
Journal of Applied Spectroscopy, Vol. 83, No. 4, September, 2016 (Russian Original Vol. 83, No. 4, July–August, 2016)

 SIMULTANEOUS DETERMINATION OF AMILORIDE AND HYDROCHLOROTHIAZIDE 
IN A COMPOUND TABLET BY DIFFUSE REFLECTANCE SPECTROSCOPY AND CHEMOMETRICS

J. Tang,  X. Li, Y. Feng, and B. Liang* UDC 543.42:615.45

  This paper studies the simultaneous determination of amiloride hydrochloride (AMH) and hydrochlorothiazide 
(HCTZ) in amiloride hydrochloride tablets by ultraviolet-visible-shortwave near-infrared diffuse refl ectance 
spectroscopy (UV-Vis-swNIR DRS) and chemometrics. Quantitative models for the two components were established 
by partial least squares (PLS) and support vector regression (SVR), respectively. For the PLS models of AMH and 
HCTZ, the determination coeffi cient R2 of the calibration set was 0.9503 and 0.9538, and the coeffi cient R2 of the 
prediction set was 0.8983 and 0.9260, respectively. The root mean square error of the calibration set (RMSEC) 
was 0.8 mg and 8.1 mg, while the root mean square error of the prediction set (RMSEP) was 1.0 mg and 8.7 mg, 
respectively. For the SVR models of AMH and HCTZ, the R2 of the calibration set was 0.9668 and 0.9609; the R2 of 
the prediction set was 0.9145 and 0.9446, respectively. The RMSEC was 0.7 and 7.5 mg, and the RMSEP was 0.9 and 
8.9 mg, respectively. The results show that SVR modeling has a satisfactory prediction effect.  The proposed method 
based on UV-vis-swNIR and chemometrics is effi cient, nondestructive, and expected to be used for online quality 
monitoring in the production of drugs.

Keywords:    compound amiloride hydrochloride tablet, partial least squares, support vector regression, ultraviolet-
visible-shortwave near-infrared diffuse refl ectance spectroscopy.

Introduction. Process analytical technology (PAT), as a developing trend of new, good manufacturing practice 
(GMP), has been proposed and promoted by the FDA in order to control the quality of drug manufacturing. The analytical 
methods suitable for PAT in the pharmaceutical industry should meet the following criteria: be accurate and precise; require 
minimal sample pretreatment in order to ensure a high throughput; allow simultaneous determination of several analytes; 
provide control of the manufacturing process; adhere to GMP standards [1]. Therefore, it is vital to develop simple and 
effi cient analytical techniques for PAT.

A compound amiloride hydrochloride tablet, the active components of which are amiloride hydrochloride (AMH) 
and hydrochlorothiazide (HCTZ), is widely used as a diuretic and antihypertensive drug. A number of analytical methods have 
been developed for the simultaneous determination of these components in mixtures, among which are liquid chromatography 
(LC) [2–4], liquid chromatography/tandem mass spectrometry [5, 6], high-performance thin-layer chromatography (HPTLC) 
[7], spectrophotometric methods [8–10], UV/chemometry [11, 12], capillary electrophoresis [13], and the differential pulse 
polarographic methods [14]  . High-performance liquid chromatography (HPLC) is mostly used to quantitatively determine 
the two components with reliable results. However, these methods are all carried out in solutions, which needs complex and 
time-consuming sample pretreatment.

UV-vis-swNIR DRS is a spectral analytical technique based on measuring the output light that provides information 
on the structure and composition of samples through multiple interactions of the incident light with internal molecules. 
Samples do not need pretreatment, which makes it a widely used analytical technique in many areas, including the analysis of 
catalytic materials [15], the analysis of the chemical properties of soil [16], the identifi cation of cancer [17, 18], the prediction 
of the harvest period of apples [19], and the study of the transdermal kinetics of drugs [20].     However, UV-Vis-swNIR DRS is 
seldom used in the determination of solid drugs and   has not received the attention it deserves. We have recently reported on 
two studies, the ultraviolet-visible diffuse refl ectance spectroscopy (UV-Vis DRS) support vector regression (SVR) method 
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for determination of the content of cimetidine tablets [21], and the qualitative and simultaneous quantitative analysis of 
cimetidine polymorphs by UV-Vis-swNIR DRS and multivariate calibration models [22]. These studies demonstrate the 
potential of UV-vis-swNIR DRS and UV-Vis DRS in the determination of solid drugs.

The diffuse refl ectance spectra of complex samples such as pharmaceutical preparations often have a signifi cant 
overlap. Therefore, it is hard to analyze the spectra data by conventional calculation. Chemometrics can solve this problem 
by multivariate calibration, optimizing the process of chemical measurement and extracting useful information from 
the measurement data. Multivariate calibration is a useful tool in the analysis of multicomponent mixtures because it 
allows simultaneous determination of each component in the mixture, with minimum sample preparation and  reasonable 
accuracy [10]. 

With the development of computer science, chemometric methods such as PLS, principal component regression 
(PCR), and SVR are increasingly used in the quantitative analysis of complex mixtures.  PLS regression is a method for 
building regression models between the independent variable (X) and the dependent variable (Y), which is based on bilinear 
decomposition of the calibration matrix. This technique constructs new predictor variables (components) as the linear 
combinations of the original predictor variables. PLS constructs these components while considering the observed response 
values, leading to a parsimonious model. The most important feature of PLS is that the successively computed score vectors 
have the property of maximum covariance with the unexplained part of the dependent variable [23]. However, PLS is a linear 
regression method, which makes it diffi cult to achieve regression and prediction when dealing with a complex nonlinear 
problem, while SVR, a relatively new kind of regression method proposed in the 1990’s, can solve this problem to some extent. 
SVR is based on the principle of minimizing the structural risk. The core idea of this modeling is to map low-dimensional 
data into a high-dimensional feature space for linear regression through a nonlinear mapping. With the introduction of the ε 
insensitive function, SVR has been successfully used for nonlinear regression and function approximation [24]. 

There are still no reports on the application of UV-vis-swNIR DRS in the simultaneous determination of active 
components. Therefore, the aim of our study is to investigate the feasibility of applying UV-Vis-swNIR DRS and chemometrics 
in the simultaneous quantifi cation of ac  tive pharmaceutical components. In the study, two algorithms of PLS and SVR were 
applied, and their performance was compared.

Material and Methods. AMH with a purity of 99.31% and HCTZ with a purity over 99% were bought from 
Yan Shan Chemical Ltd., Hangzhou and HongXinKang Fine Chemical Ltd., Wuhan, respectively. Soluble starch, sodium 
carboxymethyl starch and magnesium stearate, purchased from Kelong Chemical Reagent Factory, Chengdu and dextrin 
obtained from Bo Di Chemical Ltd., Tianjin were of analytical grade.

The bulk drug powder was weighed by a JY2002 electronic analytical balance (Shanghai Precision Scientifi c 
instrument Co., Ltd.). Tabletting was performed by a ZPS008 rotary tablet press (Shanghai Tianxian gjiantai Pharmaceutical 
Machinery Co., Ltd.). UV-Vis diffuse refl ectance spectra were acquired using an S2000 Optical Fiber Spectrometer (Hangzhou 
Sizhi Technology Co., Ltd.) controlled by Spectra Pro-Analysis Version 3.2 software, equipped with a   light source (Ocean 
Optics, USA), a linear silicon CCD array detector (TCD Toshiba 1304), and a Y-type optical fi ber probe. Spectral data were 
processed by MATLAB R2014a software, version 8.3 (The Math Works, Natick, USA) and Unscrambler software, version 
9.7 (CAMO Software, AS).

AMH, HCTZ, and the excipients including soluble starch, sodium carboxymethyl starch, magnesium stearate, and 
dextrin were dried for 1 h at 105°C, then ground and sieved, mixed evenly, divided into 28 powder samples of different 
content levels, and co  mpressed into 222 artifi cial tablets with a diameter of 9.0 mm, a thickness of 4.2 mm, and a weight of 
300 mg per tablet by the direct compression method. The percentages of AMH and HCTZ per tablet varied from 1.1% to 
5.7% and 10.5% to 54.7%, respectively. A calibration set of 150 tablets and a prediction set of 72 tablets were obtained by 
random selection.

Each artifi cial tablet was placed in a sample cell, with the optical fi ber probe placed vertically on the upper surface of 
the tablet. Each tablet was measured three times under the following conditions: scan range from 200 to 1106 nm, exposure 
time 293 ms, and resolution 3.3 nm, with Spectralon as background reference. The average of the three measured spectra was 
treated as the spectral data of the tablet.

Results and Discussion. UV  -vis-swNIR diffuse refl ectance spectra of the active component and excipient are 
shown in Fig. 1. Here, the absorbance is defi ned as the negative logarithm of the relative diffuse refl ectance rate of samples, 
calculated as follows:
 A = log (1/R∞) ,     (1)

 R∞ = R∞'  s/R∞'  st ,      (2)
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where R∞'  s, R∞'  st, and R∞ are the absolute diffuse refl ectance rate of samples and the reference material and relative diffuse 
refl ectance rates, respectively.

Qualitative analysis of a single component helps in establishing calibration models. As shown in Fig. 1, the absorption 
band of AMH is from 200 to 430 nm, with a maximum absorption wavelength at 400 nm. The absorption band of HCTZ is 
200–380 nm with a maximum absorption wavelength at 310 nm. The absorption of each excipient is much weaker than that 
of the two active components in the range 200–430 nm. The main absorption wavebands of diffuse refl ectance for AMH and 
HCTZ are consistent with those of their UV-Vis absorbance spectra within 200–400 nm caused by the electron transition of 
the conjugated double bond of N=N, C=N, and C=O. The difference of absorbance in 200–430 nm for AMH and HCTZ plays 
an important role in the quantitative analysis of components in their compound tablet.

The UV-vis-swNIR diffuse refl ectance spectra of all artifi cial tablet samples are shown in Fig. 2. As can be seen in 
Fig. 2, the spectra of samples of different contents are similar, with a strong absorption band from 200 to 430 nm. They display 
an overlap in the majority of the wavebands. The spectral intensity varies with the content of the components. As mentioned 
in the Introduction, the conventional methods of calculation are not suitable for analyzing the data, so it is necessary to apply 
chemometrics to get information from the data in order to establish quantitative models.

Quantitative models were established by using Unscra  mbler ver9.7 and Matalab R2014a ver8.3 software, after the 
wavelength selection and pretreatment of the spectra. The performance of the models was evaluated by R2 and the root mean 
square error (RMSE). RMSE is a measure of the average error in analysis, while R2 represents the quality of the predicted 
values. The closer R2 is to 1 and the smaller RMSE is, the smaller the differences between the measured values and the values 
predicted by the models. The calculation of R2 and RMSE are as follows:
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where yi and ŷi are the sample concentration of the reference and that predicted by the models, respectively, n is the number 
of samples used for modeling, and⎯yi is the predicted average value of the n samples.

Removal of the uninformative and/or interfering variables contributes to constructing a reliable and interpretable 
calibration model with good prediction accuracy.

So far, many methods of wavelength variable selection have been used in multivariate calibration. Among these 
methods, the reversible jump Markov Chain Monte Carlo (RJMCMC) methods introduced in [25] have proved to be quite 
promising for variable selection. The random frog is a RJMCMC-like algorithm that was originally proposed to be used in 
gene selection, which is a general strategy for variable selection. Its advantage is that no mathematical formulation is needed 
and no prior distributions have to be specifi ed like in formal RJMCMC methods, which makes it easier to implement [26]. 

Fig. 1. UV-Vis-swNIR diffuse refl ectance spectra of single active component and 
excipient; 1) amiloride hydrochloride, 2) hydrochlorothiazide, 3) starch, 4) dextrin, 
5) sodium carboxymethyl starch, and 6) magnesium stearate.

Fig. 2. UV-Vis-swNIR diffuse refl ectance spectra of all artifi cial tablet samples.
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In this work,   the random frog was used for wavelength selection by Matlab R2014a ver8.3. As a result, the 2  60 and 263 
wavelength variables were selected for AMH and HCTZ, respectively. 

Ultraviolet-visible spectra contain both sample information and some irrelevant information and noise, such as 
instrument noise, sample background, and stray light. Therefore, it’s signifi cant to choose a spectra pretreatment method to 
build solid quantitative models.

The original spectra were preprocessed by multiplicative scatter correction (MSC), standard normalized variate 
(SNV), and Savitzky–Golay convolution smoothing included in Unscrambler ver9.7. In order to avoid overfi tting and 
underfi tting, the pretreatment method was chosen by considering R2 and RMSE (RMSEC, RMSECV, and RMSEP) of the 
calibration set, cross validation, and prediction set. The result showed that the model for AMH and HCTZ established with 
the spectra preprocessed by Savitzky–Golay convolution smoothing and 1st derivative had a satisfactory effect.

One needs to choose the optimal number of LVs when using PLS algorithm to establish a calibration model. Unsuitable 
numbers of LVs will lead to the "underfi tting" or "overfi tting" phenomenon, resulting in an unsatisfactory prediction. LVs 
were selected by the method of cross validation included in Unscrambler ver9.7 automatically when establishing a PLS 
model, in which a certain number of samples from the calibration data set are left out and the model is calibrated on 
the remaining data. Then the left-out samples are predicted and the prediction residuals are computed and all prediction 
residuals are combined to compute validation residual variance. Figure 3 shows the relationship between the validation 
residual variance and LVs, and the optimal number of LVs were 10 and 6 for AMH and HCTZ, respectively, considering both 
calibration and prediction.

The best PLS model was established with spectra preprocessed by Savitzky–Golay convolution smoothing and the 
1st derivative with 260 and 263 wavelength variables for AMH and HCTZ, respectively. Figure 4 shows the results of PLS 
models and effect of prediction. For AMH and HCTZ, the R2 of calibration set was 0.9503 and 0.9538, and the RMSEC 
was 0.8 and 8.1 mg, respectively. The R2 of prediction set was 0.8983 and 0.9260, and the RMSEP was 1.0 and 8.7 mg, 
respectively.

The correlation coeffi cient and random frog methods were both used to select the wavelength variable for SVR 
modeling. The result showed that the SVR models established with the wavelength variables selected by the random frog had 
better performance than those established with the wavelength selected by the correlation coeffi cient method. As a result, the 
variables of 260 and 263 nm were selected for AMH and HCTZ, respectively.

The pretreatment of spectra was similar to that of PLS modeling. The result showed that the models established with 
the spectra preprocessed by center and scale had a satisfactory effect. 

The parameter optimization of the SVR model was carried out by adjusting the parameter g and regularizing 
coeffi cient c and the insensitive loss function p of the kernel function of the radial basis function (RBF). The g value is 
associated with the degree of confi dence or signal-to-noise ratio (SNR) of the sample data; C represents a balance between 
the complexity of the model (degree of fl atness) and the amount of allowed deviation; P controls the width of the insensitive 
zone and affects the number of support vectors used to build the SVR model [27].

The method of 5-cross validation was used to optimize the parameters. The ranges of values were g [0, 0.03], 
c [0, 900], and p [0, 0.01], respectively, and the values corresponding to minimal RMSE were regarded as optimal. According 
to the results of optimization, g = 0.01, c = 900, p = 0.0009 and g = 0.021, c = = 100, p = 0.009 were selected as the optimal 

Fig. 3. The relationship between the validation residual variance and LVs for AMH (a) 
and HCTZ (b).
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parameters for SVR modeling of AMH and HCTZ, respectively. The performance of SVR models with default and optimal 
parameters was compared, as shown in Table 1, which indicated that parameter optimization of SVR modeling played a 
signifi cant role in improving the effect of prediction.

For AMH, g = 0.01, c = 900, and p = 0.0009 were chosen as the optimal parameters and the SVR model was 
established with 260 wavelength variables preprocessed by center and scale, and the results are shown in Fig. 5a,c. As can 
be seen, the R2 and RMSEC of calibration set was 0.9668 and 0.7 mg, respectively. And the R2, RMSEP of the prediction set 
was 0.9145 and 0.9 mg, respectively. For HCTZ, g = 0.021, c = 100, and p = 0.009 were chosen as the optimal parameters, 
and the SVR model was established with 263 wavelength variables preprocessed by center and scale. The results are shown in 
Fig. 5b,d. The R2 and RMSEC of the calibration set was 0.9609 and 7.5 mg, respectively. The R2 and RMSEP of the prediction 
set was 0.9446 and 8.9 mg, respectively. 

A comparison of the PLS and SVR models is shown in Table 2. As can been seen, the results of prediction of the 
two models show that the SVR model had a better effect of prediction. In general, the performance of models for HCTZ 
established by PLS and SVR was better than that for AMH. Considering that the content level of AMH was lower than that 
of HCTZ, the results were reasonable. The sources of differences between PLS and SVR models were analyzed as follows: 

Fig. 4. The results of PLS models of AMH and HCTZ (a, b) and prediction effect of 
AMH and HCTZ (c, d).

TABLE 1. Effect of Parameter Optimization on the Performance of SVR Models

Component Parameter
Calibration Prediction

R2 RMSEC, mg R2 RMSEP, mg

AMH
Default 0.9000 1.2 0.8769 1.3

Optimized 0.9668 0.7 0.9145 0.9

HCTZ
Default 0.8528 14.9 0.9157 11.5

Optimized 0.9609 7.5 0.9446 8.9
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(a) PLS and SVR are linear and nonlinear modeling methods, respectively; (b) different principles, algorithms, and processing 
during modeling (wavelength selection and pretreatment of spectra) lead to some differences between the two models.

Conclusions.   In this study, a simple nondestructive method was developed for simultaneous determination of AMH 
and HCTZ in a compound amiloride hydrochloride tablet by UV-vis-swNIR DRS and chemometrics. The method has many 
advantages over the offi cial HPLC and other alternative methods, being lowcost, solvent-free, and nondestructive. The results 
show that SVR models had prediction performance with R2 of 0.9145 and RMSEP of 0.9 mg for AMH, and R2 of 0.9446 
and RMSEP of 8.9 mg for HCTZ. Thus, UV-Vis-swNIR DRS and chemometrics can be used as an effi cient nondestructive 
analytical method for simultaneous determination of multiple active components in compound preparations.
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