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IMPRUVED PREDICTION OF SOLUBLE SOLID 
CONTENT OF APPLE USING A COMBINATION 
OF SPECTRAL AND TEXTURAL FEATURES 
OF HYPERSPECTRAL IMAGES

T. Pang,a L. Rao,a X. Chen,b,* and J. Chenga UDC 535.317.1

We established prediction models based on the combination of spectral and different advanced image features to 
improve the prediction accuracy of solid-soluble content (SSC) of apple. Eight optimal wavelengths were selected 
using a new variable selection method called variable combination population analysis (VCPA). Image textural 
features of the fi rst three principal component score images were obtained using a gray level co-occurrence matrix 
(GLCM) and a local binary pattern (LBP). Next, a random frog algorithm was developed to select optimal textural 
features for further analysis. A support vector regression (SVR) model based on spectral and different textural 
features was developed to predict the SSC of the apple. The model based on eight optimal wavelengths and nine 
optimal GLCM features of principal component images yielded the best result with the determination coeffi cient for 
prediction (Rp

2) of 0.9193, root mean square error for prediction (RMSEP) of 0.2955, and the ratio of the standard 
deviation of the prediction set to the root mean square error of prediction (RPD) with a value of 3.50. These results 
revealed that the spectral combined with optimal GLCM features from principal component images coupled with the 
SVR model has the potential for prediction of the SSC of apple.

Keywords:  hyperspectral image, soluble solid content, textural feature, VCPA, random frog, SVR. 

Introduction. Apple is one of the most popular fruits among consumers worldwide [1, 2]. Soluble solids content 
(SSC) is one of the most critical fruit quality properties that attract consumers [3, 4]. The traditional methods used for 
measuring the SSC of the fruits are destructive and time-consuming. Therefore, to meet the requirements of improving 
product quality in the fruit industry, it is necessary to develop a fast and nondestructive method for detecting the SSC of apple. 

Two main methods are used in the fi eld of nondestructive testing of food quality attributes: near-infrared spectroscopy 
(NIRS) and machine vision [5–7]. NIRS is widely used in the study of internal quality attributes of foods because of its fast 
and noninvasive nature [8–10]. Owing to the variations in the absorbance of different chemical bonds in the near-infrared 
range, NIRS can precisely refl ect the internal chemical composition of agricultural products. However, it cannot provide 
spatial information [11]. Machine vision technologies use the image information of the sample surface alone to predict the 
content of internal components, and the lack of spectral information also limits them. 

Hyperspectral imaging (HSI) technology was offered to circumvent these problems [12–16]. This method can 
provide both spectral and image information and was already employed to detect the internal quality of food. The textural 
features of the image refl ect the intensity changes of pixels and spatial topological relations, which may be related to the 
chemical composition of SSC in apples. Consequently, a calibration model based on a combination of spectral and textural 
features may offer more information for predicting SSC than using the spectrum alone. 

Many studies have used a combination of image and spectral features to predict quality attributes of agricultural 
products. Examples include prediction of SSC of apple [17], where the best results were obtained with correlation coeffi cient 
R, and root mean square errors of prediction set (RMSEP), with a value of 0.9327 and 0.641%, respectively. Hyperspectral 
imaging for predicting the moisture content of roasted pistachio kernels established an artifi cial neural network (ANN) model 
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with results of Rp
2 = 0.907 and RMSEP = 0.179, respectively [18]. These results indicated that applying a combination 

of spectral and texture information to predict the SSC of apple is feasible for improving the prediction accuracy in 
comparison with the use of spectral or texture information alone. Moreover, many previous investigations have shown 
that the prediction results obtained using texture information alone were unsatisfactory. For example, Liu et al. [19] used 
the fusion data and the individual textural features to predict the pH in salted meat, and the coeffi cients of determination 
Rp

2 were 0.794 and 0.593, respectively. To reduce the dimensions of hyperspectral images, Cheng et al. [20] extracted 
textures from the grayscale images at characteristic wavelengths for predicting the K value of pork, Jun-Hu Cheng [21] 
predicted the sensory quality index score of fi sh fi llet using textures extracted from the principal component (PC) score 
images. 

Therefore, this study aims to determine the best combination of spectral and two types of textural features (i.e., 
gray level co-occurrence matrix (GLCM) and local binary pattern (LBP), both extracted from PC images), to obtain a 
prediction model with the highest effi ciency, instead of investigating the modeling results obtained using textures alone. 
The particular objectives of this study are: (1) to extract spectral data from the region of interest (ROI) of hyperspectral 
images and select the most prominent spectral bands as optimal spectral bands by VCPA; (2) to extract textural features 
from PC images using GLCM and LBP, respectively; (3) to select the optimal textural features employing random frog 
algorithm, and to (4) predict SSC of apple by establishing support vector regression (SVR) model based on optimal 
spectral alone, optimal spectral information combined with full textural features, full spectral information combined with 
optimal textural features, and the combination of optimal spectral information and optimal textural features.

Materials and Methods. Figure 1 shows a fl owchart of the main steps involved in predicting the SSC of apple, 
where the main process of data analysis was presented in a schematic diagram. Details are presented in subsequent 
sections.

Sample preparation. A total of 126 similarly sized Yantai apples were purchased at the local fruit market in Ya'an, 
China. The apples were fruit-shaped, and the surface of the fruits was bright and fl awless. After washing and labeling, 
they were placed at standard room temperature for 24 h prior to experiments. All samples were divided into a calibration 
set and a prediction set, a subset of 90 samples was selected for the calibration set, while the remaining 36 were used for 
the prediction set.

Hyperspectral images acquisition and calibration. In this study, the hyperspectral imaging system named 'GaiaSorter' 
(Zolix. Instrument Co. Ltd, China) was used to obtain raw hyperspectral images of apples. The system mainly consisted of a 
hyperspectral camera with 1344 × 1024 pixels (Image-λ-V10) covering the spectral range of 387–1034 nm, an illumination 
unit of 4 × 200 W tungsten bromide lamps, a translation stage, and a computer with data acquisition software (SpectralView).

The translation stage had a scanning speed of 5 mm/s, the distance between the surface of samples and lens was 
255 mm, and the exposure time was set to 11 ms. In order to reduce the effect of dark current of the CCD detector, the raw 
hyperspectral images Rraw were calibrated with a white reference image Rwhite and a dark reference image Rdark. The white 
reference image was obtained from whiteboard (∼100% refl ectance), and the dark reference image was obtained with the 
lamps off and the camera lens completely covered with its cap (∼0% refl ectance). The corrected image R was calibrated 
according to the equation:

 

raw dark

white dark
100%R RR

R R
−

= ×
−

 .      (1)

Extraction of spectral information and preprocessing. As apple is a spherical fruit, the lightness on the fruit surface is 
uneven. Hence, the regions of interest (ROIs) with 60 × 60 pixels near the center area was manually selected from hyperspectral 
images of each apple using ENVI 5.1 (ITT Visual Information Solutions, Boulder, CO, USA) software. Then, the mean 
spectral information of all the pixels within the ROIs was extracted and represented as the spectral value of the sample. Owing 
to sharp noise in the two sections of 387–400 and 1000–1034 nm (Fig. 2), the whole spectrum was resized to the range of 
400–1000 nm with 237 wavebands. Finally, the spectral data were preprocessed using Savitzky–Golay smoothing (the width 
of the moving window was set to 15, and the polynomial order was 3) and direct orthogonal signal correction (DOSC) [22] 
with a tolerance value of 1E-3. It is noteworthy that the prediction model can be infl uenced by the relative values of spectral 
and textural features. Hence, all input variables were normalized before modeling.

Extraction of textural features. Extraction of textural features from images at all wavelengths can produce a large 
amount of data that may complicate the calculations using the model. To solve the problem of the high dimensionality 
of hyperspectral images, a principal component analysis was performed in order to transform hyperspectral images into a 
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sequence of principal component score images. In this study, the fi rst three PC images were used to extract textural features 
as their cumulative variance accounted for ≥97% in all.

Extracting textural features using gray level co-occurrence matrix (GLCM). GLCM is a popular statistical texture 
analysis method [23], which measures the probability that a pixel of a particular gray level occurs at a specifi ed direction 
and distance from its neighboring pixels [24]. In this study, the GLCM was employed to calculate textural features use four 
directions (θ = 0, 45, 90, and 135o) with the distance between two neighboring pixels equal to 1. As the background could 
infl uence the extraction of texture from the whole image, we extracted texture from ROIs of the image. On the other hand, in 
order to improve the calculation speed and to reduce the impact of noise, the gray levels of images were compressed to 16. 
The obtained six textural features, namely, maximum probability, contrast, correlation, energy, homogeneity, and entropy, 
were calculated using the following equations:

Fig. 1. Flowchart of the prediction of SSC by hyperspectral imaging.

Fig. 2. Original spectrum of pixel points. 
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where μ and σ are the means and standard deviations, respectively. Furthermore, i and j represent the row and column in the 
GLCM. Thus, a textural features matrix of 126 × 3 × 24 (samples × images × 6 textural features in four different directions) 
was obtained in each case. All the textural features were pre-processed using the 15-point SG smoothing mentioned above 
before developing the prediction models.

Extracting textural features using local binary pattern (LBP). There is a relationship between a pair of pixels in a 
particular spatial position, where the local binary model can better refl ect this space relationship [25, 26]. The basic idea of 
the LBP is to defi ne a local area (rectangle or circle) and to compare the gray value of the center pixel gC with the gray value 
of all adjacent pixels gh in an equispaced circular neighborhood of P pixels of radius R. The corresponding binary mode was 
calculated when gC > gh was set to 0 and gC < gh was set to 1. Next, the histogram of each cell was calculated and normalized. 
Finally, the statistical histograms of each cell were connected to obtain the LBP texture features of the image. In the present 
study, we have applied rotation and uniform invariant of LBP to reduce the dimensions of the LBP patterns, which was 
expressed by the following formula:
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where U(LBPP,R) are the transitions between 0 and 1; gc represent the gray value of a pixel at center location, and gh is the 
gray value of all adjacent pixels in an equispaced circular neighborhood of P pixels in a radius R. The quantity s is a sign 
function equal to 0 or 1. If U(LBPP,R) is higher than 2, the LBP is equal to P + 1 and regarded as a nonuniform pattern. 
Ultimately, a total of 10 normalized histogram features of each image was obtained to form a matrix of 126 × 3 × 10 
(samples × images × features).

SSC reference measurement. After the acquisition of the hyperspectral images of the samples, the physicochemical 
value of the SSC was measured using a sugar refractometer (LB20T, China). A piece of 2–3 mm fl esh was taken from the 
position which corresponded to the area of spectra acquisition, the appropriate amount of fruit juice was squeezed on the 
detection prism of the refractometer, and the sample values were recorded. To reduce the effect of the randomness of the 
measurements, the operation was repeated three times for each sample, and the average value was considered as the main result 
for sample measurements.
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Variable selection method. Usually, a large amount of textural data does not have a positive effect on the prediction 
accuracy of the model. Therefore, VCPA and random frog algorithms were used to select the optimal variables for spectral 
and textural features, respectively.

Variable combination population analysis (VCPA). VCPA is a novel variable selection method. It consists of two 
crucial procedures: (i) the exponentially decreasing function (EDF) was used to determine the ratio of a variable that has to 
be retained after each run to update the variable space continuously; (ii) a binary matrix sampling (BMS) strategy was used 
to produce a series of subsets by random combination. The model population analysis was applied to determine the fi rst 
σ% subsets that have the lowest root mean squares error of cross-validation (RMSECV), followed by computation of the 
frequency of each variable appearing in those fi rst σ% subsets [27]. The advantage of VCPA is that it provides all variables 
the same chance to be selected through the BMS strategy. In the present study, the EDF run N was set to 50; the BMS runs 
times were set to 10,000, and the number of variables retained after N times EDF run was set to 14. Finally, the RMSECV 
of all combinations among these 14 variables was computed, and subsets with the lowest RMSECV were selected. The 
following formula expresses the ratio of the remaining variables in the ith run of EDF:

 Ri = e–θi ,     (10)

where θ is a constant parameter controlling the curve of EDF. When i = 0, all variables are taken for modeling, which 
indicates that r0 = 1. Furthermore, when i = N, rN = 14/p, where p is the number of all variables, θ was calculated as follows:

 

( )ln 14P
N

θ = .          (11)

Random frog. Random frog is a variable selection method based on the framework of reversible jump Markov Chain 
Monte Carlo (RJMCMC) proposed by Li et al. [28, 29]. In quantitative analysis, the absolute regression coeffi cient of the 
variable is considered as the probability of being selected. The higher the probability, the easier is the selection. Briefl y, it 
works in four steps: (1) initialize a subset of variable V0 consisting of Q variables; (2) propose a candidate subset V * with 
Q * variables; (3) accept V * as V1 to replace V0 with a certain probability; and (4) after N iterations, compute a selection 
probability of each variable and set a threshold based on experience.

Support vector regression (SVR) analysis. Support vector regression is a frequently used method based on the 
minimization of structural risk, which can solve the problems of small sample size, nonlinearity, and high dimensionality 
[30]. The basic idea of SVR is to fi nd an optimal interval that minimizes the error of all training samples from the optimal 
interval. Similar to the perceptron model, the support vector machine tries to fi nd a straight line in a two-dimensional space 
to isolate the two types of samples correctly. For a higher dimensional space, a hyperplane with a maximum-margin is 
necessary. Assuming that the hyperplane can be expressed as ωTx + b = 0, the distance from the support vector to the optimal 
hyperplane is 1/||ω||, so the maximum-margin is equal to 2/||ω||. The optimization goal is to minimize the value of ||ω||. When 
a function f = 〈ω, x〉 + b is used to approximate pairs (xi, yi) with ε + (ξi, ξi

*  ) precision, the convex optimization problem can 
be formalized as   
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where 〈ω, x〉 denotes the dot product of ω and x, and ε is the maximum biases of yi and function f that can be tolerated, 
representing the expectation error. The constant C is the penalty factor, which indicates the degree of punishment for samples 
that exceed the maximum biases ε. The quantities ξi  and  ξi

* are the introduced slack vari ables. After calculating ω and b by 
constructing a Lagrange function, function f can be written as follows:
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where αi and αi
* are Lagrange mul tipliers, i is the number of samples in the calibration set, and xi, x denotes the dot product 

of xi and x. 
The radial basis function (RBF)  was used as a kernel function to map training data into some feature space and 

then apply a standard SVR algorithm; moreover, the present study employed the grid method and 5-fold cross-validation to 
determine the optimal penalty factor C  and the parameter of kernel function γ.

Model evaluation. The model evaluation parameters include the determination coeffi cient for calibration Rc
2 and 

the determination coeffi cient for prediction Rp
2, the root mean square error of calibration (RMSEC) and the root mean 

square error of prediction (RMSEP), and the ratio of the standard deviation of prediction set to the root mean square error 
of prediction (RPD). Generally, the values of Rc

2 and Rp
2 are in the range of 0–1, and a well-performing model should have 

a high value of Rc
2, Rp

2, and RPD and low va  lues of RMSEC and RMSEP. RPD values higher than 2.0 indicate that the 
model has decent predictive performance, whereas RPD values above 3.0 indicate good to excellent prediction accuracy 
[31, 32].

Results and Discussion. Statistics of SSC of samples. To ensure that the information from the calibration set used 
to establish the predictive model is representative, the Kennard–Stone method was used to divide the 126 samples into two 
groups, the calibration set and the prediction set. The statistics of SSC of apples in the calibration and the prediction are 
shown in Table 1. The range of the calibration set is 12–17.75 and covers the range of the prediction set. The mean value and 
the standard deviation of the calibration set are 14.6367 and 1.1738, respectively. 

Modeling based on spectral information. Before the selection of effective variables, the performance of the full-
spectrum SVR model was investigated. When the SVR algorithm was involved in building a predictive model, the optimal 
penalty factor C and the parameter of kernel function γ were achieved with C = 16 and γ = 9.765 × 10–4, respectively. 
As can be observed in Table 2, the model yielded a result with Rp

2 = 0.6357, RMSEP = 0.5799, and RPD = 1.51 for SSC 
prediction. The value of RPD and Rp

2 indicates that the generalization ability of the model at the present stage is insuffi cient.
The VCPA was implemented to select eight optimal wavelengths (411, 427, 447, 449, 452, 576, 621, and 944 nm) 

from the full spectra, and the frequency of selected variables after EDF runs is presented in Fig. 3. The selected optimal 
variable at 944 nm was likely due to the combined effect of water and carbohydrate absorbance. Furthermore, chlorophyls 
associated with fruit maturity have absorption bands occurring at about 621 and 576 nm [33, 34]. From 400 to 500 nm, there 
is an increase in absorbance, with a stronger peak at about 490 nm. Although the results of chemical property analysis of 
spectral features from 400 to 500 nm are unclear, the results showed that this region may be related to the SSC prediction. 
The calibration model was developed based on the eight optimal wavelengths coupled with the SVR algorithm. As it 
can be seen in Table 2, the results of the SVR model based on the optimal     wavelengths  (Rc

2 = 0.9185, RMSEC = 0.3347, 
Rp

2 = 0.7881, RMSEP = 0.4225, and RPD = 2.18) show considerable progress compared to the full-spectrum. However, the 
results are not entirely satisfactory, and the information  used for modeling may not be   suffi cie ntly rich.

The random frog  algorithm is used to calculate the probability of all  wavelengths being selected, and then the  
largest top 10 (404, 421, 428, 442, 445, 447, 567, 604, 607, and 960 nm) are selected as the optimal variables. Taking these 
optimal variables as the input of the SVR model, the prediction model fi nally resulted in Rc

2 = 0.9029, RMSEC = 0.3771, 
Rp

2 = 0.7960, RMSEP = 0.3622, and   RPD = 2.25. As shown in Table 2, the model established with the variables selected 
by the random frog algorithm achieved results similar to those obtained with the VCPA algorithm.

Modeling based on the combination of spectral features selected by VCPA and textural features. To compensate 
for the drawbacks of using spectral data alone, the SVR model was constructed depending on the combination of spectral 
and textural features extracted from PC images. In Table 3, the model evaluation parameters of the model (Rp

2 = 0.8437, 
RMSEP = 0.4682, and RPD = 2.14) based on the combination of spectral and full GLCM features were compared with the 
model that used spectral data alone. The Rp

2 value improved by 7.05%, although the RMSEP value increased by 10.82%. 
For LBP features, the model (Rp

2 = 0.8439, RMSEP = 0.3853, and RPD = 2.38) based on spectral features combined full 
features showed some progress. 

According to the statistical analysis of the results mentioned above, for the predictive ability of SSC, it can be 
observed that although the performance of the model based on spectral information and full textural features has been 
improved, it is still not satisfactory. We supposed that this might be because of the fusion of textural features and spectral 
data, which results in data redundancy. Therefore, the textural feature was selected using the random frog algorithm. The 
more important a textural feature is, the more likely it is to be selected into the optimal subsets.  We set the threshold to 
0.15 based on experience and selected nine optimal features for GLCM features (maximum probabilityθ=0°  located on PC1  
image,  energyθ=0°,  homogeneityθ=0°, entropyθ=90°, maximum probabilityθ=135° located on PC2 image, correlationθ=0°, 
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homogeneityθ=0°, contrastθ=135°, and correlationθ=135° located on the image PC3). For LBP features, we also set the 
threshold to 0.15 and select 8 optimal features. Table 3 shows that the performance of the model based on a combination of 
spectral and optimal GLCM features (Rc

2 = 0.9330, RMSEC = 0.2909, Rp
2 = 0.9193, RMSEP = 0.2955, and RPD = 3.50) and 

the model based on spectral features combined with optimal LBP features (Rp
2 = 0.9121, RMSEC = 0.3131, Rp

2 = 0.8740, 
RMSEP = 0.4392, and RPD = 2.81) were more effi cient than those based on spectral information plus complete textural 
features. Specifi cally, the model using spectral and optimal GLCM features performed better than the model using spectral 
and optimal LBP features. The measured and predicted values of different models are collected in Fig. 4.

Modeling based on combination of spectral features selected by random frog and textures. Similar to the previous 
section, in order to verify that there is redundancy in the full texture feature data, the optimal spectral features were combined 
with the full texture features to establish a prediction model. The as-obtained results are in line with expectations. Whether 
the spectrum is combined with full GLCM or LBP features, the model prediction results only show a small increase or 
even a regression. Moreover, prediction models based on full-spectrum and optimal texture features were established. The 
model   based on full spectral and optimal GLCM texture features gave the results Rp

2 = 0.8359, RMSEP = 0.3417, and 
RPD = 2.34. Furthermore, the model based on full spectral and optimal LBP texture features gave the results Rp

2 = 0.8467, 
RMSEP = 0.3331, and RPD = 2.48. In the next step, the optimal spectrum was combined with the texture features optimized 
by the r andom frog algorithm to establish an improved SVR model. As shown in Table 4, the predicted results of the model 
based on optimal spectral features and GLCM textures are  Rp

2 = 0.8406, RMSEP = 0.3414, and RPD = 2.52, and the 

TABLE 1. Statistics for the SSC Values of the Calibration Set and Prediction Set

Number of samples Min Max Mean Std

Total 126 12.0000 17.7500 14.6579 1.1041

Calibration set 90 12.0000 17.7500 14.6367 1.1738

Prediction set 36 12.9000 17.2500 14.7111 0.9196

TABLE 2. Performance of SVR Model Based on Spectral Features Alone

Method Number of 
variables

Calibration Prediction

Rc
2 RMSEC Rp

2 RMSEP RPD

Full spectral 237 0.9306 0.3156 0.6357 0.5799 1.51

VCPA 8 0.9185 0.3347 0.7881 0.4225 2.18

random frog 10 0.9029 0.3771 0.7960 0.3622 2.25

Fig. 3. Selected variables and the frequency of selected variables within 50 times by 
VCPA.



1203

Fig. 4. Measured vs. predicted SSC for model based on different combinations of spectral 
features and textures of PC images. Spectral alone (a), (b), and combinations (c)–(f).

TABLE 3. Performance of SVR Model Based on Spectral and Different Textural Features

Index Data set Number of 
variables

Calibration Prediction

Rc
2 RMSEC Rp

2 RMSEP RPD

Optimal spectral
+ full textures

Spectral + GLCM 8+72 0.8924 0.3595 0.8437 0.4682 2.14

Spectral + LBP 8+30 0.9111 0.3486 0.8439 0.3853 2.38

VCPA
Spectral + GLCM 8+9 0.9330 0.2909 0.9193 0.2955 3.50

Spectral + LBP 8+8 0.9121 0.3131 0.8740 0.4392 2.81
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results of the model based on optimal spectral and LBP textures are Rp
2 = 0.8892, RMSEP = 0.3324, and RPD = 3.05. 

Thus, it can be concluded that after the optimization of the full textural features, the performance of the model was 
signifi cantly improved.

Conclusions. The present study explored the feasibility of using optimal wavelengths integrated with textural 
features to develop a simple and effi cient prediction model for SSC detection. Using VCPA and the random frog algorithm 
to select eight and 10 optimal wavelengths, respectively, and building a simplifi ed model separately gave results that were 
not satisfactory. The predictive ability of the model obtained by fusing spectral and textural features was better. For instance, 
the model based on the fusion of full spectral and optimal LBP features had values of Rp

2 of 0.8467, RMSEP of 0.3331, and 
RPD of 2.48. Furthermore, we used the random frog algorithm to select optimal textural features for further analysis. The 
results show that the performance of the model (Rp

2 = 0.9193, RMSEP = 0.2955, and RPD = 3.50) based on the combination 
of optimal spectral features and optimal textures of GLCM was best.
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