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QUANTITATIVE ANALYSIS OF Ca, Mg, AND K IN THE ROOTS 
OF Angelica pubescens f. biserrata BY LASER-INDUCED BREAKDOWN 
SPECTROSCOPY COMBINED WITH ARTIFICIAL NEURAL NETWORKS

J. Wang,a M. Shi,a P. Zheng,a*  UDC 543.42
Sh. Xue,a and R. Pengb

Laser-induced breakdown spectroscopy has been applied for the quantitative analysis of Ca, Mg, and K in the roots 
of Angelica pubescens Maxim. f. biserrata Shan et Yuan used in traditional Chinese medicine. Ca II 317.993 nm, 
Mg I 517.268 nm, and K I 769.896 nm spectral lines have been chosen to set up calibration models for the analysis 
using the external standard and  artifi cial neural network methods.  The linear correlation coeffi cients of the predicted 
concentrations versus the standard concentrations of six samples determined by the artifi cial neural network method 
are 0.9896, 0.9945, and 0.9911 for Ca, Mg, and K, respectively, which are better than for the external standard 
method. The artifi cial neural network method also gives better performance comparing with the external standard 
method for the average and maximum relative errors, average relative standard deviations, and most maximum 
relative standard deviations of the predicted concentrations of Ca, Mg, and K in the six samples. Finally, it is proved 
that the artifi cial neural network method gives better performance compared to the external standard method for the 
quantitative analysis of Ca, Mg, and K in the roots of Angelica pubescens.
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Introduction. The roots of  Angelica pubescens Maxim. f. biserrata Shan et Yuan are related to one of the most popular 
traditional Chinese medicines. They have effi cient antiphlogistic, anesthetic, and antitumor properties [1]. Osthole in the 
roots of Аngelica pubescens can antagonize Ca2+, prevent extracellular from calcium ions fl owing into cells, reduce the force 
of myocardial contraction and the oxygen consumption of myocardium, and decrease the blood pressure. I  n the functional 
process of traditional Chinese medicine, the synergy of metal elements cannot be ignored. Neuromuscular excitation is 
related to the concentration of Mg and Ca in the blood. The antiphlogistic and anticancer Chinese medicines always contain 
abundant Ca and K, while the antidotal Chinese medicines contain abundant Ca and Mg. Appropriate concentrations of metal 
elements not only assist human growth but also can enhance immunity.

High-performance laboratory techniques, such as inductively coupled plasma-optical emission spectroscopy 
(ICP-OES) [2], atomic absorption spectrometry (AAS) [3] and inductively coupled plasma mass spectrometry (ICP-MS) 
[4] have been used to detect the metal elements in traditional Chinese medicine. However, these techniques consume large 
amounts of energy and are operated at high temperatures or under vacuum, and also require complex sample preparation, 
so are impractical for portable measurements. Moreover, their operating costs are high and are therefore unsuitable for 
continuous monitoring.

Laser-induced breakdown spectroscopy (LIBS) is a technique in which laser pulses are used to ablate a target, and 
emission spectra of the resulting plasma are collected and analyzed. Over the last few decades, the feasibility of LIBS as an 
analytical technique has been demonstrated by a number of applications on solids [5–9], liquids [10–14], gases [15–17], or 
aerosol [18–20] samples because of the technique advantages for in situ and real-time analysis without or with little need for 
sample preparation. It is worth mentioning that the main problems related to the LIBS analysis are limited sensitivity and 
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the poor precision of the technique, which also affect the global accuracy of the results. Therefore, LIBS data interpretation, 
including retrieving quantitative information from the measured spectra, is still a subject for research and development and is 
especially important when the target properties and composition are a priori unknown. The artifi cial neural network (ANN) 
method is a multiple nonlinear calibration model that can calibrate complex nonlinear relationships in complex matrices 
[21–25]. Therefore, the ANN method can be introduced to eliminate some interference during the process of quantitative 
analysis of the LIBS technique.

In the present work, the LIBS technology combined with artifi cial neural network (ANN) method was employed to 
quantitatively analyze the concentrations of Ca, Mg, and K in the roots of Angelica pubescens compared with the external 
standard method.

Experimental. A schematic view of the experimental setup is presented in Fig. 1. A Q-switched Nd:YAG laser (Big 
Sky Laser Technology, Ultra 100), at the fundamental wavelength of 1064 nm with a pulse duration of 5.82 ns, maximum 
repetition rate of 20 Hz, and maximum pulse energy of 100 mJ, is used as the excitation laser. The laser energy can be switched 
by changing the Q delay time, which can be measured by a laser power meter. The laser beam is focused perpendicular to 
the sample surface on a two-dimensional translation stage, which is controlled by a controller (Zolix SC300-2A) with a 
plano-convex lens ( f = 100 mm) to produce intense and transient plasma. The light emitted from the plasma is focused 
by a microscope objective lenses system and collected by a 2-m long multimode silica fi ber. The light is then transmitted 
through the fi ber to the entrance of a computerized Czerny–Turner spectrograph (Andor Model SR-750A). The spectrograph 
is equipped with three ruled gratings: 2400, 1200, and 300 grooves/mm, which are interchangeable under computer control 
and provide high and low resolution spectra in the wavelength range of 200–900 nm. An intensifi ed gated CCD camera 
(Andor DH340T-18U-03) is coupled with the spectrograph output. The ICCD camera has 2048 × 512 pixels and is cooled to 
–15oC by a Peltier cooler to reduce noise while working.

A laser energy of 25 mJ and detection duration of 1.5 μs are used with a gate width of 2 μs and a laser repetition rate 
of 4 Hz to improve repeatability and reduce the effects of continuous background created by bremsstrahlung. Twenty laser 
pulses are integrated to obtain each spectrum, and each experimental spectral intensity is the average of ten measurements in 
order to increase the stability and reduce the standard deviation of the spectral intensities.

Sample preparation. Six samples of the roots of Angelica pubescens (S48, S66, S168, S211, S285, S348) from 
Chongqing Academy of Chinese Medicine are analyzed in this work, and the concentrations of Ca, Mg, and K of the six 
samples, which are measured by the ICP-OES, are shown in Table 1. These six samples are gathered from different places 
of production and geographical environment, and they differ by the process of growth, which affect the concentrations of 
Ca, Mg, and K. Because the roots of Angelica pubescens are irregular and granular solid samples, the samples have to be 
prepro  cessed by tablet pressing in order to reduce the experimental errors and have a better ablation effi ciency to get higher 
repeatability of the LIBS measurements [26]. Before the t  ablet pressing, all samples are dried in a drying oven at 60oC for 8 h. 

Fig. 1. Schematic diagram of the laser-induced breakdown spectroscopy experimental 
setup.
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Then each sample is ground into powders and stirred uniformly for 2 h. These herbal powders are pressed to tablets (0.5 g, 13-mm
diameter, and 2-mm thick) by a hydraulic press (2 min under a pressure of 10 tons for each tablet).

Artifi cial Neural Networks. The neural network algorithm is described in Fig. 2. An artifi cial neuron identifi es a 
weighted sum of inputs Xi (i = 1, …, n) converging in the unit. Each input Xi is multiplied by a weight wi, and the total input 
of the node is the weighted sum of the Xi. The number subtracts a threshold b and the perceptron applies a nonlinear transfer 
function (sigmoidal function) to get the output of the neuron [27]. The neurons are organized in layers to form a network. 
Common three-layer (input layer, hidden layer, and output layer) networks, also called a perceptron, have been used in the 
experiments, which is also presented in Fig. 2. Each neuron of the fi rst (input) layer has a single input corresponding to 
the measured spectrum intensity at one wavelength. The outputs of the last (output) layer constitute the ANN results. Each 
neuron in this output layer is associated with one chemical element contributing to the spectrum. The number of neurons in 
the second layer (also called hidden layer) is a free parameter. All the neurons among three layers are related by the weighting 
factor w, threshold factor b, and the transfer function. The tansig function is chosen as the transfer function in this work.

Matlab software was used to build the artifi cial neural network model for quantitative analysis. In order to produce 
accurate results, the algorithm, which is also called a learning algorithm [28], needs to be trained (i.e., calibrated) with a set of 
reference spectra representative of the roots of Angelica pubescens targets. The training phase results in fi nding the best set of 
weights and bias values that would minimize the network output errors. This is done by using a back propagation algorithm, 
which is based on a gradient descent allowing the network — after a certain number of iterations — to fi nd the best fi t to the 
training set of input–output pairs. When the inputs (in our case, ten integrated spectral intensities and the average value for 
Ca, Mg, and K) are successively injected into the network, the weights change dynamically to reduce errors. This procedure 
is repeated until the network reaches a good result. The primary back-propagation parameters in this work are shown as 
following: learning rate 0.01, epochs 3000, max fail 10 and 1 hidden layer with 4 elements (neurons). Once the training phase 
is completed, a spectrum of unknown sample (i.e., intensities at selected wavelengths) is presented to the network, which 
quickly identifi es (<ms) the corresponding elemental composition.
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Fig. 2. Principle of an artifi cial neural network perceptron (a) and a three-layer neural 
network model (b).

TABLE 1. Concentrations (mg/kg) of Ca, Mg, and K of the Six Samples

Sample number Ca Mg K
s46 4434 5967 17364
s66 6186 6084 32130
s168 18354 5160 31530
s211 14619 4584 93300
s285 19641 3584 82650
s348 12606 1968 26427
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Results and Discussion. Six samples of the roots of Angelica pubescens are quantitatively analyzed by the external 
standard method and the artifi cial neural network method. In order to compare the quantitative analysis performances o  f 
the two methods comprehensively, all six samples are used as both the training set and the prediction set to predict the 
concentrations of Ca, Mg, and K. The Ca II 317.993-nm, Mg I 517.268-nm, and K I 769.896-nm lines are chosen as the 
analysis spectral lines as shown in Fig. 3, because there are no obvious self-absorption and interferential spectral lines nearby.

In order to obtain the predicted concentrations of the two methods, all six samples are also used as predicted set to 
get predicted concentrations of Ca, Mg, and K. The predicted concentrations of the two methods are listed in Table 2.

To assess the quantitative performances between the two methods, six linear fi ttings of the predicted concentrations 
versus the standard concentrations are established as shown in Fig. 4.

Five parameters are calculated to verify the accuracy and the stability of the predicted concentrations of Ca, Mg, and 
K by the two methods. They are the linear correlation coeffi cients (R2) of linear fi tting of the predicted concentrations versus 
the standard concentrations and the average relative errors (AREs), the maximum relative errors (MREs), the average relative 
standard deviations (ARSDs), and the maximum relative standard deviations (MRSDs) of the predicted concentrations among 
the six samples. R2 represents the accuracy of the quantitative analysis, and ARE, MRE, ARSD, and MRSD represent the 
stability of   the quantitative analysis. The relative error and relative standard deviation can be calculated from the following 
formula:

RE = |(⎯x – μ)/μ| × 100% ,

where x  is the average value of the predicted concentrations, and μ is the standard concentration;
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where xi is a value of the predicted concentration, and n is the predicted times.

Fig. 3. Laser-induced spectra of Ca II 317.993 nm, Mg I 517.268 nm, and 
K I 769.896 nm.

TABLE 2. Predicted Concentrations (mg/kg) of Ca, Mg, and K in the Six Samples

Samples
External Standard Method Artifi cial Neural Networks

Ca Mg K Ca Mg K
s46 3134 6303 16,186 4851 5961 17,495
s66 7194 6213 37,055 7394 5923 31,737
s168 18,568 5025 38,661 17691 5201 32,471
s211 13,311 4304 93,165 14521 4510 102,321
s285 22389 3627 80,588 19124 3793 82,887
s348 10735 2038 21,889 11685 2042 22,544
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Fig. 5. Quantitative performances of the external standard and artifi cial neural network 
methods in the analysis of Ca (a), Mg (b), and K (c).

TABLE 3. Quantitative Performances of Ca, Mg, and K by the Two Methods

Evaluation 
parameters

External Standard Method Artifi cial Neural Networks
Ca Mg K Ca Mg K

R2 0.9363 0.9795 0.9763 0.9896 0.9945 0.9911
ARE 14.09% 3.54% 10.76% 7.19% 2.46% 4.94%
MRE 29.30% 6.09% 17.17% 19.53% 5.85% 14.69%

ARSD 17.00% 7.35% 14.00% 10.13% 5.68% 13.49%
MRSD 47.38% 11.62% 20.73% 17.78% 10.71% 27.14%

Fig. 4. Linear fi ttings of the predicted concentrations versus the standard concentrations 
of Ca, Mg, and K by the external standard method and the artifi cial neural network 
method.
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The fi ve evaluation parameters (R2, AREs, MREs, ARSDs, and MRSDs) of the quantitative analysis by the two 
methods are listed in Table 3 and Fig. 4.

For the prediction accuracy, it can be observed in Fig. 5 that the linear correlation coeffi cients (R2) of the artifi cial 
neural network method are 0.9896, 0.9945, and 0.9911 for Ca, Mg, and K, respectively, while the R2 of the external standard 
method are 0.9363, 0.9795, and 0.9763, respectively. Therefore in this work, the artifi cial neural network method provides a 
more accurate quantitative analysis than the external standard method.

For the prediction stability, in Fig. 5, it can be observed that the average and maximum relative errors (AREs and 
MREs) of the artifi cial neural network method are 7.19, 2.46, 4.94, and 19.53, 5.85, 14.69 % for Ca, Mg, and K, respectively, 
while the AREs and MREs of the external standard method are 14.09, 3.54, 10.76, and 29.30, 6.09, 17.17 %, respectively. 
The average and maximum relative standard deviations (ARSDs and MRSDs) of the predicted concentrations obtained by 
the artifi cial neural network method for Ca, Mg, and K are 10.13, 5.68, 13.49, and 17.78, 10.71, 27.14 %, respectively. The 
ARSDs and MRSDs of the concentrations predicted by the external standard method are 17.00, 7.35, 14.00, and 47.38, 
11.62, 20.73 %, respectively. The results above show that all the AREs, MREs, ARSDs, and MRSDs of Ca and Mg by the 
artifi cial neural network method are better than those by the external standard method. Meanwhile, ARE, MRE and ARSD 
of K by the artifi cial neural network method are also better than by the external standard method except MRSD. So we can 
also conclude that the artifi cial neural network method gives more stable quantitative analysis performance than the external 
standard method in this work. 

Overall, the artifi cial neural network method gives better quantitative performance than the external standard method, 
because artifi cial neural network can use more information besides peak heights, if such information is considered important 
to the predicted concentrations of elements. But the defi ciency of artifi cial neural network is exposed by its MRSD of K 
in this work. For the artifi cial neural network method, theoretically, more input neurons will bring better network training 
and prediction stability. ANN training is inadequate in this work. Since only 11 input neurons are used, which reduces the 
prediction stability.

Conclusions. The aim of this work is to evaluate the potential of quantitative analysis of benefi cial elements in 
traditional Chinese medicine such as the root of Angelica pubescence by the LIBS technology combined with the artifi cial 
neural network method. The LIBS spectra of six Angelica pubescence root samples are collected. What is more, the 
concentrations of Ca, Mg, and K in the six samples are determined by the external standard method and the artifi cial neural 
network method. All the six samples are used as both the training set (for calibration) and the prediction set (for prediction). 
Calibration models are established, and the predicted concentrations of all six samples are determined by two methods. The 
obtained results clearly show that the LIBS technique combined with the artifi cial neural network method gives more accurate 
and stable quantitative analysis performance while detecting the elements of Ca, Mg, and K in Angelica pubescence root 
samples than the external standard method. It is proved that the artifi cial neural network method is a favorable method for 
analyzing traditional Chinese medicine quantitatively.
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