
Vol.:(0123456789)

Journal of Applied Phycology (2024) 36:2029–2037 
https://doi.org/10.1007/s10811-024-03228-8

RESEARCH

Natural biocontrol of a Porphyra sp. pest on farmed Gracilaria chilensis 
by a pythiosis outbreak

Liliana Muñoz1,2 · David J. Patiño1 · Pedro Murúa1,3 

Received: 6 February 2024 / Revised: 6 March 2024 / Accepted: 9 March 2024 / Published online: 1 April 2024 
© The Author(s), under exclusive licence to Springer Nature B.V. 2024

Abstract
Gracilaria chilensis (a.k.a. pelillo) is the most produced seaweed in Chile and Latin America, yet its cultivation has histori-
cally faced lots of pest-associated constrains that threat its profitability and sustainability. Pests show temporal cycles of 
recruitment, growth and death/senescence, variation normally linked with sharp changes in environmental factors occurring 
in estuarine areas whereby Gracilaria is cultivated. Here we report the appearance of a bladed Bangiales species epiphytic on 
long-line farmed Gracilaria and identified as Porphyra. This species recruits to cover up to 50–72% of G. chilensis early in a 
suspended set-up in spring, until a filamentous fungal-like organism colonizes Porphyra blades, infecting a wide proportion 
of its tissue. After this outbreak, Porphyra recruits collapse, disappearing in few weeks from farmed Gracilaria. Observations 
of diseased individuals, and subsequent isolation and marker-assisted taxonomy of the pathogen, provide evidence for the 
identification of this organism as Pythium porphyrae, the aetiological agent for the red rot disease in commercial nori/gim 
in Asia. This is the first reported case for P. porphyrae in Chile and the Southeastern Pacific as well as for a disease-driven 
natural biocontrol of a Gracilaria pest alga, suggesting an unknown -yet considerable- cryptic biodiversity acting as natural 
regulators of natural pests during a Gracilaria cultivation cycle.
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Introduction

Gracilaria production has become a significant component 
of the global aquaculture industry. With its versatile appli-
cations in food, pharmaceuticals, cosmetics, and biofuel, 
Gracilaria cultivation has expanded worldwide (Ferdouse 
et al. 2018). Several countries have emerged as key players 
in Gracilaria production, including China, Indonesia, the 
Philippines, Vietnam, and Chile (Mantri et al. 2023). As 
global demand for seaweed products continues to rise, the 
production of Gracilaria is poised to play an increasingly 

vital role in meeting these growing needs while promoting 
economic development and environmental sustainability. 
Concomitantly, Gracilaria also represent a valuable resource 
for local communities, as its farming is carried out mainly by 
local fishermen, contributing directly or indirectly to meet at 
least five independent United Nations SDGs goals (goals 1, 
5, 8, 12 and 14; see https:// sdgs. un. org/ goals).

Gracilaria chilensis (a.k.a. pelillo) is the most produced 
seaweed in Chile via aquaculture (Buschmann et al. 2017). 
Chilean farmers have adopted both traditional direct “off-
bottom” planting (Buschmann et al. 1995) and innovative 
farming methods, utilizing coastal ponds (Santelices and 
Doty 1989), long-lines (Westermeier et al. 1993), indoor 
(Caroca-Valencia et al. 2023) and integrated multi-trophic 
systems (Abreu et al. 2009) to grow this seaweed. Histori-
cally, pelillo farming in Chile has faced recurrent pest out-
breaks which stagnate the expansion of the Chilean industry 
(Mendez et al. 2024). Pests such as epiphytic organisms, 
fouling species, grazers, and pathogens can compete with 
Gracilaria for resources, inhibit its photosynthetic effi-
ciency, and cause physical damage to the seaweed fronds 
(Buschmann et al. 1997; Leal et al. 2020). As a result, the 
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affected G. chilensis may exhibit stunted growth, decreased 
reproductive output, and increased susceptibility to diseases 
(Fletcher 1995). Moreover, pest and disease outbreaks can 
escalate rapidly, spreading between farms or wild stocks, 
exacerbating the ecological impact and posing a significant 
biosecurity risk to the surrounding marine environment 
(Murúa et al. 2023).

A poorly studied aspect on seaweed farming is the inter-
action of cultivated stocks with local ecosystems, for exam-
ple pest ecology. In terms of Gracilaria pests, there is some 
knowledge of algal pests being controlled by grazers such as 
polychaetes controlled by foraging seabirds (Martínez-Curci 
et al. 2023). Nevertheless pathogen-mediated biocontrol is 
much as unclear as the general knowledge of algal disease 
in Latin America (Murúa et al. 2021). In recent observa-
tions within a G. chilensis suspended system, we identify 
a fungal-like outbreak that unexpectedly acts as a natural 
biocontrol agent, effectively suppressing a prevalent seaweed 
pest population of Porphyra. We identified the oomycete 
species responsible for such pest control, their interactions 
with the targeted pest, and the potential implications for 
sustainable Gracilaria farming. By exploring the ecological 
factors contributing to the fungal outbreak and its impact on 
pest populations, we hope to gain valuable insights into the 
natural biocontrol mechanisms in seaweed farming systems. 
This research not only highlights the potential of utilizing 
natural agents for pest management but also offers prospects 
for developing eco-friendly strategies to enhance the resil-
ience and productivity of Gracilaria cultivation.

Materials and methods

Sampling

A suspended Gracilaria chilensis set-up was installed in 
Cariquilda estuary (41.624°S; 73.591°W: Fig. 1A) in spring 
2022 (28–09-2022), in order to evaluate epiphyte succes-
sion of pests on a biweekly basis. Five 5 m long long-lines 
(n = 5) seeded at ca.120 g  m−1 were installed superficially 
(1 m depth). From every long-line, 30 cm were harvested 
biweekly for Gracilaria biomass and pest load estimations. 
In particular, we focused on epiphytic Porphyra (Fig. 1B), 
which was estimated by i) its coverage on 50 randomly har-
vested Gracilaria filaments measured linearly on a millim-
eter paper and ii) the epiphyte weight in terms of 100 g of 
its basiphyte. As a matter of fact, both proxies are correlated 
(R2c = 0.999; p = 0.003; Fig. 2A), and coverage will be used 
for Porphyra abundance hereafter. Additionally, fifteen Por-
phyra individuals per sample were dissected for the estima-
tion of the prevalence of the fungal-like disease.

Statistical analyses were carried out using R (R Core 
Team 2018). To demonstrate a potential link between 

coverage and weight of Porphyra recruits, data were fit to a 
generalised linear mixed model (GLMM) with Poisson error 
structure using the {glmer} function of the “lme4” package, 
where long-line measured and time (n° week) were set-up 
as random effects (Bates et al. 2015). Likewise, to assess 
the association Pythium prevalence and Porphyra coverage 
or week, another GLMM was performed with Poisson error 
structure and long-line as random effect model. Pairwise 
comparisons were done applying a Tukey test on the GLMM 
models using the library “lsmeans” (Lenth 2016). Both con-
ditional (r2c, fixed, and random effects) and marginal (r2m, 
fixed-factors effects) goodness of the fits were calculated to 
estimate the impact of our random effects (Johnson 2014).

Oomycete isolation

Porphyra blades symptomatic for the red rot disease were 
acquired from our Gracilaria farm facility by 10–11-2022. 
These samples were carefully stored in 50 mL Falcon tubes 
in a cooled container with ice packs and transported to the 
FICOPAT lab (UACh) in Puerto Montt, Chile. To isolate 
the pathogen, we placed infected tissues (ca. 3 mm diameter 
each) on 1.7% corn meal agar (CMA BBL) plates, prepared 
in filtered (0.2 µm) and autoclaved seawater from the estu-
ary with a salinity of 25 PSU. Additionally, before pouring 
the agar, we supplemented with 200 mg  mL−1 of penicillin 
and streptomycin sulphate to prevent bacterial contamination 
(Atami et al. 2009).

The agar dishes were sealed using Parafilm and then 
incubated at 12 °C in darkness. They were monitored daily 
for hyphal growth. After 14 days incubation, single hyphal 
tips were excised out the agar cultures and transferred to a 
fresh CMA in Petri dishes, to establish pure cultures. As 
these visible mycelia grew, we aseptically subcultured single 
hyphal tips by transferring them to Petri dishes with fresh 
medium. This process was repeated several times until the 
cultures were completely free of any visible bacterial or pro-
tist contamination.

Microscopy and molecular diagnoses

Microscopical observations of diseased Porphyra and oomy-
cete isolates were performed on fresh material. Samples 
were mounted using a Calcofluor white (CFW) solutions 
(0.02 mg  mL−1 in seawater; Gachon et al. 2017), observed 
and imaged on a Zeiss Microscope Axioscope 5 DIC and 
epifluorescence microscope with a Axiocam 202 Color digi-
tal camera, under a Colibri 3 Illumination System.

For molecular diagnoses, samples were DNA-extracted 
using a commercial kit (GeneJet DNA extraction kit, 
Thermofisher). PCRs were performed to amplify 18S 
(primer pairs F139/R1233 complemented with EUK422-
445/EUK1422-1440_R and TK18Sfwd/ TK18Srev, 
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annealing = 55 °C), COI (primers TKCOIfwd -TKCOIrev, 
annealing = 55 °C) and COII (primers COX2-For3 – COX2-
Rev3, annealing = 55 °C) regions (Sekimoto et al. 2007, 
2008; Wang et al. 2014; Gachon et al. 2017; Klochkova et al. 
2017b), using reagent concentrations established in Murúa 
et al. (submitted), and sequenced by Sanger (Macrogen). 
Phylogeny reconstructions were inferred by aligning Pythium 
clade I and II sequences available in NCBI in addition to 
those newly generated by this study (accessions: PP481400/
PP481401  for 18S, PP503415 for COI  and  PP493240/
PP493240 for COII). Alignments were performed using 
MAFFT (Katoh and Standley 2013) and modelled for 
phylogeny reconstruction using RaXML version 8.2.11 with 
1000 bootstrap replications (Stamatakis 2014) and MrBayes 
version 3.2.6 using default settings four MCMC chains 
(Ronquist et al. 2012), implemented in Geneious v11 (Kearse 
et al. 2012). Analyses were made for each gene separately.

Results

Once the Gracilaria set-up was installed (Fig.  1A), 
Porphyra recruitment started right away after two weeks 
and progressively increased to reach a peak after 6 weeks 
of cultivation (50–72%) (Figs. 1B, 2B). At the 8th week, 
there was a collapse of epiphytic Porphyra on Gracilaria 
thalli, with no visible recruits or elongated Porphyra from 
previous months.

Concomitantly, Porphyra started to show changes in 
coloration over the course of cultivation. Whilst 2-weeks-
old Porphyra looked dark red, 4- and 6-weeks old specimens 
show irregular pink areas across the thalli, of variable 
irregular areas (Fig. 1C). Under the microscope, such areas 
evidenced an intracellular hyphal organism infecting the 
host cells (Fig. 1D), which contained a cellulosic/quitinated 

Fig. 1  Identification of the red 
rot disease agent Pythium por-
phyrae on Gracilaria-epiphytic 
Porphyra sp. A: Gracilaria 
chilensis farmed on a suspended 
long-line in the Cariquilda 
estuary. B: macroscopic view of 
Gracilaria filaments colonized 
by Porphyra recruits (arrow-
heads). C: Porphyra sp. sympto-
matic for a Pythiosis (a.k.a. red 
rot disease in case of Bangiales, 
arrows). D: upon magnifica-
tion, necrotic areas show the 
infection by filamentous fungal 
like structures, which introduce 
within Porphyra tissues and 
cells. Inset: after calcofluor 
white staining (CFW), pathogen 
cells can be easily spotted 
inside the host tissue under 
UV light. AUTO: Chlorophyll 
autofluorescence. E: in older 
cultures, P. porphyrae overgrew 
Porphyra blades (arrows) and 
cover most of the tissues. Inset: 
Pythium sporangia (arrowheads) 
in heavily infected tissues. F: 
A Pythium porphyrae isolate 
growing in CMA culture media
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cell walls and caused necrosis in neighbouring host cells. 
In very infected host tissues (ca. 6 weeks old), such hyphae 
emerged and formed extra-tissular complexes that included 
sporangia of 15–20 µm diameter in their tips (Fig. 1E). The 
prevalence of diseased Porphyra follows the same pattern of 
rise and fall of its recruitment (Fig. 2C), with symptomatic 

individuals detected after 4 weeks (up to 12%), reaching a 
peak of infection (60–100%) at 6 weeks, and no records at 
8 weeks.

The symbionts were culturable in solid medium (CMA 
medium; Fig.  1F). We obtained two fungal-like strains 
from infected Porphyra (Pyt1 Cariq and Pyt2 Cariq), which 
were subjected to molecular phylogeny. Both isolates were 
identical for 18S sequences and differed in only two bases 
for COII nucleotide sequences. The phylogenetic analyses, 
under both RAxML and MrBayes, showed that Chilean sam-
ples formed a well-supported clade within Pythium clade 
A, using 18S, COI and COII (Figs. 3, 4 and 5). Within this 
clade, our isolates share monophyly with Pythium chon-
dricola, P. porphyrae, and to a lesser extent P. adhaerens. 
Members of P. porphyrae includes specimens from Japan, 
China, Korea and New Zealand, suggesting a cosmopolitan 
distribution of the species.

Discussion

Pest outbreaks are keystone factors regulating profitabil-
ity and sustainability in seaweed aquaculture (Brakel et al. 
2021; Murúa et al. 2023). In G. chilensis farms, pests such as 
worms (Polychaeta), ceramialean blooms or green tides have 
historically had significant consequences on both the culti-
vated seaweed, the overall aquaculture operations, and the 
social acceptability of surrounding settlements (Mantri et al. 
2023). For instance, these outbreaks end up with Gracilaria 
reduced biomass, mixed with contaminants (e.g., pests), 
stunted morphologies and sometimes diminished biochemi-
cal quality; thus, economic detriment for farmers (Fletcher 
1995). Furthermore, major decomposing pest drifts may lead 
to human health problems. Such consequences underscore 
the importance of effective pest identification and manage-
ment strategies, including early detection, proper sanitation 
measures, and the implementation of biosecurity protocols 
(Mendez et al. 2024). By preventing and mitigating the 
impact of pest outbreaks, farmers can safeguard the health 
and productivity of seaweed farms, ensuring the sustain-
ability and success of valuable seaweed aquacultural species 
(Cottier-Cook et al. 2021, 2022).

In Chile, G. chilensis has been extensively farmed in 
systems with direct attachment to substrata (Buschmann 
et  al. 1995). Nevertheless, suspended lines have drawn 
some attention, as the cultivable areas can be expanded 
from tidal-affected regions towards offshore. Suspended 
systems had suggested a lower epiphytic load than direct 
attachment (Westermeier et al. 1993), in contrast to abundant 
filamentous red and brown seaweeds that are very common 
in traditional systems (Leonardi et al. 2006). Nonetheless, 
a different bathymetrical level potentially incorporates new 
ecological interactions. For example, Porphyra species had 

Fig. 2  Variations of Porphyra epiphytic load and Pythium prevalence 
during a Gracilaria chilensis suspended set-up. A: both Porphyra 
coverage and weight are strongly correlated, after a Generalised linear 
mixed model including the long-line sampled and the week as ran-
dom effects. B: Porphyra abundance variation in 8-week Gracilaria 
farming. C: Pythium prevalence variation (% diseased Porphyra spec-
imens) over the same 8-week course. Both weeks and and Porphyra 
coverage were significant for the GLMM model fit
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Fig. 3  Bayesian phylogenetic tree reconstruction of Chilean Pythium por-
phyrae (in bold pink within the tree) and available Pythium SSU rDNA 
sequences. The tree contains a total of 23 sequences and 1834 nucleotide 
positions. Support values given are posterior probabilities (MrBayes)/

bootstrap support (RAxML). MrBayes settings: chain length 1.000.000, 
subsample frequency 1.000, burn in of 10%. The scale bar indicates the 
number of substitutions per site

Fig. 4  Bayesian phylogenetic tree reconstruction of Chilean Pythium por-
phyrae (in bold pink within the tree) and available Pythium COI mtDNA 
sequences. The tree contains a total of 26 sequences and 682 nucleotide 
positions. Support values given are posterior probabilities (MrBayes)/

bootstrap support (RAxML). MrBayes settings: chain length 1.000.000, 
subsample frequency 1.000, burn in of 10%. The scale bar indicates the 
number of substitutions per site
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not been recognized in off-bottom systems as a significant 
epiphytic pest affecting Gracilaria farms (Candia et al. 
2006). Nevertheless, in our study Porphyra was one of the 
most abundant epiphytes in suspended systems during 2022 
and 2023 (unpublished). It is unknown how Gracilaria 
would be affected in terms of growth, survival or biochemi-
cal quality (e.g. agar composition) in case Porphyra would 
keep growing, although due to its superficial attachment 
(type 1–2 after Leonardi et al. 2006), it is presumed a signifi-
cant competitive interaction only when blades are consider-
ably larger. On the other hand, G. chilensis was not observed 
affected by P. pophyrae. Despite its initial abundance, Por-
phyra co-existence in Gracilaria farms is rather ephemeral, 
suggesting an outward disruption source during Porphyra 
recruitment and settlement during the initial weeks.

In this system we report a third party: a fungal-like organ-
ism inhabiting Porphyra, whose prevalence was directly 
linked with the demise of Porphyra recruits. Identified as 
Pythium porphyrae after marker-assisted taxonomy, the 
facultative parasitic oomycete caused pink lesions and mas-
sive mortality in Porphyra blades, resembling red rot dis-
ease symptoms (Klochkova et al. 2017a). Our molecular data 
suggests that Chilean Pythium is very similar genetically to 
those found on Pyropia plicata in New Zealand (Diehl et al. 
2017) and Porphyra and Pyropia spp. in China, Korea and 
Japan (Kawamura et al. 2005; Kim et al. 2014; Qiu et al. 
2019). Our phylogenetic analyses also suggest the conspeci-
ficity between P. porphyrae and P. chondricola (Diehl et al. 
2017), with neither morphological nor genetic dissimilarity 
except for COII, which are rather different between them 
(Robideau et al. 2011; Lee and Lee 2022). Both species 
have been isolated primarily from algae (Lee et al. 2015), 
and can 100% identical using other sequences such as ITS1 
(Lévesque and De Cock 2004). More powerful techniques 
(e.g., phylogenomic, phenomics) will be requested in order 
to pinpoint the specific genetic and phenotypic differences 
between both traits and to know whether they are currently 
under a speciation process.

The three-party interaction described here raises impor-
tant questions about the utilization of microbes in seaweed 
pest biocontrol. Because of the fragility and dynamisms of 
the aquatic environment, it is highly non recommendable 
to use chemical methods for pest control as in terrestrial 
agriculture (Pawan Kumar et  al. 2023). Managing pest 
suppression by the addition of specific microorganisms or 
complete microbial communities resulted as an eco-friendly 
alternative of controlling unwanted organisms (O’Hanlon 
et al. 2012). In forestry, it is increasingly common the use 
of native entomopathogenic fungi, bacteria and viruses for 
the natural biocontrol of insect pests (Dara et al. 2019). In 
aquatic systems, seaweed fitness has been improved by other 
accompanying organisms. For example, some mesograzers 
increased Gracilaria foliifera fitness by eating epiphytes that 

compete with their host (Brawley and Adey 1981). Simi-
larly, amphipods reduced epiphytic biomass from the sea-
weed Sargassum filipendula (Duffy 1990). As bioengineers. 
Gracilaria also increase the invertebrate biodiversity in the 
faring area, increasing worm pests that are controlled by 
migratory birds (Martínez‐Curci et al. 2023). In our study 
we describe a microorganism regulating a macroalgal pest 
management of a commercially important seaweed. In spite 
of its potential use for biocontrol in Gracilaria aquaculture, 
its use must be carefully assessed in terms of suitability and 
environmental impacts.

In contrast to long-lasting pests, Porphyra was quickly 
controlled by the naturally-occurring P. porphyrae, coun-
teracting Porphyra prevalence to non-detectable levels and 
indirectly aiding farmed Gracilaria. Nevertheless, P. por-
phyrae has been described as a significant biosecurity threat 
on Pyropia and Porphyra farms in Asia (Badis et al. 2020). 
For the first time, we report this parasite in Chilean waters, 
proposing a widespread distribution alongside subantarctic 
ecosystems. These records add up to latest records of another 
pathogenic oomycete of Bangiales, such as Olpidiopsis 
(sensu lato) porphyrae in the Southeastern Pacific (Murúa 
et al. submitted). Both parasites affect farmed and cultivated 
specimens, whose impact in natural populations or incipient 
Pyropia aquaculture is yet to be assessed.
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