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SPECTRAL REFLECTANCE AND VEGETATION INDEX CHANGES 
IN DECIDUOUS FOREST FOLIAGE FOLLOWING TREE REMOVAL:
POTENTIAL FOR DEFORESTATION MONITORING

D. Peng,a* Y. Hu,b and Z. Lic  UDC 535.3:634.0.245

It is important to detect and quantify deforestation to guide strategic decisions regarding environment, socioeconomic 
development, and climate change. In the present study, we conducted a fi eld experiment to examine spectral refl ectance 
and vegetation index changes in poplar and locust tree foliage with different leaf area indices over the course of three 
sunny days, following tree removal from the canopy. The spectral refl ectance of foliage from harvested trees was 
measured using an ASD FieldSpec Pro spectroradiometer; synchronous meteorological data were also obtained. We 
found that refl ectance in short-wave infrared and red-edge refl ectance was more time sensitive after tree removal 
than refl ectance in other spectral regions, and that the normalized difference water index (NDWI) and the red-edge 
chlorophyll index (CIRE) were the preferred indicators of these changes from several indices evaluated. Synthesized 
meteorological environments were found to infl uence water and chlorophyll contents after tree removal, and this 
subsequently changed the spectral canopy refl ectance. Our results indicate the potential for such tree removal to be 
detected with NDWI or CIRE from the second day of a deforestation event.
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Introduction. Forests play an important role in the global carbon cycle. The total carbon storage of the earth’s 
forests is greater than that of the entire atmosphere [1]. According to the Global Forest Resources Assessment of 2010, forests 
account for 31% of the world’s total land area. However, large areas of forest have been lost mainly because of deforestation 
[2–4], which impacts local socioeconomic development and global climate change [5] and causes wide scientifi c concern, 
especially in tropical region [6–8], while large areas of deciduous forests in temperate zones have also been either cleared 
for agriculture or destroyed through various other human activities [9–11]. It is therefore important to quantify and monitor 
deforestation in deciduous forests to help guide strategic decisions regarding global climate change and regional economic 
development.

Deforestation can be monitored using traditional fi eld-based forest inventory techniques and the capture of 
deforestation patterns by statistical sampling designs [12]. However, many traditional methods are time-consuming and 
do not yield results in a timely manner [13]. Remote sensing is widely used to detect and assess forest changes at various 
spatiotemporal scales. The MODIS instrument onboard the Aqua and Terra satellite platforms has acquired near-daily data 
that have been particularly benefi cial, especially for large regional detection and monitoring [14, 15]. Several methods have 
been developed using satellite images to detect and monitor deforestation, including visual interpretation, pixel- or object-
based methods, pattern decomposition coeffi cients, and vegetation index changes [13, 16–20]. However, few studies have 
focused on comparing vegetation spectral variables to identify which variables have a higher relative sensitivity for detecting 
deforestation.

In the present study, two types of deciduous forest, poplar (Populus lasiocarpa) and locust (Gleditsia triacanthos), 
which are deciduous forest and widely distributed in temperate zones, were investigated using fi eld-based spectroradiometers. 
We aimed primarily to examine spectral refl ectance and vegetation index changes in foliage from harvested trees, and to thus 
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identify the best indicators for detecting foliage changes and their potential for monitoring deforestation. In the study region 
described below, trees are generally selectively harvested or clear-cut and then left on the ground for several days. As their 
foliage senesces, its spectral refl ectance changes, thus infl uencing the radiance detected by a remote sensor. This study was 
designed to evaluate the temporal dynamics of foliage spectral refl ectance during this senescence period to determine when 
signifi cant refl ectance changes occur that may impact the detected radiance from an airborne or satellite sensor.

Methods. Acquisition of harvested tree foliage spectra. Trees were harvested from Jia County, Shangxi Province 
(38.295oN, 110.219oE) at 9:00 a.m. on May 25, 2011; 14 poplar trees and 13 locust trees with different diameters at breast 
height were harvested. For both species, fi ve sets of typical fresh branch samples were collected from the harvested trees and 
placed on barren ground in a plot approximately 2 × 2 m in size. We measured the leaf area index (LAI) for each sample and 
obtained the results of 1.5, 2.5, 4.5, 7.0, and 10.0 using a SunScan canopy analysis system. The spectral refl ectance signatures 
of the harvested tree foliage were measured by an ASD FieldSpec Pro spectroradiometer at 10 nm spectral resolution, over a 
wavelength range of 350–2,500 nm. Each set of refl ectance measurements consisted of fi ve branch samples with ten replicate 
readings and a white reference Spectralon panel reading. We calculated refl ectance by the ratio of spectral radiance refl ected 
by foliage to spectral radiance refl ected by the reference panel. Simultaneously, we measured the concentrations of leaf 
chlorophyll for each sample using a SPAD-502 meter with ten replicate readings. We also measured several meteorological 
parameters (including mean wind speed, air temperature, relative humidity, heat stress index, and dew point) using a portable 
Kestrel 3000. The time interval for each measurement sequence was approximately 1 h, with a total of 25 sets of observations 
collected over three clear and sunny days (May 25–27, 2011) for each of the harvested samples of poplar and locust tree 
foliage. In the fi rst two days, we missed the observations at 9:00 and 13:00 due to the infl uence of dew and heavy cloud 
shadow, respectively.

Analysis of spectral refl ectance and vegetation indices. To assess how well broadband sensors (e.g., MODIS) can 
detect foliage changes and their potential for monitoring deforestation, the above-mentioned spectral refl ectance curves were 
convolved into MODIS wavebands using the spectral response functions of MODIS bands 1–7 (band 1, 620–670 nm; band 2, 
841–876 nm; band 3, 459–479 nm; band 4, 545–565 nm; band 5, 1230–1250 nm; band 6, 1628–1652 nm; and band 7, 2105–
2155 nm). Vegetation indices (VIs) are commonly used in vegetation canopy studies because of their relative simplicity and 
robustness [21]. Structural VIs often rely on some combination of near-infrared (NIR) to red refl ectance, because increases 
in LAI result in decreasing red and increasing NIR refl ectance. Biochemical and stress-related indices change the absorbing 
wavelength based on biochemical parameters [22]. Widely used structural indices include the normalized difference 
vegetation index (NDVI) [23] and the enhanced vegetation index (EVI) [24]. Biochemistry and plant physiology/stress 
properties include water, chlorophyll, and fl uorescence, and their common VIs include the normalized difference water index 
(NDWI) [25], the simple ratio water index (SRWI) [26], the red-edge chlorophyll index (CIRE) [27], and the photochemical 
refl ectance index (PRI) [28]. Tree removal alters vegetation properties, including vegetation structure, biochemistry, and 
plant physiology/stress. Thus, based on the VI categories introduced by Thenkabail et al. [22], we selected several typical 
VIs (Table 1) to assess the applicability of foliage spectral change detection following harvest and the potential of different 
indices for monitoring deforestation.

The MODIS sensor has two NIR bands (bands 2 and 5) and two SWIR bands (bands 6 and 7). There are thus 
two, two, four, four, and two possible combinations for calculation of NDVI, EVI, NDWI, SRWI, and CIRE, respectively. 
Measured spectral refl ectance was used to calculate all possible combinations of vegetati on indices according to their 
respective equations (Table 1). Red edge refers to the region of rapid change in refl ectance of vegetation, characterized by 
a maximum slope in the wavelengths between 680 and 740 nm [22]. Thus, we obtained the refl ectance in red-edge position 
derived from the greatest fi rst-order derivative spectrum (RRE) [22]. PRI was calculated using measured spectral refl ectance 
at 531 and 570 nm.

Analysis of harvested tree foliage spectral refl ectance and vegetation index dynamics. Spectral refl ectance was found 
to vary in an almost identical manner throughout the whole band range and measurement period (May 25–27, 2011) after tree 
removal regardless of LAI values. Spectral refl ectance and vegetation indices of harvested foliage at different LAI values 
were therefore averaged for each of the poplar and locust samples for subsequent analysis.

We used coeffi cient of variation (CV) to evaluate temporal variations in spectral variables across the three-day 
period. CV is defi ned as the ratio of standard deviation (S) to mean value ( X ) over the time since the trees were harvested, 
as shown in the following equation:

CV = S X .



332

The CVs of all possible combined vegetation indices were compared, and it was found that The CV of NDVI 
calculated by MODIS bands 1 and 2 was larger than that of NDVI calculated by MODIS bands 1 and 5. Furthermore, The 
CVs of EVI (bands 1, 2, and 3), NDWI (bands 2 and 6), SRWI (bands 2 and 7), and CIRE (band 5) were found to be larger than 
those of other corresponding possible combinations. The same results were observed for both poplar and locust trees. Those 
VIs with the larger CVs were selected for further analysis regarding their variations with time after tree removal.

In addition, based on 25 observations obtained over three days, we calculated the correlation coeffi cients between 
foliage spectral variables and synchronously observed meteorological data to assess the meteorological effects on the speed 
of changes in refl ectance and VIs of harvested tree foliage.

Results and Discussion. Variation in spectral refl ectance with time after tree removal. Figure 1a shows variations in 
the spectral refl ectance of harvested poplar foliage, represented through MODIS bands 1–7 from May 25–27, 2011. Maximum 
refl ectance was observed at the end of each day during the fi rst two days after tree removal, and also at 13:00 on May 27. 
A general overall increase in refl ectance with time was found throughout MODIS bands 1–7. Based on CV values, refl ectance 
in MODIS band 7 (SWIR) exhibited the most signifi cant increase (from 0.09 to 0.28) with a CV of 0.28, followed by MODIS 
band 6 (SWIR) where refl ectance increased from 0.23 to 0.49 with a CV of 0.22. Smaller increases were also found in 
MODIS bands 1 (red), 3 (blue), 5 (NIR), and band 4 (green), in descending order. Both variations in spectral refl ectance and 
in CVs of deforested locust tree foliage were in complete agreement with those of harvested poplar tree foliage throughout 
MODIS bands 1–7 (Fig. 1b).

On the second day following tree removal, the red-edge position of the harvested poplar foliage exhibited a very 
signifi cant "blue shift", and was moved from 724 to 702 nm for poplar trees and from 730 to 719 nm for locust trees (Fig. 2a). 
The refl ectance in the red-edge position decreased sharply on the second day following tree removal (Fig. 2b). These results 
indicated that the red-edge position and refl ectance of foliage from harvested trees were very sensitive to time, and that tree 
removal could be detected from the second day following harvest. 

Variation in vegetation indices with time after tree removal. Harvested poplar foliage vegetation indices were 
normalized with their temporal variations after tree removal (Fig. 3). It was found that indices calculated from SWIR decreased 
more signifi cantly than others, especially for NDWI with CVs of 0.91 and 0.59 for poplar and locust trees, respectively. 
This was followed by a reversal of CIRE, SRWI, and PRI, and a weak decrease in EVI and NDVI. Hence, it was clear that 
structurally oriented VIs (e.g., NDVI and EVI) were less sensitive than water- and chlorophyll-related indices to the foliage 
refl ectance changes after tree removal. Thus, our results suggested that NDWI and CIRE was the most suitable vegetation 
indices for detection of foliage refl ectance changes after tree removal with the potential for timely detection of deforestation 
events in this region.

Relationships between meteorological parameters and the foliage spectral refl ectance dynamics. Based on the 
correlation coeffi cients (R) between foliage spectral variables and meteorological parameters (Fig. 4), no spectral variables were 
found to be signifi cantly correlated with wind speed and temperature. Conversely, relative humidity was found to be associated 
with decreasing refl ectance in MODIS bands 1–7 for poplars and MODIS bands 1 and 3–7 for locust trees. PRI of the poplar 
trees also exhibited positive signifi cant correlations (p < 0.001) with relative humidity. The heat stress index and dew point were 
associated with spectral variables of harvested tree foliage with a large value of R, particularly for refl ectance in the MODIS 
SWIR bands (bands 6 and 7) and vegetation indices NDWI and SRWI. Furthermore, chlorophyll concentration exhibited a 
very signifi cant correlation (p < 0.001) with spectral refl ectance and with the indices of harvested tree foliage.

TABLE 1. Selected Spectral Indices Used to Assess the Applicability of Foliage Spectral Changes Detection and the Potential 
for Monitoring Deforestation

Categorized Index Reference

Structure

Water
Chlorophyll

Light use effi ciency

NDVI = (RNIR – Rred)/(RNIR + Rred)
EVI = 2.5(RNIR – Rred)/(RNIR + 6Rred – 7.5Rblu + 1)
NDWI = (RNIR – RSWIR)/(RNIR + RSWIR)
SRWI = RNIR/RSWIR
CIRE = RNIR/RRE – 1
PRI = (R531 – R570)/ (R531 + R570)

[23]
[24]
[25]
[26]
[27]
[28]
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The heat stress index is a combination of temperature and humidity [29, 30], and the dew point is coupled with a 
number of atmospheric variables (e.g., mean surface temperature and relative humidity) [31]. Based on the relationships 
between meteorological parameters and spectral variables of the harvested tree foliage (Fig. 4), no signifi cant correlations 
(p < 0.01) were found between individual meteorological parameters (e.g., wind speed, temperature, and relative humidity) and 
most of refl ectance and indices. However, signifi cant correlations (p < 0.001) were observed for synthesized meteorological 
parameters (e.g., heat stress index and dew-point temperature) with refl ectance in the SWIR and chlorophyll-related indices 
(e.g., CIRE and PRI). 

Applicability and limitation. In the present study, we have found that spectral refl ectance and vegetation indices 
was able to detect changes in tree foliage in the days immediately following harvest with related potential for monitoring of 

Fig. 1. Temporal variations in spectral refl ectance of harvested tree foliage in MODIS 
bands 1–7 from May 25–27, 2011, for poplar (a) and locust trees (b).

Fig. 2. Variations in the red-edge position (a) and red-edge refl ectance (b) of harvested 
tree foliage  with time after tree removal from May 25–27, 2011.
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deforestation. Owing to some limitations in our method, the following issues should be considered when determining the 
applicability of this method.

The process of deforestation is not the same as that of defoliation (or withering); the latter is typically gradual and 
characterized by loss of leaves due to insect infestation, disease, environmental change (e.g., drought), or normal seasonal 
change (e.g., from summer to fall) for deciduous trees [32–34]. Conversely, the process of deforestation is sudden. Based on 
temporal variations in the spectral refl ectance and the indices of harvest tree foliage (Figs. 2 and 3), signifi cant changes in 
the red-edge position and sharp decreases in refl ectance were observed on the second day after harvest, followed by small 
fl uctuations. The same patterns were observed for NDWI and CIRE. We therefore propose comparing spectral variables of 
harvested tree foliage before and after a deforestation event as a method of detecting deforestation. In this method, red-edge 
position, refl ectance in the SWIR bands, and water- and chlorophyll-related indices (e.g., NDWI and CIRE) were the primary 
variables. In addition, we suggest consulting any long-term historical remote sensing records that may be available to capture 
seasonal patterns of proposed spectral variables following a deforestation event, and this will help to differentiate between 
deforestation and defoliation.

In this study, we convolved spectral refl ectance data into MODIS wavebands using spectral response functions to 
assess the capability of broadband sensors for detecting changes in spectral properties of tree foliage after deforestation. 
However, we did not resolve the scaling problem of coupling remote sensing data with that from a fi eld spectroradiometer. 
The spectral indices proposed to detect changes in harvested tree foliage after deforestation were NDWI and CIRE, which can 
be calculated from multispectral and hyperspectral images obtained from airborne sensors and satellites. Thus, many sources 
of remote sensing data should be available for this method. MODIS data (e.g., refl ectance product with a spatial resolution 
of about 500 m) have an advantage in monitoring a regional forest clearing but are not adequate for a small or sparse forest 
area, where the method of spectral unmixing or a combination with other higher resolution images helps to detect sub-
pixel changes [35–37]. Therefore, additional experimental research combined with other methods will be required to detect 
deforestation directly from multi-source remote sensing data in future study.

Poplar and locust trees are deciduous plants that are widely distributed in temperate zones. The proposed spectral 
refl ectance changes in short-wave infrared bands, red-edge position, and vegetation indices (NDWI and CIRE) are related 
to canopy moisture and chlorophyll content [22]. Loss of water and chlorophyll is the primary reason for the time-sensitive 
nature of our proposed spectral indices for detecting the spectral changes in the tree foliage after deforestation. For evergreen 
forests, which should not lose water or chlorophyll as quickly as deciduous trees after deforestation, the starting day of 
foliage spectral changes is not expected to be as soon as two days following harvest. Furthermore, for deciduous species, the 

Fig. 3. Variations in vegetation indices of harvested tree foliage with time from May 
25–27, 2011 after tree removal, for poplar (a) and locust trees (b).
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proposed method can only be applied during the leaf-on period. Based on the relationships between spectral refl ectance and 
vegetation indices of the harvested tree foliage and meteorological parameters (Fig. 4), the success of the proposed method, 
particularly with regard to the start time of tree foliage change detection, may be dependent on prevailing environmental 
conditions. This is particularly true in climates with signifi cant seasonal variation. Our experiment was conducted on very 
clear and sunny days with a heat stress index of about 25oC and a dew point of about 10oC. In future studies, we will conduct 
more experiments incorporating different environment conditions and seasonal effects, and including the same measurements 
over about 3-day period before deforestation. Additional forest types and tree samples should also be considered to validate 
the applicability of our method.

The forest background must also be considered in determining the applicability of our method. In this study, we 
ignored the infl uences of the background that would typically occur under a forest canopy because no background appeared 
in the fi eld of view in our experiments. Our proposed method was based on comparisons of spectral variables before and 
after a deforestation event, with particular attention given to sudden changes in these variables. Theoretically, we believe 
our proposed method can be used to detect tree foliage changes and has potential for monitoring deforestation in an area 
dominated by deciduous forest with bare or sparse vegetation background. However,  the disturbance generated by the 
background should be considered in the area where the understory is comprised of heavy vegetation. Our proposed method 
is not applicable to forest harvesting processes in which trees are removed from the forest and immediately taken away for 
processing, leaving only slash/debris and understory vegetation behind. It is only applicable to deforestation methods that 
leave foliage of harvested trees in a place for several days following harvest.

Conclusions. For the present study, we chose poplar and locust trees for fi eld experiments conducted over three 
consecutive sunny days. We used a spectroradiometer and a weather meter to explore the time sensitivities of spectral 
refl ectance and vegetation indices of tree foliage after harvesting. It was found that refl ectance in SWIR bands and the red-

Fig. 4. Correlation coeffi cients (R) between spectral variables (refl ectance and vegetation 
indices) of harvested tree foliage and meteorological parameters."B1-B7" and "Red 
edge" denote refl ectance in MODIS bands 1–7 and the red-edge position, respectively. 
For each spectral variable, the bottom and upper bars denote poplar and locust trees, as 
shown by the arrows in the fi gure. The gray bars on the right and left sides of the y axis 
indicate the positive and negative signifi cant correlations (p < 0.001), respectively.
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edge position and water- and chlorophyll-related indices (e.g., NDWI and CIred edge) were more time-sensitive to harvested 
tree foliage changes. Accordingly, these are proposed as primary indicators for detection of foliage changes, with these having 
potential for deforestation monitoring. Signifi cant correlations (p < 0.001) were observed between synthesized meteorological 
para meters (e.g., heat stress index and dew point) and spectral variables, and the second day after tree removal was found 
to be a suitable time to start detection, under a heat stress index of about 25oC or a dew point of about 10oC. To address the 
limitations of our study, future studies will focus primarily on monitoring deforestation over a large area with additional forest 
types using airborne sensors or satellite images. In particular, we intend to incorporate the infl uences of the understory and 
different environment conditions.
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