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DISCRIMINATION OF BREAST CANCER FROM NORMAL TISSUE 
WITH RAMAN SPECTROSCOPY AND CHEMOMETRICS

Q.-B. Li,a W. Wang, a Ch.-H. Liu,b and G.-J. Zhanga,* UDC 535.375.5:616-006.6

Conventional Raman spectra of normal and cancerous breast tissues were acquired at an excitation wavelength 
of 785 nm and subjected to a discrimination analysis. First the spectra were pretreated with wavelet transform 
and polynomial fi tting; next, cancerous tissue was identifi ed by applying an adaptive local hyperplane K-nearest 
neighbor (ALHK) method to the pretreated spectra. The best discrimination accuracy of the ALHK method was 
93.2%. In summary, normal and cancerous breast tissue were accurately distinguished by a miniature laser Raman 
spectrometer and the chemometrics method (ALHK), which might prove to be a portable and accessible diagnostic 
system.
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  Introduction. Breast cancer is among the major causes of female mortality. In 2012, about 63,300 cases of breast 
carcinoma in situ were newly diagnosed in the United States.   Breast cancer presumably accounts for 14% of all female cancer 
deaths in that country, second only to lung cancer [1]. In China, the incidence of breast cancer has also increased signifi cantly 
in recent years. In some large cities, such as Beijing, Shanghai, and Tianjin, breast cancer is the top-ranking malignant tumor 
in women (in terms of incidence) [2].

Early cancer diagnosis is crucial for implementing timely, effective, and ultimately successful treatments. As a 
form of molecular spectroscopy, Raman spectroscopy can detect cancer-induced changes in the molecular structure and 
composition of breast tissue. Before the appearance of clinical symptoms, cancer alters the structure and concentration of the 
main biomolecules co  nstituting the cells and tissues. Therefore, molecular spectroscopy is a potential tool for early tumor 
diagnosis [3–7].

Raman spectroscopy ha  s only recently emerged as a diagnostic technology for breast cancers. Thus far, diagnoses 
have been made by Fourier transform Raman spectroscopy (F  TRS), confocal Raman microspectroscopy (CRS), resonance 
Raman spectroscopy (RRS), surface-enhanced Raman spectroscopy (SERS), and conventional Raman spectroscopy (RS). 
The SERS technology cannot easily detect human cancer in vivo, as the samples must be attached to a SERS-active substrate, 
which is cumbersome to operate [8, 9]. FTRS, CRS, and RRS allow reduced fl uorescence and higher resolution of the Raman 
spectra and have been extensively investigated as breast cancer diagnosis tools [10–14]. However, these technologies generally 
require a large Raman spectrometer or a large desktop microscope, increasing the expense and reducing the portability of 
clinical diagnosis. In contrast, conventional Raman spectrometers are small, portable and low-cost. Combined with an optical 
fi ber probe, these spectrometers hold much promise for in vivo and in situ cancer detection.

The disadvantag  es of miniature Raman spectrometers are strong fl uorescence background interference and low 
spectral signal-to-noise ratio, both of which lower the discrimination accuracy of common data analysis methods. Few studies 
have considered the miniature Raman spectrometer as an RS tool for detecting breast cancer [15–17]. Therefore, if one could 
identify a discrimination analysis method with high prediction accuracy, the usefulness of the miniature Raman spectrometers 
for this purpose would be greatly enhanced. In this paper, the conventional Raman spectra of breast tissues were acquired by 
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a miniature laser Raman spectrometer with the excitation wavelength of 785 nm. Prior to analysis, the noise and fl uorescence 
background were eliminated by wavelet transform and polynomial fi tting, respectively. Finally, cancerous and normal breast 
tissues were separated by a new classifi cation algorithm called adaptive local hyperplane K-nearest neighbor (ALHK), a 
variant of the adaptive local hyperplane (ALH) algorithm, applied to the preprocessed spectra. The present study successfully 
detected cancer by a miniature Raman spectrometer, promoting the development of a portable clinical diagnostic technology. 

Materials and Methods. Tissue specimens. Normal and malignant samples of human breast tissue were obtained 
from the National Disease Research Interchange (NDRI) and the Cooperation Human Tissue Network (CHTN). The 
cancerous tissues exhibited various stages of disease. All cancer tissue specimens were invasive ductal carcinoma (IDC), but 
two of them were ductal carcinoma in situ (DCIS). Most of the tissues were sourced from female patients aged 32 to 71 years 
(median age 55 years). One normal tissue specimen was taken from a female aged 16 years. 

The tissue specimens were not chemically treated prior to spectroscopic analysis. They were maintained 
in liquid nitrogen before being packed in dry ice and shipped. All tissues arrived still frozen on dry ice, uncut and 
irregularly shaped. When required for spectroscopic study, they were removed from storage at –80oC and thawed to ambient 
room temperature.

Acquisition of N IR conventional Raman spectra of breast tissues. In total, 368 Raman spectra were acquired from 
11 tissue samples (four normal, seven cancerous) by an R-2000 NIR-Raman spectrometer (America Ocean Optics Inc.), a 
miniature spectrometer that excites at 785 nm. This Raman system comprises a multimode solid-state diode laser with an 
output power of 500 mW at room temperature and an "all-in-one" fi ber optic probe with a spectral resolution of 15 cm–1. 
At the focal point in the tissue specimen, the laser power is 175 mW, and the excitation spot size is 0.5 mm. The Raman 
spectra were acquired in the backscattered direction with an integration time of 30 s. Three spectra were collected at each 
location and averaged to reduce the noise level. 

Spectra preprocessing method. The spectra collected by the Ocean Optics R-2000 Raman spectrometer were noisy 
and contained a strong fl uorescence background. First the noise was removed by wavelet transform; next, the fl uo  rescence 
background was removed by fi tting the smoothed spectra to a third-order polynomial function using Matlab R2011b software. 
The wavelet transform [18] is briefl y described below.

The discrete wavelet transform is given by 
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where ψJ,k(t) is the wavelet basis function, cJ,k is the Jth approximation coeffi cient of the spectral signal (denoting 
the low-frequency coeffi cient), and dj,k is the jth detail coeffi cient of the spectral signal (denoting the higher-frequency 
coeffi cients).

The wavelet transform basically projects the spectral signal in the wavelet basis function, decomposes the spectrum 
signal into its time and frequency components, and obtains the wavelet approximation and high-resolution c  oeffi cients. The 
high-resolution signals refl ect the local nuances, but most of the very high-frequency components constitute noise. Thus, the 
wavelet transform is used to remove the noise from the Raman spectra and to optimize the spectral quality. 

The spectral preprocessing is implemented as follows.
Step 1. Choose a wavelet function and a decomposition scale.
Step 2. Remove th  e high-frequency coeffi cients of the wavelet decomposition by threshold fi ltering. Here we adopt 

a soft threshold function [19]:
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Step 3. Reconstruct the spectrum signal from the lowest-frequency coeffi cient (the Jth coeffi cient) and the higher-
frequency coeffi cients (1–j) that have passed the threshold processing.

Discrimination analysis method. The cancerous and normal tissue samples were classifi ed by the ALHK classifi er, 
a variant of the a  daptive local hyperplane (ALH) that was recently proposed by Yang et al. [20, 21]. The ALHK classifi er 
operates similarly to ALH but adopts a different neighborhood selection procedure. More specifi cally, it constructs the 
K-neighborhood as the set of K training samples in each cl  ass with the smallest spatial separation from the given query q.

The ALHK algorithm proceeds as follows.
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Suppose that the training set contains L samples in J classes. Each training sample consists of d input features 
xi = (xi1, …, xid)  T with known class labels yi = c(i = 1, …, L; c = 1, …, J). The goal is to predict the class label of a query with 
input vector q = (q1, …, qd)T.

Step 1. Calculate the feature   weight w of the training sample as follows:
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where ⎯xj denotes the jth component of the grand class centroid and ⎯xcj denotes the jth component of the centroid of class c. 
The indicator function I(•) equals 1 when yi = c, and 0 otherwise. T is a positive param  eter that controls the infl uence of Rj 
on wj.

Step 2. Calculate the weighted Euclidean distance metric D between xi and q:
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Step 3. Based on the Euclidean distance D, select the K nearest neighbors of class c, pc = (pc1, …, pcK), for the given 
query q, then construct the local hyperplane of class c containing the pc:
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Step 4. Calculate the minimum distance between q and LHc(q):
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where the regularization parameter λ prevents α from becoming too large. Solving the equation ∂Jc(q)/∂α = 0, we obtain 
α = (UTV + λInc)/(UT(q – mc))J, where UT = VTW.

Step 5. Assign a class label to q: label(q) = argmincJc(q).
Results and Discussion. Conventional NIR laser Raman s  pectra. Each Raman spectrum was labeled according 

to the pathological diagnosis of the tissue. The scan region of each spectrum was 700–1800 cm–1. In this study, noise was 
reduced by a Symmlet-5 wavelet fi lter and a four-decomposition scale, and the fl uorescent background was removed by a 
third-order polynomial. Typical Raman spectra of normal and cancerous tissues before and after preprocessing are shown in 
Fig. 1.

Although clear peaks appear in the raw spectrum of the normal tissue, the peaks in the spectrum of the cancerous 
tissues are obscured by noise and the fl uorescent background (Fig. 1a). The quality of the Raman spectra was greatly improved 
by preprocessing. In Fig. 1b, the Raman spectra are smoother, and the Raman peaks of both tissue types are clearer, than in 
Fig. 1. Most importantly, the preprocessing highlights the differences between the Raman spectra of normal and cancerous 
tissues. The Raman peaks occur at 827, 1078, 1305, 1447, 1653, and 1747 cm–1 in normal tissues, and at 815, 1078, 1243, 
1308, 1453, 1663, and 1750 cm–1 in cancerous tissues. The assignments of the individual peaks are listed in Table 1 [10].

According to Fig. 1 and Table 1, normal tissue displays four peaks attributable to lipid molecules (1078, 1447, 1653, 
1747 cm–1), whereas cancerous tissue displays only two lipid peaks (1078 and 1750 cm–1). Moreover, the peaks at 1078 and 
1747 cm–1 are attenuated in the cancerous tissues. Meanwhile, peaks representing protein molecules appear at 1243, 1308  , 
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1453, and 1663 cm–1 in cancerous tissues. In   contrast, normal tissue displays a sole prominent protein peak at 1305 cm–1; 
the others are submerged by the scattering spectra of the lipid molecules. The peak representing nucleic acid molecules 
appears at 815 and 827 cm–1 in cancerous and normal tissues, respectively, and is attenuated in the cancerous tissue. These 
changes refl ect the changing confi gurations and components and quantities of proteins, lipids, and nucleic acids during tumor 
formation. The proportions of proteins and lipids were signifi cantly increased and decreased respectively in the cancerous 
tissues, as reported in previous studies [10, 22].

Statistical analysis. After detecting the outliers, the conventional NIR-Raman spectra of 145 normal tissues and 
205 cancerous tissues were classifi ed by ALHK. Two  -thirds of the spectra from the normal and cancerous tissues were 
randomly selected as the training set; the remaining one-third was reserved as the test set. The classifi cation procedure fi rst 
normalizes the training set to zero mean and unit variance, then normalizes the test set to the corresponding training mean 
and variance. Finally, the test set is classifi ed by   ALHK. To demonstrate the effect of spectral preprocessing, the classifi cation 
was performed on both raw and preprocessed spectra.

In this study, the three  ALHK parameters   K, T, and λ were varied as 1–30, 1–10 (in 0.1 increments), and 
1–10, respectively. The result yielding the highest testing accuracy was assumed as the optimized classifi cation result. As 
shown in Table 2, the highest testing accuracy attained by ALHK was 90.6% on the raw spectra, improving to 93.2% on the 

Fig. 1. Typical Raman spectra before (a) and after pre-processing (b).

TABLE 1. Peak Raman Positions and Assignments in Breast Tissue

Peak position, cm–1 Major assignment

       827/815 O–P–O stretch (nucleic acid) 
       1078 C–C or C–O stretch (lipid) 
       1243 Amide III(C–N stretch) (protein) 

       1305/1308 Amide III, α-helix, C–C str&C–H (protein) 
       1447 Scissoring mode of methylene (CH2) (lipid) 
       1453 CH2 deformation (protein) 
       1653 lipid 
       1663 Amide I(C=O stretch) (protein) 

       1747/1750 C=O stretch (lipid) 
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preprocessed spectra. The optimal parameters were determined as K = 10,   T = 6.6, and λ = 1 before preprocessing, and as 
K = 18, T = 2.4, and λ = 10 after preprocessing. The classifi cation accuracies of ALHK for different K are presented in Fig. 
2. Note that the classifi cation accuracy is never worsened by the preprocessing but improves it by up to 6.8%, depending on 
the value of K. This result confi rms that preprocessing effectively improves the classifi cation accuracy.

 Conclusions. Conventional laser Raman spectra of normal and cancerous breast tissues were acquired by a miniature 
spectrometer   excited at 785 nm. After preprocessing by wavelet transform and polynomial fi tting, the major Raman peaks of 
the normal tissue spectra appeared at 1078, 1447, 1653, and 1747 cm–1, providing information on lipid molecules, whereas 
the spectra of cancerous tissues peaked at 1243, 1308, 1453, and 1663 cm–1, indicative of protein molecules. Therefore, 
tumor development is characterized by a signifi cant increase in protein content and a large reduction in lipid content. Finally, 
we classifi ed the preprocessed Raman spectra by an ALHK classifi er. The highest prediction accuracy was 93.2%. For a 
given K, preprocessing improved the classifi cation accuracy by up to 6.8%, indicating that ALHK with preprocessing can 
effectively recognize cancerous tissue. We conclude that the miniature spectrometer is a viable diagnostic tool for breast 
cancer and could prove to be a portable clinical diagnosis technology.
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