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NON-EMPIRICAL ANHARMONIC ANALYSIS OF VIBRATIONAL STATES 
OF BF3 AND BH3 USING SYMMETRY COORDINATES

G. A. Pitsevich,a* A. E. Malevich,a E. U. Sleptsov,a  UDC 539.19
and V. V. Sapeshkob

Force fi elds, anharmonic constant matrices, and harmonic and anharmonic frequencies of vibrational states of 
BF3 and BH3 were calculated using B3LYP/cc-pVTZ/cc-pVQZ/cc-pV5Z/acc-pV5Z approximations. Anharmonic 
IR spectra of the molecules were calculated by the vibrational self-consistent fi eld (VSCF) method included in 
the quantum chemistry package GAMESS. Frequencies of totally symmetric stretching vibrations were refi ned by 
constructing potential surfaces using symmetry coordinates. The Schroedinger equation transformed into symmetry 
coordinates was solved numerically using construction followed by diagonalization of the Hamiltonian matrix. It 
was shown that the last approach reproduced the experimental vibrational frequencies for BF3 more accurately than 
those obtained in the anharmonic approximation. The frequencies of the totally symmetric stretching vibration of BH3, 
which is especially interesting because of the lack of experimental data, that were calculated in the harmonic and 
anharmonic approximations and by constructing potential surfaces were 2565, 2503, and 2539 cm–1, respectively.
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Introduction. Borane (BH3) is the simplest boron hydride. Boron hydrides are electron-defi cient compounds, i.e., 
they lack enough electrons to bind all atoms by ordinary two-electron bonds. For example, BH3 has a total of six valence 
electrons. It is planar in the singlet ground state and belongs to symmetry group D3h. It is rather diffi cult to observe BH3 
because it quickly dimerizes into the more stable compound diborane (B2H6). The B atoms in B2H6 are bonded to H atoms 
through ordinary bonds. However, the B atoms are bonded through three-center "bridging" bonds. Despite the fact that BH3 
is known only in complexes, e.g., with amines, its transient existence was postulated in order to explain many chemical 
reactions involving boron hydrides. The high reactivity of BH3 hinders observation of its gas-phase spectrum. Hence, there is 
a problem with observing electronic transitions because the excited electronic states that are attainable from the ground state 
can be dissociative. The IR spectrum of BH3 was fi rst reported only in 1971 because of its instability [1]. Several proposed 
assignments [1] were disputed in later experimental studies [2, 3]. The Raman spectrum of this molecule has not been 
published. These facts emphasize the need for theoretical investigations of this molecule, especially its totally symmetric 
vibrations that are inactive in the IR spectrum. The BH3 molecule is well suited for theoretical calculations because of its 
small size. Its structure and vibrational spectra were the subjects of many theoretical investigations [4–7]. However, they all 
were performed in a harmonic approximation despite the fact that involvement of the light H atom in BH3 vibrations suggests 
that anharmonism effects should appear.

BF3, in contrast with BH3, is one of several stable XY3 gases with D3h symmetry and the subject of many spectral 
investigations. Both IR and Raman spectra of this compound were reported [8–21]. Therefore, BF3 can be considered a 
"touchstone" for methods used to calculate theoretically BH3 vibrational spectra.

Group Analysis of BF3 and BH3 Molecular Vibrations. BH3 and BF3 (Fig. 1) have point-group symmetry D3h. Six 
of its vibrations are represented by the following symmetry types:

Γυ = 11A′  + 21A′′  + 2E' .
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Figure 1 shows that the only totally symmetric vibration was related to B–X, where X = H or F, stretching coordinates. 
Thus, the totally symmetric B–X stretching vibrations cannot be mixed with other in-plane and/or out-of-plane molecular 
coordinates. Of the three symmetry types represented in Γυ, only 2A′′  is asymmetric relative to the horizontal symmetry plane. 
Therefore, the out-of-plane B–X bending vibration belongs to this type. Obviously, it also does not mix with another type 
of coordinates. The two degenerate E′ vibrations are asymmetric stretching and in-plane bending B–X vibrations. Although 
the energies of these vibrations differ, they can be partially mixed. Vibrations of the 1A′  and E′ types are active in the Raman 
spectrum; 2A′′  and E′, in the IR spectrum. Thus, only four fundamental vibrations of different frequency can occur in BH3 and 
BF3 vibrational spectra. The aforementioned also indicates that experimental data on the frequency of the totally symmetric 
B–H stretching vibration in BH3 are missing.

Calculations. The geometry, harmonic and anharmonic vibrational spectra, and potential surfaces (1D potential 
energy surfaces, 1D-PES) of BH3 and BF3 were calculated using the GAMESS quantum-chemical package [22] using density 
functional theory DFT/B3LYP [23] for basis set cc-pVTZ [24]. Anharmonic IR spectra were calculated using a vibrational 
self-consistent fi eld (VSCF) method [25]. The structure and vibrational spectra of BH3 were also calculated using basis sets 
cc-pVQZ, acc-pVQZ, cc-pV5Z, and acc-pV5Z [24]. 1D-PES for B–X stretching vibrations were constructed using symmetry 
coordinates:

 
s as as
1 1 2 3 2 1 2 3 3 2 3( ) 3 , (2 ) 6 , ( ) 2 .q q q q q q q q q q q= + + = − − = −   (1)

For a molecule with the geometry shown in Fig. 1 and for which all natural coordinates except stretching ones are 
fi xed, the Hamiltonian can be written:
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where according to the literature [26]:

 G11 = G22 = G33 = –ħ2/2μBX = – ħ2(MB + MX)/2MBMX ,  (3)

G12 = G13 = G23 = – ħ2cosθ/2MB = {θ = 2π/3} = + ħ2/4MB .

Using Eqs. (1)–(3), we obtain
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Fig. 1. Molecular confi guration of BH3 and BF3 with atomic numbering and bond coordinate 
numbers.
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Despite the fact that Eqs. (5) and (6) appear fully identical, their potential energies are considerably different. 
According to Eq. (1) and the equivalency of stretching coordinates q1, q2, and q3, the function U(q3

as) should be symmetric 
relative to the ordinate axis whereas U(q2

as) does not satisfy this requirement. Potential surfaces were calculated in 0.1 Å steps 
with a coordinate variation interval of 1.5 Å. Schroedinger equations with Hamiltonian operators of the types in Eqs. (4)–(6) 
were solved numerically. The solution method was reported before [27, 28].

The use of symmetry coordinates seemed interesting because rather than constructing 3D-PES if natural coordinates 
q1, q2, and q3 were used, it was suffi cient to construct three 1D-PES in order to determine the B–X stretching frequencies. For 
this, their anharmonism was fully considered and computational losses were signifi cantly economized. In fact, assuming that 
calculating the energy at 15 points for a single degree of freedom was suffi cient to attain the required accuracy, the system 
energy at 153 (3375) points had to be calculated to construct 3D-PES whereas a total of 45 points had to be calculated for the 
three 1D-PES.

Calculation of BF3 Vibrational States. We used standard designations for BH3 and BF3 vibrations: 1
BX
A′ν , BX

E′ν , 
XBX
E′δ , 2

XBX
A′′δ . Obviously, the amplitudes of BF3 vibrations were small so that it could be assumed that the calculated harmonic 

vibrational frequencies would agree well with the experimental values. The adequacy of the 1D-calculations of the vibrational 
energy levels could also be checked using symmetry coordinates to construct the PES. Figures 2 and 3 show 1D-PES for symmetry 
coordinates q1

s, q2
as, and q3

as.
As noted earlier, the function U(q3

as) (Fig. 3a) was symmetric relative to the ordinate axis whereas U(q2
as) and especially 

U(q1
s) were asymmetric relative to this axis. Table 1 lists BF3 vibrational frequencies that were calculated in harmonic and 

anharmonic approximations and also using symmetry coordinates to construct 1D-PES.
It is noteworthy that the 1

BX
A′ν  values (887 cm–1) calculated using 1D-PES agreed excellently with the experimental ones 

(888 cm–1) and those obtained in the harmonic approximation (889 cm–1). The frequency of this vibration that was calculated in 
the anharmonic approximation (866 cm–1) was considerably less than the experimental value. This confi rmed the known tendency 
to overestimate anharmonism of vibrations when calculating it using the standard model and second-order perturbation theory 
[29]. It is noteworthy that the discrepancy in the BX

E′ν  value estimated using 1D-PES and that obtained experimentally was due 
mainly to mixing of stretching and bending coordinates of the same symmetry in this type of vibration. This was not taken into 
account in calculations using PES construction. In fact, the fraction of B–F stretching coordinates was 100% in the potential 
energy distribution (PED) of the BX

E′ν  vibration whereas the fraction of stretching coordinates was 93% in the PED of the 1
BX
A′ν   

vibration; the fraction of F–B–F in-plane bending coordinates, 7%. 

Fig. 2. Calculated PES for symmetric vibration 1
BF
A′ν .
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Let us estimate the frequencies of BF3 molecular symmetric and asymmetric stretching vibrations with neglect of 
kinematic and force coupling with the bending coordinates. For this, the initially calculated force fi eld was recalculated from 
mdyn/Å, mdyn·Å/rad2, and mdyn/rad (for force constants for bond–bond, angle–angle, and bond–angle coupling, respectively) 
into 10–6 cm–2 using the coeffi cients 1.5601, 1.3131, and 1.4313. The calculated equilibrium geometry and force fi eld recalculated 
in units of cm–2 were used to calculate the kinematic-coeffi cient matrix in pulse mode and the force-constant matrix using the 
literature [30].

We were interested in the submatrix of the kinematic-coeffi cient and force-constant matrices of dimension 3 × 3 for 
coordinates q1, q2, and q3. According to the calculations, they were written:

                 0.1579074          –0.05031982     –0.05031877          11.56429 ⋅ 106          1.120427 ⋅ 106      1.112183 ⋅ 106

               –0.05031982          0.1579074       –0.05031877          1.120427 ⋅ 106          11.56429 ⋅ 106      1.112183 ⋅ 106

               –0.05031877        –0.05031877       0.1579074            1.112183 ⋅ 106          1.112183 ⋅ 106      11.56511 ⋅ 106

Let us diagonalize the matrices separately using the fact that the diagonalized matrix is written:

 

2 0 0
0 0
0 0

b a
b a

b a

+⎛ ⎞
⎜ ⎟−⎜ ⎟
⎜ ⎟−⎝ ⎠

 ,  (7)

where a are off-diagonal and b, diagonal elements of the starting diagonal matrix.

Fig. 3. Calculated PES for asymmetric vibration BX
E′ν  related to the coordinate change for 

q3
as (a) and q2

as (b).

TABLE 1. Calculated and Experimental Frequencies (ν, cm–1) of BF3 Fundamental Vibrations

Mode
B3LYP/cc-pVTZ B3LYP/cc-pVTZ

νexp [20, 21]
νharm νanh ν1D

1
BX

′νA  (ν1) 889 866 887 888

BX
E′ν  (ν3) 1458 1530

1286
1490
1482 1453

XBX
′δE  (ν4) 475 515

326 – 480

2
XBX

′′δA  (ν2) 683 642 – 691
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Taking into account Matrix (7), we fi nd the following values for the diagonal elements: 0.05727/0.20823 and 
13.80514·106/10.44386·106 cm–2, respectively. By multiplying them pairwise after extracting the square root, we obtain the 
frequencies of the B–F totally symmetric and asymmetric stretching vibrations as 889 and 1474 cm–1. It can be seen that the 
frequency of the totally symmetric vibration practically did not change whereas that of the asymmetric vibration was in fact 
greater without coupling with other internal coordinates.

Calculation of BH3 Vibrational States. It is noteworthy in switching to an examination of BH3 that the reduced 
mass according to Eq. (4) in the totally symmetric stretching vibration is equal to the mass of atom X. Because the masses of 
F and H differ by about 20 times, we were correct to expect that the amplitude of these vibrations should be much greater for 
BH3 than for BF3. The amplitude increase of the molecular vibrations required more complete information about the shape of 
the PES not only near its minimum but also at rather large distances from it [31–35]. The calculated diagonal anharmonicity 
constants 3BF

11χ  = –0.799 cm–1 and 3BH
11χ  = –11.644 cm–1 (lower indices correspond to the numbering of normal modes in 

Tables 1 and 2) were also indicative of greater anharmonicity of B –X stretching vibrations in BH3 than in BF3. Table 2 
presents frequencies of BH3 molecular vibrations that were calculated in harmonic and anharmonic approximations using 
various basis sets in addition to experimental data [1–3] and results of theoretical harmonic calculations of BH3 vibration 
frequencies using the CCSD(T)/TZ2P(f,d) approximation [36].

Table 2 shows that the experimental results [1] raised serious doubts. Moreover, the experimental frequencies of 
asymmetric stretching and out-of-plane vibrations ( BH

E′ν  and 2
HBH
A′′δ ) agreed well with those calculated in the anharmonic 

approximation. It is noteworthy that increasing the size of the basis set had little effect on the calculated vibrational frequencies. 
The 1D-PES for symmetric stretching coordinate q1

s [Eq. (1)] (Fig. 4) was calculated in the B3LYP/cc-pVTZ approximation.
Table 3 presents the calculated energies of the fi ve deepest-lying A1′-type vibrational states of BH3 and the frequencies 

of fundamental vibration 1
BH
A′ν  and several of its overtones. By using the known formula [37]

overton fund1 ,
2ii i iχ = ν − ν

TABLE 2. Calculated and Experimental Frequencies (ν, cm–1) of BH3 Vibrations

Mode
B3LYP/cc-pVTZ B3LYP/cc-pVQZ B3LYP/acc-pVQZ B3LYP/acc-pV5Z

νharm νanh νharm νanh νharm νanh νharm νanh
νharm 
[36] νexp 

1
BH
A′ν (ν1) 2565 2503 2564 2507 2564 2507 2564 2510 2567 –

BH
E′ν (ν3) 2692 2600

2590 2690 2604
2589 2690 2604

2590 2690 2608
2592 2696 2602 [2, 3]

2808 [1]

HBH
E′δ (ν4) 1205 1186

1201 1206 1186
1203 1206 1187

1203 1206 1194
1209 1223 –1604 [1]

2
HBH
A′′δ (ν2) 1160 1173 1161 1174 1161 1177 1161 1177 1163 1141 [2, 3]

1125 [1]

TABLE 3. Calculated Energies of B–H Totally Symmetric Stretching Vibrations and Transition Frequencies in BH3

Vibrational 
quantum number En, cm–1 1

BH
A′ν , cm–1 1

BH2 ′νA , cm–11 1
BH3 A′ν , cm–1 1

BH4 A′ν , cm–11

0 1279 – – – –
1 3818 2539 – – –
2 6331 – 5052 – –
3 8820 – – 7541 –
4 11,283 – – – 10,004
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harmonicity constant χ11 for 1
BH
A′ν  (–12.54 cm–1) can be found.

The calculated frequency of fundamental vibration 1
BH
A′ν  was 2538.54 cm–1. It can be seen that this value was between 

those obtained in the harmonic (2565 cm–1) and anharmonic (2503 cm–1) approximations. This was analogous to the situation 
with BF3. Therefore, there was a basis to assume that the actual B–H totally symmetric stretching frequency in BH3 was 
~2540 cm–1.

Conclusions. The research produced a kinetic energy Hamiltonian in symmetry coordinates. Potential surfaces were 
calculated using B–H and B–F totally symmetric coordinates and B–F asymmetric coordinates, frequencies of harmonic and 
anharmonic molecular vibrations of BH3 and BF3, and frequencies of B–X totally symmetric stretching vibrations in BH3 
(2538.54 cm–1) and BF3 (887 cm–1) using a numerical solution of the Schroedinger equation. The calculations agreed well 
with existing experimental data. Calculations performed using the potential surfaces were preferred over calculations using 
the standard model for calculating anharmonism effects and simultaneously allowed computation time to be reduced by 
several orders of magnitude.
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