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Abstract
Different populations of the same species may have different physiological responses to environmental factors due to the 
adaptation to their environment. We tested interactive effects of temperatures (10,15, 20, 25, and 30 ℃) and nutrients (low 
nutrients: 5 μM NO3

− and 0.5 μM PO4
− (LN); medium nutrients: 50 μM NO3

− and 5 μM PO4
− (MN); high nutrients: 500 μM 

NO3
− and 50 μM PO4

− (HN)) in three different Ulva prolifera strains (one Chinese and two Korean strains). The results 
showed that all three strains of Ulva survived within the temperature range of 10 to 30 ℃. The photosynthetic rates of all 
strains increased with increasing temperature from 10 to 30 ℃ under MN. However, at the higher temperature (30 ℃) there 
was a significant reduction in the photosynthetic rate under HN in all three strains. A positive relationships between tissue 
nitrogen (N) and chlorophyll or soluble protein were observed in all three strains. The Chinese strain showed the lowest C:N 
ratio but the highest photosynthetic rate and tissue N contents. Our results show that the bloom forming Chinese strain may 
have higher nutrient uptake and assimilation ability, leading to higher photosynthetic activity. The Ulva strains may have 
lower tolerance to higher temperature at high nutrients conditions. These results suggest that the physiological responses of 
U. prolifera to different temperature and nutrients conditions can be population-specific.
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Introduction

Ocean temperatures have increased over the past 4 decades 
and are expected to continuously increase. The regional, 
seasonal and diurnal changes of temperature are expected 
to increase by 3–7 ℃ by the end of the century (Stocker 
et al. 2014). The increase of temperature impacts marine 
life at all levels of biological communities, and also interacts 
with other environmental factors, such as salinity, nutrients, 

light, etc. (Lüning 1990; Hurd et al. 2014; Bindoff et al. 
2019; Samanta et al. 2019a). Higher temperatures pose a 
serious threat to marine macroalgal survival, growth and 
reproduction (Lüning 1990; Davison 1991; Martínez et al. 
2012; Wernberg et al. 2016; Han et al. 2023; Xing et al. 
2023). Increases in temperature will influence the activity 
of enzymes involved in nutrients assimilation and carbon 
fixation (Davison 1991; Berges et al. 2002; Hurd et al. 2014). 
Additionally, different populations of the same species may 
exhibit different temperature tolerance due to the adaptations 
to surrounding environments at their origins. For example, 
Chinese strains Ulva show a higher hypo-salinity toler-
ance (20 psu) than Korean strains under the same condition 
(Lüning 1990; Bao et al. 2022, 2023). Consequently, the 
responses of macroalgae to changing temperatures may be 
population-specific (Poloczanska et al. 2013; Ji et al. 2016; 
Wiens 2016).

Another major environmental issue in coastal areas is 
eutrophication (Lohman and Priscu 1992; Fei 2012; Latimer 
et al. 2014). Nitrogen (N), as the primary component of 
numerous molecules, is integral to most biological processes 
such as the enzyme RUBISCO with carbon assimilation 
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process (Dawes and Koch 1990). Nitrogen assimilation with 
nitrate reductase (NR) is also a central physiological process 
that primarily relies on nitrogen to synthesis amino acids 
and proteins in algae (Kim et al. 2012; Coelho et al. 2013). 
The NR activity can reflect the state of nitrogen metabolism, 
which is regulated by nitrogen availability (Kim et al. 2008, 
2009, 2013; Jaime et al. 2014; Feng et al. 2021). Similarly, 
phosphorus (P) is involved in ATP generation, and enzymes 
involved in phosphorylation (Davison and Pearson 1996). 
Many studies have indicated that the moderate nutrients 
are crucial for the growth, metabolism and the activity of 
enzymes (e.g. NR, etc.) of algae to maintain healthy marine 
ecosystems (Hou and Hou 2013; Kittiwanich et al. 2016). 
However, elevated concentrations of N and P have the poten-
tial to break ecosystem balance by promoting the growth and 
biomass accumulation of some opportunistic species, such 
as Ulva prolifera in the Yellow Sea (Ye et al. 2011; Luo et al. 
2012; Hurd et al. 2014; Li et al. 2016; Samanta et al. 2019b; 
Saldarriaga-Hernandez et al. 2020).

Generally, U. prolifera is a non-toxic species. However, 
the massive biomass accumulation during blooms leads 
to serious environmental damage to local ecosystems and 
causes economic losses to the working waterfront, tourism 
industry and recreational activities (Xu et al. 2014). Toxic 
compounds such as hydrogen sulphide (H2S) and ammonia 
(NH3) can also be produced after algal biomass decomposi-
tion (Nelson et al. 2008). Ulva species have a better capacity 
for growth and nutrients uptake than many other macroalgal 
species because of the simplicity of thallus with a high sur-
face area to volume ratio (Taylor et al. 2001; Nelson et al. 
2008; Lamb et al. 2018). Ulva prolifera can assimilate inor-
ganic nitrogen and phosphorus at a higher rate in compari-
son to many other Ulva species (e.g., U. linza) (Luo et al. 
2012; Fan et al. 2014). Thus, the uncontrolled proliferation 
of U. prolifera could result in reduced species diversity and 
community stability due to the resources competition (e.g. 
light, nutrients etc.) and the environment alteration in seawa-
ter (Lamb et al.2018; Choi et al. 2020; Huo et al. 2021). The 
growth and photosynthetic rate of U. conglobata (Zou and 
Gao 2014) and U. linza (Lee and Kang 2020) were acceler-
ated under elevated temperatures at high nutrients levels.

Many studies reported independent or combined impacts 
of environmental variables on Ulva spp. Different popula-
tions of the same species may have different physiological 
responses to environmental conditions due to acclimation 
or genetic adaptation (Martins 2016; Figueira et al. 2021). 
The adaptation characteristics are genetically determined 
and may not be obliterated by the acclimation to differ-
ent conditions in laboratory condition (Russell and Bolton 
1975). Ulva prolifera blooms have frequently happened in 
the Yellow Sea, China, since 2008 but not in Korea. Temper-
ature and eutrophication have been proposed to be the most 
important environmental factors for Ulva blooms. Therefore, 

the Chinese strains may have higher temperature tolerance 
and nutrient uptake efficiency. Thus, in the present study, 
three strains of U. prolifera (one Chinese strain, and two 
Korean strains) were used to examine their physiological 
responses to different levels of nutrients and temperatures 
in laboratory conditions.

Materials and methods

Sample preparation

The two Korean strains of Ulva prolifera were collected 
from Anmogseom, Jawoldo, Incheon, Korea (37°15′ 
38"N; 126°18′ 57"E) in June, 2018 (UP-JW-ST) and Sam-
san-myeon, Kanghwado, Incheon, Korea (37°35′ 34"N; 
126°27′ 26"E) in July, 2021, (UP-GH-ST) respectively. 
Ulva blooms have not been reported on both sites previ-
ously. The Chinese strain of U. prolifera was collected from 
Rudong, Jiangsu Province, China (31°54′ 45"N; 121°22′ 
09"E) in May, 2011(UP-CN-ST) (Fig. 1), where U. prolif-
era blooms in the Yellow Sea originated from since 2008 
(Zhang et al. 2013a). For species identification, DNA was 
extracted from Ulva samples and used to amplify ITS gene, 
which was sequenced and compared against NCBI data-
base using blast. The qualified sequences were copied to 
the National Center for Biotechnology Information database 
(https://​www.​ncbi.​nlm.​nih.​gov/). The accession numbers for 
three strains are OR434229 (Chinese Strain), OR434228 
(Korean strain 2018) and OR434227 (Korean strain 2021), 

Fig. 1   The sampling sites of the one Chinese strain and two Korean 
strains

https://www.ncbi.nlm.nih.gov/
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respectively. All these strains belong to the same species. All 
three strains were propagated vegetatively in 50 ± 10 μmol 
photons m−2 s−1 photosynthetically active radiation (PAR), 
12 h light:12 h dark photoperiod, 15 ℃ temperature and 30 
psu salinity at the Marine Ecology and Green Aquaculture 
(MEGA) Laboratory, Incheon National University, Korea. 
To obtain the experimental seedlings, all three strains were 
separately cultivated in von Stosch enriched (VSE) (Ott 
1965) seawater medium at 25 ℃, 100 ± 10 μmol photons 
m−2 s−1 and 12 h light: 2 h dark of photoperiod. The medium 
was renewed every 3 days. The released zoids of U. pro-
lifera were collected and cultivated for several days. Algal 
seedlings with the length of 2–3 cm were selected for the 
experiment.

Experimental design

Five levels of temperature (10, 15, 20, 25, and 30 ℃) and 
three levels of nutrients (low nutrients: 5 μM NO3

− and 
0.5 μM PO4

− (LN); medium nutrients: 50 μM NO3
− and 

5 μM PO4
− (MN); high nutrients: 500 μM NO3

− and 50 μM 
PO4

− (HN)) were used. The temperatures and nutrients con-
ditions were determined based on the studies in different 
regions/seasons where U. prolifera blooms occur (Wu et al. 
2015; Gao et al. 2017). The Ulva samples (about 0.25 g 
per replicate) were randomly selected and cultivated in 
500 mL sterilized artificial seawater and at 30 psu of salinity 
enriched with VSE. The concentrations of nitrogen (NaNO3) 
and phosphorus (NaHPO4) were adjusted to the experimen-
tal levels. Each treatment had three replicates. Other envi-
ronmental conditions were same as mentioned in “seedlings” 
cultivation. The growth medium enriched with N and P was 
replaced every 3 days. The samples were cultivated with 
continuous aeration for 15 days.

Measurement of growth rate

The relative growth rate (RGR) of U. prolifera was meas-
ured every 3 days when seawater medium was renewed. The 
increased algal biomass in each flask was reduced to the 
initial weight (0.25 g). RGR was calculated as follows:

where Wt2 and Wt1 are the fresh weight at day t2 and t1, 
respectively. t represents the cultivation period.

Determination of photosynthesis

Net photosynthetic rates of U. prolifera were measured using 
an optical oxygen electrode (ProODO-BOD, YSI, USA) 
at the end of the experiment. Approximately 0.25 g thalli 
from each flask was transferred to a BOD bottle containing 

RGR = 100 ×
(

lnWt2 − lnWt1

)

∕t,

100 mL growth medium. The PAR and temperature were 
same as the experimental conditions. The content of dis-
solved oxygen was recorded per 30 s. The increase rates in 
light condition represent the net photosynthetic rate. The 
photosynthesis value was described as mg O2 L−1 g−1 FW 
h−1.

Measurement of pigments and soluble protein

Chlorophyll a and b, and carotenoids were measured based 
on the method of Wellburn (1994). Briefly, at the end of 
the experiment, about 0.02 g FW of algal samples were 
extracted with 5 mL methanol (100%) for 24 h (4 ℃) and 
kept in dark for complete extraction of photosynthetic pig-
ments (Gao and Xu 2008). Absorbances at 470, 653, and 
666 nm were measured to estimate the contents of chloro-
phyll a, and b, and carotenoids.

Soluble protein of U. prolifera was measured follow-
ing the method of Bradford (1976). Briefly, about 0.05 g 
FW samples were harvested from each flask and extracted 
in 1 mL potassium phosphate buffer (0.1 M, pH 7.0). The 
extracted solution was centrifuged (20 min, 12,000 × g, 4 ℃). 
The supernatant was mixed with Bradford’s reagent and the 
absorbance was measured at 595 nm after 5 min reaction. 
The contents of soluble protein were calculated based on 
a standard curve of bovine serum albumin (BSA) and the 
values expressed as mg g−1 FW.

Assay of tissue carbon and nitrogen contents

To measure the contents of tissue carbon (C) and nitrogen 
(N) in U. prolifera, about 0.1 g FW samples were weighed 
from each treatment at the end of the experiment. The sam-
ples were dried in an oven at 60 ℃ until constant weight and 
then ground into less than 120 μm grain size by MM400 Ball 
Mill (Retsch, Germany). About 2–3 mg dry weight (DW) 
sample was used to make a capsule and used for tissue analy-
sis. The contents of tissue C and N were analyzed using 
a CHN analyzer (Thermo Scientific Flash 2000 CHNS/O 
Analyzers, USA).

Data analysis

The results were expressed as the mean ± standard deviation 
(n = 3). Statistical analyses were conducted using Origin 9.0 
and SPSS 25.0 software. Both Shapiro–Wilk test (P > 0.05) 
and Levene’s test (P > 0.05) were used to test for normal 
distribution and the homogeneity of variances. Three-way 
analysis of variance (Three-way ANOVA) was used to ana-
lyze the interactive effects of population, temperature and 
nutrients levels on growth rate, net photosynthetic rate, 
pigments contents, soluble protein, tissue carbon (C) and 
nitrogen (N), and the C:N ratio. Tukey’s honest significant 
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difference (Tukey’s test) was used to determine the differ-
ence among each treatment at a 95% confidence level. Linear 
regression analysis was conducted to determinate the rela-
tionship between tissue N and chlorophylls, and between 
tissue N and soluble protein.

Results

Morphology and growth rates

When U. prolifera was cultivated under different tempera-
ture and nutrients conditions, strain-specific physiological 
responses were observed (Fig. 2). For example, the Chi-
nese strain was darker green in color with the highest pig-
ment content and highest branch density compared to other 
strains under the same condition (Figs. 2A and 5A, B, C). 
The branch length, however, was the shortest in the Chinese 
strain in comparison to both Korean strains (Fig. 2). The 
Korean strain (2021) of U. prolifera showed the brightest 
green in color with the lower pigment contents (Figs. 2C 
and 5G, H, I).

The relative growth rates (RGR) in all three strains 
of U. prolifera were significantly affected by population 
(P < 0.001), temperature (P < 0.001), nutrients (P < 0.001), 
the interaction of two of them (P < 0.001), and the inter-
action of all (P < 0.001) (Table S1). Elevated nutrients 
increased RGR despite temperatures in all three strains 
(P < 0.05) (Fig. 3). The Chinese strain showed the lowest 
RGR in comparison to both Korean strains under the same 
conditions, especially under HN. As for the Chinese strain, 
the highest RGR was observed at 15 ℃ and HN (16.3% 
day−1) (Fig. 3A). For the Korean strain 2018, the higher 

RGRs (about 35% day−1) were observed within a wide 
range of temperatures from 15 to 25 ℃ with HN, which 
was significantly higher than those at 10 and 30 ℃ with 
HN (P < 0.05) (Fig. 3B). The highest RGR of the Korean 
strain 2021 was observed at 15 ℃ and HN (> 40% day−1) 
and rapidly decreased at 10 ℃ (Fig. 3C). The RGR was 
decreased as temperature increased from 20 to 30 ℃ under 
HN (P < 0.05) (Fig. 3C).

Photosynthetic rates

The net photosynthetic rates (NPRs) in all three strains 
of U. prolifera were significantly affected by population 
(P < 0.001), temperature (P < 0.001), nutrients (P < 0.001), 
the interaction of two of them (P < 0.001), and the interac-
tion of all (P < 0.001) (Table S2). The NPRs of all three 
strains were enhanced by increasing nutrients levels irre-
spective of temperature (Fig. 4). Generally, in all three 
strains, the NPRs reached the highest value at 20 ℃ under 
LN. The NPRs increased with increasing temperature from 
10 to 25 ℃ under MN, and there was no further increase 
at 30 ℃ (Fig. 4). At HN, however, the NPRs varied with 
increasing temperature (Fig. 4). The NPRs in the Chinese 
strain was ranged from 25.0 mg O2 L−1 FW h−1 at 15 ℃ to 
39.3 mg O2 L−1 FW h−1 at 20 ℃ with HN (Fig. 4A). In terms 
of the Korean strain 2018, the NPR was highest at 25 ℃ with 
27.5 mg O2 L−1 FW h−1 and lowest at 10 ℃ with 18.6 mg 
O2 L−1 FW h−1 under HN (P < 0.05) (Fig. 4B). As for the 
Korean strain 2021, the NPR was significantly increased 
with increasing temperature from 10 to 20 ℃ under HN, 
and the highest NPR was 32.6 mg O2 L−1 FW h−1 at 20 ℃ 
with HN (Fig. 4C).

Fig. 2   Morphological variation in one Chinese strain (A) and two Korean strains (B and C) of Ulva prolifera cultivated under the same experi-
mental conditions (15 ℃ and high nutrients) for 15 days
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Fig. 3   Change in relative growth rate (RGR) in one Chinese strain 
(A) two Korean strains (B and C) of Ulva prolifera cultivated under 
various experimental conditions for 3, 6, 9 12  days. The error bars 
represent the standard deviation (n = 3). Low nutrients = 5 μM nitrate 

and 0.5  μM phosphate (LN); medium nutrients = 50  μM nitrate and 
5  μM phosphate (MN); high nutrients = 500  μM nitrate and 50  μM 
phosphate (HN)

Fig. 4   Change in net photosynthetic rate in one Chinese strain (A) 
and two Korean strains (B and C) of Ulva prolifera cultivated under 
various experimental conditions. The error bars represent the stand-

ard deviation (n = 3). Low nutrients = 5 μM nitrate and 0.5 μM phos-
phate (LN); medium nutrients = 50  μM nitrate and 5  μM phosphate 
(MN); high nutrients = 500 μM nitrate and 50 μM phosphate (HN)



464	 Journal of Applied Phycology (2024) 36:459–470

1 3

Pigment contents

The pigments contents in all three strains of U. prolifera 
were significantly affected by population (P < 0.001), 
temperature (P < 0.001), nutrients (P < 0.001), the inter-
action of two of them (P < 0.001), and the interaction 
of all (P < 0.001) (Table S3). The Chinese strain had 
higher pigment contents in comparison to both Korean 
strains under the same conditions (Fig. 5). For the Chi-
nese strain, At LN, the content of chlorophyll a was 
lowest at 15 ℃ (0.89 mg g−1) and the highest at 30 ℃ 
(1.48 mg g−1) (P < 0.05) (Fig. 5A). The content of chlo-
rophyll a was also significantly increased with increasing 
nutrients (P < 0.05) (Fig. 5A). Under HN, the contents 

of chlorophyll a increased from 3.8 mg g−1 at 10 ℃ to 
5.0 mg g−1 at 30 ℃ (Fig. 5A). For the Korean strain 2018, 
unlike the Chinese strain, chlorophyll a content was sig-
nificantly increased by HN in comparison to the LN and 
MN groups despite temperature (P < 0.05) (Fig. 5D). The 
chlorophyll a content ranged from 0.87 mg g−1 at 10 ℃ 
to 2.3 mg g−1 at 30 ℃ under HN (P < 0.05) (Fig. 5D). For 
the Korean strain 2021, the patterns were similar to the 
Chinese strain under LN and MN. Differently, the con-
tent of chlorophyll a was the highest at 20 ℃ under HN 
with 2.47 mg g−1 and decreased to 2.12 mg g−1 at 30 ℃ 
with HN (Fig. 5G). The trends of chlorophyll b and carot-
enoid contents in each strain under different conditions 
were similar to the trend of chlorophyll a in each strain 

Fig. 5   Change in chlorophyll a, chlorophyll b and carotenoids con-
tents in one Chinese strain (A, B, C) and two Korean strains (D, E, 
F, G, H, I) of Ulva prolifera cultivated under various experimental 
conditions (n = 3). The error bars represent the standard deviation 

(n = 3). Low nutrients = 5  μM nitrate and 0.5  μM phosphate (LN); 
medium nutrients = 50  μM nitrate and 5  μM phosphate (MN); high 
nutrients = 500 μM nitrate and 50 μM phosphate (HN)
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(Fig. 5B, E, H, and C, F, I). For example, in the Chinese 
strains, the lowest and highest chlorophyll b and carot-
enoid were observed at 15 ℃ and LN, and at 30 ℃ and 
HN, respectively (Fig. 5B, C). In the Korean strain 2018, 
the highest chlorophyll b and carotenoid contents were 
1.41 mg g−1 and 0.6 mg g−1, respectively, at 30 ℃ and HN 
(Fig. 5E, E). In the Korean strain 2021, the highest chlo-
rophyll b and carotenoids contents were 1.44 mg g−1 and 
0.60 mg g−1, respectively, at 20 ℃ and HN (Fig. 5H, I).

Soluble protein

Soluble protein (SP) in all three strains was signifi-
cantly influenced by population (P < 0.001), tempera-
ture (P < 0.001) and nutrients (P < 0.001), the interaction 
between population and temperature (P < 0.001), between 
population and nutrients (P < 0.001), and the interaction 
of all (P < 0.001) (Table S4). SP in the Chinese strain was 
higher in comparison to the SPs in both Korean strains under 
the same conditions (Fig. 6). For the Chinese strain, ele-
vated nutrients enhanced the accumulation of SP. The low-
est content of SP was observed at 15 ℃ with LN (Fig. 6A). 
The combination of higher temperature (> 20 ℃) and HN 
induced the highest SP (about 63 mg g−1) among all the 
conditions (Fig. 6A). In Korean strain 2018, only HN sig-
nificantly enhanced the contents of SP in comparison to LN 
and MN at the same temperature (P < 0.05) (Fig. 6B). The 
lowest content of SP was 15.0 mg g−1 at 25 ℃ under both 
LN and MN conditions (P > 0.05). The higher SPs was about 
35 mg g−1 with a wide range of temperatures from 10 to 30 
℃ with HN (Fig. 6B). As for Korean strain 2021, the content 
of SP was the lowest at 15 ℃ and LN, and increased with 
increasing temperature under LN and MN (Fig. 6C). The 
highest content of SP was 21.5 mg g −1 at 15 ℃ with HN 
(Fig. 6C).

Tissue carbon and nitrogen contents, and C:N ratio

The contents of tissue carbon (C) and nitrogen (N) in all 
three strains of U. prolifera were significantly influenced by 
population (P < 0.001), temperature (P < 0.001), nutrients 
(P < 0.001) and the interaction of two of them (P < 0.05), 
and the interaction of all (P < 0.001) (Table S5). The tissue 
C and N of the Chinese strain was higher than both Korean 
strains at the same conditions. Tissue C was the highest at 30 
℃ and HN condition in the Chinese strains (Fig. 7A). Higher 
nutrients promoted the accumulation of tissue N despite the 
temperature in all three strains (P < 0.05) (Fig. 7B, E, H). 
The contents of tissue N were the lowest at 15 ℃ and LN, 
1.40% DW (Chinese), 0.88% DW (Korean 2018) and 1.06% 
DW (Korean 2021), respectively (Fig. 7B; E, H). Under HN, 
tissue N contents were increased with increasing tempera-
tures from 15 to 30 ℃ in both the Chinese and the Korean 
2018 strains (Fig. 7B, E). The highest tissue N contents in 
the Chinese strain and the Korean strain 2018 were observed 
at 30 ℃ and HN with the values of 5.49 and 4.88% DW, 
respectively (Fig. 7B, E). Korean strain 2021 had the highest 
tissue N contents, 4.82% DW at 15 ℃ and HN, which was 
significantly decreased at 10 and 30 ℃ with HN (P < 0.05) 
(Fig. 7H).

C:N ratios in all three strains were influenced by pop-
ulation (P < 0.001), temperature (P < 0.001), nutrients 
(P < 0.001), the interaction of two of them (P < 0.001), and 
the interaction of all (P < 0.001) (Table S5). The C:N ratio 
of the Chinese strain was lower than two Korean strains at 
the same conditions, especially at the HN condition. For 
the Chinese strain, a higher C:N ratio was observed at 15 ℃ 
under LN (26.4) or MN (21.2) (P < 0.05) (Fig. 7C). Under 
HN, temperature has no effects on C:N ratio in both Chinese 
strain and the Korean strain 2018 (P > 0.05) (Fig. 7C, F). At 
LN, the highest C:N ratio (38.4) of the Korean strain 2018 
was observed at 15 ℃, and significantly higher than that at 

Fig. 6   Change in soluble protein in one Chinese strain (A) and two 
Korean strains (B and C) of Ulva prolifera cultivated under various 
experimental conditions (n = 3). The error bars represent the standard 

deviation (n = 3). Low nutrients = 5 μM nitrate and 0.5 μM phosphate 
(LN); medium nutrients = 50 μM nitrate and 5 μM phosphate (MN); 
high nutrients = 500 μM nitrate and 50 μM phosphate (HN)
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10 ℃ (30.1) and 30 ℃ (32.6) (P < 0.05) (Fig. 7F). For the 
Korean strain 2021, the higher C:N ratios were found at 15 
℃ under LN (32.6) and MN (20.4), respectively (P < 0.05) 
(Fig. 7I). Under HN, the C: N ratio in the Korean strain 2021 
increased with the increasing temperature from 15 ℃ (7.37) 
to 30 ℃ (9.96), respectively (P < 0.05) (Fig. 7I).

Linear regression analysis

Linear regression analysis was conducted to determinate the 
relationships between tissue nitrogen and chlorophylls, and 
between tissue nitrogen and soluble protein. Both chloro-
phylls and soluble protein had a significant positive rela-
tionship with tissue nitrogen in all three strains (Fig. 8). 
The highest positive relationship between tissue nitrogen 

and chlorophylls (or soluble protein) was observed in the 
Chinese strain.

Discussion

The primary objective of this study was to analyze the effects 
of temperature and nutrients on physiological responses of 
three populations of Ulva prolifera that inhabited different 
environmental conditions. The Korean strains were from 
the coasts of Anmogseom and Samsan-myeon, Incheon. 
Eutrophication and Ulva blooms have never been reported 
in these sites. However, the Chinese strain was collected 
from Rudong, Jiangsu Province, China, one of the world’s 
largest Neopyropia yezoensis farming areas. The world larg-
est Ulva blooms in the Yellow Sea originated from this site 

Fig. 7   Change in tissue carbon, nitrogen, and C:N ratio in one Chi-
nese strain (A, B, C) and two Korean strains (D, E, F, G, H, I) of 
Ulva prolifera cultivated under various experimental conditions 
(n = 3). The error bars represent the standard deviation (n = 3). 

Low nutrients = 5  μM nitrate and 0.5  μM phosphate (LN); medium 
nutrients = 50  μM nitrate and 5  μM phosphate (MN); high nutri-
ents = 500 μM nitrate and 50 μM phosphate (HN)
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mainly due to the abundant nutrients and availability of 
substrates for Ulva’s attachment (Zhang et al. 2013a; Wu 
et al. 2017, 2018a; Wang et al. 2019). In the present study, 
U. prolifera showed population-specific responses to dif-
ferent temperatures and nutrients in terms of growth rate, 
photosynthesis, pigments and soluble protein, tissue N, and 
C: N ratio. Among three strains, the Chinese strain showed 
the highest photosynthetic and nutrients assimilation capac-
ity. Han et al. (2022) reported that U. prolifera populations 
from different bloom-forming sites, Qinhuangdao, Rudong 
and Qingdao, showed some differences at the molecular and 
physiological levels. For example, genetic diversity of U. 
prolifera was significantly higher in the Yellow Sea green 
tides populations (Rudong and Qingdao) than the population 
from Qinhuangdao, China. The growth rates of U. prolif-
era from Rudong was lower than that from Qinhuangdao 
at the same temperature (10–25 ℃) and light (100 μmol 
photons m−2 s−1). Different populations showed different 

morphological characters and physiological responses, 
which are correlated with the various environmental condi-
tions at their origins (Zhang et al. 2013b).

Thalli with dark green in color and higher branch densi-
ties were observed in the population from Rudong in the 
previous and the present studies. In the Southern Yellow 
Sea, the filamentous morpho-type of U. prolifera is domi-
nant, while tubular or vesicular thalli are dominant in the 
Northern Yellow Sea (Zhang et al. 2013b). The phenotypic 
difference is considered a physiological response to various 
environmental conditions, such as nutrients and light, etc. 
(Zhang et al. 2013b; Gao et al. 2016). Long term adaptation 
may even cause ecotypic differentiation (Kim et al. 2012; 
Salo et al. 2014), which may contribute to the population 
specific responses of U. prolifera to temperature and nutri-
ents in this study.

In the present study the photosynthetic rate of the Chinese 
strain was higher than both Korean strains at the same con-
ditions. This may be due to the higher pigment and protein 
contents in the Chinese strain. Lee and Kang (2020) reported 
that elevated nutrients and higher temperatures enhanced the 
nutrient uptake and increased photosynthesis in Ulva. Nitro-
gen enrichment likely influences biosynthesis of pigments 
(Figueroa et al. 2009), protein (Kim et al. 2007; Ribeiro 
et al. 2013), and N uptake (Corey et al. 2013; Hurd et al. 
2014). Similarly, the higher temperature and/or nutrients 
increased pigments contents in all three strains, especially 
the Chinese strain. Chlorophylls are related to the light-
harvesting process, and the increase of pigments results in 
increasing photosynthetic rate (Falkowski and Raven 2013). 
In addition, the contents of soluble protein can be related to 
nutrient assimilation and be involved in osmoregulation (Li 
et al. 2020; Ma et al. 2021). Certain proteins (e.g. heat shock 
proteins) respond to thermal shock against cellular damage 
as a symbol of the stress tolerance (Kim et al. 2013; Hurd 
et al. 2014; Ma et al. 2021). Thus, higher photosynthetic 
capacity and temperature tolerance in the Chinese strain 
may be due to higher concentration of pigments and soluble 
proteins. However, the higher temperature (> 25 ℃) reduced 
the photosynthetic rate under HN in all three strains. This 
result suggests that the combined HN and higher tempera-
ture (30 ℃) exhibited a higher temperature sensitivity in U. 
prolifera. Zou and Gao (2014) reported that U. conglobata 
thalli exhibited a higher temperature sensitivity under the 
higher temperature (25 ℃) and HN (200 μM NO3

−) condi-
tions. In U. linza, the higher temperature (25 ℃) decreased 
the photosynthetic rate under high NH4

+ (120 μM) (Lee and 
Kang 2020).

Tissue nitrogen (N) can reflect water column nutrient 
availability and the nutrient utilization capacity of mac-
roalgae (Yu et al. 2014; Polo et al. 2015; Park et al. 2021). 
The C:N ratio indicates the nutrient availability for mac-
roalgae (Hurd et al. 2014; Yu et al. 2014; Kim et al. 2015; 

Fig. 8   Linear regression analysis to determine the relationships 
between tissue nitrogen and chlorophyll (A), and between tis-
sue nitrogen and soluble protein (B) in one Chinese strain and two 
Korean strains of Ulva prolifera 
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Wu et al. 2018b; Mawi et al. 2020). Nutrient enrichment in 
seawater increased tissue N, which led to the decrease of 
C:N ratio in all three strains. U. prolifera assimilates and 
stores more nitrogen in its tissue when nitrogen is enriched 
(Kang and Chung 2017; Ober and Thornber 2017; Reiden-
bach et al. 2017). Previous studies have shown positive 
effects of higher nutrients on chlorophyll a and b syn-
thesis in Ulva spp. (Altamirano et al. 2000; Stengel et al. 
2014). The higher nutrient assimilation and storage ability 
enhanced the biosynthesis of chlorophylls and soluble pro-
teins, and therefore enhanced photosynthesis (Gao et al. 
2016; Bao et al. 2023). Similar results were also found in 
the present study. All three strains had positive relation-
ships between tissue N and chlorophylls or soluble protein, 
with the most outstanding positive relationship observed 
in the Chinese strain, suggesting that the Chinese strains 
has the highest N use efficiency. The eutrophic seawater 
in Rudong may have affected the nutrients assimilation 
potential in the Chinese strain.

In the present study, the bloom forming Chinese strain 
showed a lower growth rate (16% day−1) than the non-
bloom forming Korean strains 2018 (35% day−1) and 2021 
(> 40% day −1). One possible explanation for this result is 
strain-specific physiological responses. The short and many 
branches in the Chinese strain have a higher surface area to 
volume ratio, accelerating nutrient uptake in comparison to 
the Korean strains with long and fewer branches. Seaweed 
with higher tissue C and N contents has higher C and N 
storage capacity. In the Chinese strain, therefore, the carbo-
hydrates produced by photosynthesis and nitrogen assimi-
lated may be internally stored rather than used for growth. 
However, the Korean strains showed an inverse pattern and 
the stored nitrogen and carbon may have mostly used for 
growth. Consequently, the RGRs of the Chinese strain were 
substantially lower than those of the Korean strains. The 
strain-specific physiological responses may be caused by the 
genetic adaptation differences and/or environmental factors 
at origins. Further studies should be conducted to determine 
if there is an underlying genetic reason for these physiologi-
cal responses.

In summary, high temperature and nutrient supply inter-
actively affect photosynthesis and nutrients assimilation in 
different Ulva populations, In the current study, the com-
bined HN and higher temperature (> 25 ℃) exhibited a 
higher temperature sensitivity in all three strains. Among 
all three strains, the bloom forming Chinese strain showed 
higher nutrient uptake and assimilation ability, resulting 
in the higher photosynthesis rate. These findings indicate 
that the physiological responses of U. prolifera to differ-
ent temperatures and nutrients are population specific. 
The different life stages (gametophytes vs. sporophytes) 
of Ulva should also be tested to see if life stage affects the 
population specific responses.
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