendency by classifying the geographic origin 
of the rice.

Traditional methods of classifying rice geographic origin include sensory and chemical detection. Sensory detection 
is subjective and time-consuming, and chemical detection requires tedious chemical pretreatment, which is also time-
consuming and cannot meet the requirements of speed, environmental compatibility, and batch processing. Wang et al. [2] 
identifi ed volatile components from diff erent areas and diff erent storage times of rice samples, combining gas chromatography 
with a principal components analysis (PCA) and a partial least squares discriminant analysis. The recognition rate was 96 
and 100%, respectively. Maione et al. [3] presented a data mining study of samples of rice obtained from producers in Goiás 
(midwestern region) and Rio Grande do Sul (southern region), and built classifi cation models capable of predicting the 
geographical origin of rice based on its chemical components. T  he recognition rate of the support vector machine (SVM), 
random forest, and artifi cial neural network classifi cation models was 93.66, 93.83, and 90%, respectively. The above-

Institute of Electronics, Changzhou College of Information Technology, Changzhou, Jiangsu, China; email: 
pyang2013@163.com. Abstract of article is published in Zhurnal Prikladnoi Spektroskopii, Vol. 89, No. 3, p. 434, May–
June, 2022.

_____________________

*To whom correspondence should be addressed.

                     0021-9037/22/8903-0579 ©2022 Springer Science+Business Media, LLC 579

DOI 10.1007/s10812-022-01397-3



580

mentioned methods have obtained a high degree of accuracy in rice classifi cation, but they require solid-phase extraction 
and wet digestion. The detection process is complex, and rapid, real-time, and in situ detection are diffi  cult. Therefore, 
studying rapid, environmentally friendly, and accurate detection methods of rice classifi cation is signifi cant.

A laser-induced breakdown spectroscopy (LIBS) is a spectroscopic technique for material composition analysis. 
  With the characteristics of minimal sample preparation, rapid analysis, and multi-elemental analysis, it has been widely used 
in industry [4, 5], biomedical [6, 7], food [8–10], soil [11, 12], and other fi elds [13–15]. Combining LIBS with chemometric 
methods, classifi cation or identifi cation has some intrinsic advantages. Yu et al. [16] applied LIBS with SVM for 11 kinds 
of plastic classifi cation, and the recognition accuracy was close to 100%. When Bilge et al. [17] applied the LIBS technique 
with PCA for beef, pork, and chicken classifi cation, the recognition accuracy was 83.37%. Moncayo et al. [18] applied the 
LIBS technology and neural network for the placement of wine origins, with a recognition accuracy of 98.6%. Yan et al. 
[19] used LIBS coupled with image histogram of an oriented gradient features method for the analysis of 24 rice (Oryza 
sativa L.) samples, and the recognition accuracy was 81%. Therefore, the LIBS technology with chemometrics is feasible 
for classifying samples. However, few investigations on the products of geographical indication classifi cation using LIBS 
combined with chemometric methods have been reported. 

T  his work developed an SVM-based multi-spectral line approach to improve the accuracy of analysis for products 
of the classifi cation of geographical indication. Single spectral lines and multi-spectral line recognition were compared to 
achieve better classifi cation accuracy.

Experimental. The schematic diagram of the experimental setup used in this study is shown in Fig. 1. A Q-switched 
Nd:YAG pulsed laser (Quantel Brilliant B, wavelength: 532 nm, pulse duration: 8 ns, repetition rate: 10 Hz) was used to 
ablated samples. The laser beam was refl ected by a d  ichroic mirror, and f  ocused onto the sample surface by a UV-grade 
quartz lens with a focal length of 150 mm. The plasma spectrum was obtained using an echelle spectrometer (Andor Tech., 
Mechelle 5000, spectral range from 200 to 975 nm with a resolution of λ/Δλ = 5000) coupled with an intensifi ed charge-
coupled device (ICCD) camera (Andor Tech., iStar DH-334T). The acquisition and analysis of data were performed using a 
personal computer. In order to avoid the same point ablated at the sample surface, the samples were analyzed in the natural 
air and were automatically translated during the LIBS measurements using a double-axis motorized stage controlled by a 
programmable controller. It is necessary to do "bow" shape motion along X and Y directions.

Experimental Samples and Preparation Methods. Samples harvested in 2019 were from China's major rice 
regions (i.e., Guangdong, Hubei, Guangxi, Liaoning, Heilongjiang, Jilin, Anhui, Hunan, Jiangxi, and Jiangsu). Table 1 
shows sample information including sample ID, commercial brand, and places of origin.

Considering the physical properties of the samples, such as irregularity, which aff ect the spectrum signal, in order 
to reduce the infl uence of moisture on the tested samples, rice samples underwent desiccation treatment in a 100oC drying 
cabinet, and then they were crushed. Diff erent origins of rice samples were prepared into powder using the laboratory mill. 
Following this procedure, the powdered samples were sieved with 200 mesh screens. Then, the samples were formed as 

Fig. 1. Schematic diagram of the experimental setup.
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pellets for LIBS analysis with a pellet press machine by means of 15 g of the rice to 25-MPa pressure. For each rice sample, 
four pellets were prepared. 

R esults and Discussion. The LIBS spectra were produced under the following conditions: the laser pulse energy 
was 40 mJ, the laser frequency was 10 Hz, the gate delay and gate width were set to 1.5 and 3 μs, respectively, and the ICCD 
gain was 2500. To reduce the intensity deviation, each spectral intensity was accumulated for 50 shots. One hundred spectra 
were recorded for each rice origin under an air background. At the same time, in order to prevent air breakdown, the focal 
point was 1.27 mm below the sample surface.

Rice has rich nutrients, especially carbohydrates, vitamins, mineral elements, and micronutrients. A carbohydrate 
is a biological molecule consisting of carbon, hydrogen, and oxygen atoms. According to the database of the National 
Institute of Standards and Technology (NIST), atomic spectrum database [20], and the Identifi cation of Molecular Spectra 
[21], relative intensity, wavelength λ, transition probability Aki, energy E, and statistical weight g of the upper and lower 
excitation levels for the spectral emission lines were referred to. The spectral emission lines of C, N, O, H, Mg, Mn, Ca, Si, 
Al, Na, and K can be referred to in the NIST atomic spectrum database. The molecular emission bands of C–N and C–C 
were referred to in the Identifi cation of Molecular Spectra [21].

Figure 2 shows the LIBS spectra of 10 diff erent rice samples. The selection of characteristic spectral lines was 
important to rice classifi cation. The valuable and high-intensity spectral lines were located near the regions of ~245–290, 
305–370, 370–425, 425–600, 600–800, 810–880, 516, 588, and 656 nm. Figure 2 shows 11 kinds of main elements and two 
kinds of molecular bands, namely, C, N, O, H, Mg, Mn, Ca, Si, Al, Na, K, C–N, and C–C, respectively, which were detected 
by the spectrometer with a broad spectral range.

The recognition accuracy of the single spectral line algorithm model is not high. In order to address these problems, 
adjusting spectral weighting (ASW) was developed for classifi cation in [16]. The diff erences between rice from diff erent 
regions in the case, which used a single characteristic spectral line as an algorithm model input variable, were too small 
to identify. In this work, combining several characteristic spectral lines, which belong to the same element and are closely 
adjacent, improves the classifi cation of rice from diff erent regions. The specifi c combinations are shown in Table 2.

The SVM algorithm was used in MATLAB R2010b (Math Works Corporation, USA) for data processing and 
obtaining classifi cation accuracy. The SVM toolbox developed [21] (A Library for Support Vector Machines, LIBSVM) 
was used for data classifi cation. The details are referred to in [22]. The radial basis function (RBF) was selected as a kernel 
function, and the LIBSVM program package was used. The so-called Radial Basis Function (RBF), is some kind of scalar 
function along the radial symmetry. It is usually defi ned as a monotonic function of the Euclidean distance between any 
point x in space and a center xc , which can be written as k(||x – xc||), and is often used to calculate the similarity: 
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TABLE 1. Rice Samples from Diff erent Varieties and Geographical Origins

Sample Commercial brand Origin Origin abbreviation

1 Golden Dolphin Thai fragrant rice Guang Dong GD

2 Organic rice Hu Bei HB

3 Guangxi Bama glutinous rice Guang Xi GX

4 Panfu Fengjin rice Liao Ning LN

5 Wuchang rice Hei LongJiang HLJ

6 Northeast brown rice Ji Lin JL

7 Anhui indica rice An Hu AH

8 Xiang Chi rice Hu Nan HN

9 Wannian kongmy Jiang Xi JX

10 Chongming Island rice Jiang Su JS
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Fig. 2. Laser-induced breakdown spectroscopy spectra of 10 diff erent rice samples.

Fig. 3. Classifi cation result of 10 kinds of rice using the support vector machine model 
by (a) a single spectral line and (b) a multi-spectral line combination.  Actual label (●), 
label predicted by the SVM model (*). The successful classifi cation is achieved when 
the "*" overlaps with the "●."
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The nonlinear SVM classifi er is
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whe  re X is the data of the spectra of the test set, (X ) is the test set of mapping functions, Xi
–  X–j is the 2-norm distance, l is 

the number of training sets, i is the Lagrange multiplier, b is the off set factor in the equation, c is the error term parameter, 
and g is the kernel parameter. The penalty parameter c of the error term and kernel parameter g of the RBF were optimized 
by a grid search combined with a cross validation method. Before the SVM model was trained, the spectral intensities for 
each spectrum were normalized by the calcium spectral line located at 422.67 nm.

The data set was split into training and validation sets. Fifty spectra from the original 100 spectra of each rice 
sample, which were selected randomly, were used to train the SVM model (training set). Other 50 spectra (validation set) 
were used to test the performance of the SVM model and to obtain the classifi cation rate. Figure 3 shows the classifi cation 
results of the test set spectra by the trained SVM model. Each spectrum has a label. The recognition accuracy of the multi-
spectral line combination of the SVM algorithm was compared with single spectral lines.

As seen in Table 3, the average recognition rate of the test was 90.8%. The recognition rate of the multi-spectral 
line combination test was 94.6%. It is obvious that the accuracy rate of the multi-spectral line combination classifi cation is 
higher than that of the single spectral lines. The penalty parameter c of the error term and kernel parameter g of the RBF 
were optimized by genetic algorithms combined with a cross validation method and fi xed. The respective values of c and g 
were 222.8609 and 0.125 for the single spectral line, whereas for the multi-spectral line combination the values were 588.1336 
and 0.047366, respectively.

Table 4 lists the classifi cation weightings of normalized characteristic spectral lines of the single spectral line 
and multi-spectral line combination ASW, which were determined by a PCA algorithm. Obviously, classifi cation weights 
of metal spectral lines, which play an important role in the classifi cation trace ability, have been increased by the multi-
spectral line combination. The rice absorbs many metallic mineral elements through the water, air, and fertilizer, as well 

TABLE 2. Single Characteristic Spectral Line and Corresponding Multi-Spectral Line Combination

Single spectral line, nm Multi-spectral line combination, nm

C–N (0,0) 388.34 C–N (0,0) 388.34, C-N (1,1) 387.14, C–N (2,2) 386.19, C–N (3,3) 385.47, C–N (4,4) 385.09

C I 247.86 C I 247.86

N I 746.83 N I 746.83, N I 744.23, N I 742.36

O I 777.19 O I 777.19, O I 777.42

H I 656.29 H I 656.29

C–C (0,0) 516.52 C–C (0,0) 516.52

Mg II 279.55 Mg II 279.55, Mg II 280.27, Mg I 285.21

Mn I 403.08 Mn I 403.08, Mn I 403.31, Mn I 403.45

Si I 288.16 Si I 288.16

Al I 394.40 Al I 394.40, Al I 396.15

Na I 588.95 Na I 588.95, Na I 589.59

K I 766.49 K I 766.49, K I 769.90
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as other media in the growth process, and the trace elements in the environment continue to accumulate in the body. This 
causes the content of metallic mineral elements to vary from one origin to another, so that the metal mineral elements 
can become traceability indicators of the origin classifi cation of the agricultural products [23]. The weight ratio shows 
that the multi-spectral line combination method eff ectively reduces the weight of nonmetal elements. The weighting 
of C-N/Ca is expected to be higher than the single spectral line. The reason is that the weights of N and O are aff ected by 
nitrogen and oxygen in the air. The weight of the multi-spectral line composition of mineral metal elements is higher, which 
can eff ectively improve the identifi cation rate of rice origin.

Conclusions. A new approach to products of geographical indication classifi cation by laser-induced breakdown 
spectroscopy with the multi-spectral line combination support vector machine was developed in this work, aimed at 
improving the classifi cation accuracy. The results showed that the recognition accuracy rate of the multi-spectral line 
combination support vector machine was higher than that of a single spectral line, and the classifi cation recognition accuracy 

TABLE 3. Number of Spectra in Training and Validation Sets for Classifying Rice Origin Based on Single Spectral Line and 
Multi-Spectral Line Combination and the Classifi cation Results

Sample
Single spectral line Multi-spectral line combination

Training set Validation set Classifi cation 
rate, % Training set Validation set Classifi cation 

rate, %

GD 50 50 96 50 50 96

HB 50 50 64 50 50 88

GX 50 50 98 50 50 96

LN 50 50 96 50 50 98

HLJ 50 50 100 50 50 98

JL 50 50 100 50 50 100

AH 50 50 98 50 50 96

HN 50 50 72 50 50 94

JX 50 50 96 50 50 98

JS 50 50 88 50 50 82

Average accuracy 90.8 94.6

TABLE 4. Classifi cation Weightings of Normalized Single Spectral Line and   Multi-Spectral-Line Combination by PCA

Observed
features

Weightings
Observed
features

Weightings

Single spectral 
line

Multi-
spectral-line 
combination

Trend Single spectral 
line

Multi-
spectral-line 
combination

Trend

C–N/Ca 0.2207 0.3699 ↑ Mg/Ca 0.0971 0.1281 ↑

C/Ca 0.0825 0.0493 ↓ Mn/Ca 0.0083 0.0152 ↑

N/Ca 0.0921 0.0792 ↓ Si/Ca –0.0016 –0.0003 ↑

O/Ca 0.2027 0.1979 ↓ Al/Ca –0.0051 –0.0019 ↑

H/Ca 0.2925 0.1447 ↓ Na/Ca –0.0043 –0.0020 ↑

C–C/Ca 0.0138 0.0104 ↓ K/Ca 0.0014 0.0096 ↑

Note. ↑ Upward trend, ↓ down trend.



585

rate increased from 90.8 to 94.6%. The adjusting spectral weighting of the multi-spectral line composition of mineral metal 
elements is higher, which can eff ectively improve the identifi cation rate of rice origin. It is feasible to identify products of 
geographical indication using laser-induced breakdown spectroscopy with a multi-spectral line combination support vector 
machine. 
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