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Abstract
Anti-diabetic potential of a brown alga, Padina tetrastromatica, using bioassay-guided purification approach yielded the 
most active α-glucosidase inhibitor agents as fatty acids. Initially, α-glucosidase inhibition of the MeOH and 80% MeOH 
extracts were evaluated via a colorimetric assay. The liquid–liquid fractionation of 80% MeOH extract, as the most potent 
α-glucosidase inhibitor, resulted in four fractions: n-hexane, ethyl acetate, n-butanol and water. The hexane and ethyl acetate 
fractions were selected for further study with  IC50 values of 38.0 ± 0.3 µg  mL−1 and 53.7 ± 2.6 µg  mL−1, respectively. 
α-Glucosidase inhibition of the sub-fractions from the hexane fraction using flash column chromatography gave F18-21 as 
the most potent enzyme inhibitor. After further purification of F18-21 by semi preparative HPLC, the mentioned fraction 
and two purified compounds, 8-octadecenoic acid (8) and all-cis-5,8,11,14-eicosatetraenoic acid (10) were identified by 
GC–MS analysis, resulting fatty acids 1-12. In addition, 1D and 2D NMR evaluations were performed for characterisation 
of 8-octadecenoic acid. Furthermore, three fatty acids, all-cis-8,11,14,17-eicosatetraenoic acid (6), cis-9,12-octadecadienoic 
acid (7), and all-cis-5,8,11,14,17-eicosapentaenoic acid (11), were isolated from the ethyl acetate fraction and identified by 
HPLC and GC–MS, respectively. Finally, α-glucosidase inhibition percent of the purified fatty acids were evaluated in two 
concentrations in microplates, showing their great potential for further investigation as anti-diabetic agents, in comparison 
with acarbose as the positive control. Furthermore, molecular docking analysis and MD simulation were used to investigate 
the structure activity of the purified compounds.
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Introduction

In 2019 the World Health Organization (WHO) defined 
diabetes mellitus as the ninth leading factor of mortality 
with over one million deaths per year (WHO 2014). One of 
therapeutic methods to control diabetes is the reduction of 
intestinal glucose via inhibiting some key enzymes such as 
⍺-glucosidase. To this end, α-glucosidase inhibitors such as 
acarbose and voglibose have been used clinically in spite of 
some adverse effects like diarrhoea, flatulence and abdomi-
nal pain (Martin and Montgomery 1996; Alam et al. 2021). 
Due to the major role of α-glucosidase inhibitors to decrease 
the rise of blood glucose level after meals in people with 
type 2 diabetes (T2DM) and to overcome the above-men-
tioned complications of the existing drugs, investigations are 
needed to find new efficient enzyme inhibitors.

Recently marine algae have attracted attention as anti-
diabetic nutraceuticals via diminishing blood glucose levels 
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after algal consumption (Lee et al. 2010; Tanemura et al. 
2014; Bocanegra et al. 2021; Shannon et al 2023). Phyto-
chemical analyses of the bioactive algae have resulted in the 
detection of secondary metabolites with potent anti-diabetic 
activity (Agarwal et al. 2021; El-Beltagi et al. 2022). For 
instance, polyunsaturated fatty acids (PUFAs) showed vari-
ous biological activities such as improving insulin sensitiv-
ity in human to manage T2DM (Chellappan et al. 2023; 
Sinha et al. 2023). Furthermore, essential fatty acids such 
as omega-3 fatty acids are prescribed as an effective adju-
vant for controlling glycaemic level in diabetic people and 
decrease complications (Triggiani et al. 2006; Behl et al. 
2019). In addition, short chain fatty acids raise sodium and 
water absorption in the colon and are effective for the treat-
ment of diarrhoea, one of the prevalent α-glucosidase inhibi-
tors side effects (Meier et al. 2003; Binder 2010). Three 
saturated and unsaturated fatty acids including cerotic acid, 
n-octacos-9-enoic acid, and 11-eicosenoic acid were isolated 
from a brown alga Dictyopteris hoytii by bioassay-guided 
approach and n-octacos-9-enoic acid inhibited α-glucosidase 
activity, significantly (Ur Rehman et al. 2019). Tetradeca-
noic acid (TDA) was isolated from a methanol extract of the 
brown alga Sargassum wightii which showed the best inhibi-
tion against α-amylase. TDA was found to be an α-amylase 
and α-glucosidase inhibition agent in vitro and in silico 
tests (Lakshmanasenthil et al. 2018). Additionally, 37 com-
pounds, including mostly fatty acids with some diols, alk-
enes, alcohols, amides and aldehydes, were extracted from 
the alga Halymenia durvillei and identified by GC–MS (Tas-
sakka et al. 2021).

The Persian Gulf is an exceptional habitat for growth 
and cultivation of macroalgae, providing them hot-sunny 
weather and resulting salty water. In addition, the high traffic 
of oil carrying ships may affect the growth conditions and 
environment of the algae which can cause possible changes 
in their chemical constituents in response to both oil pollu-
tion and new living species brought by the ships. Among 
different biological activities reported for the marine algae 
of the region, including antioxidant and anticancer potentials 
(Jassbi et al. 2013; Pirian et al. 2017; Moheimanian et al. 
2021), our focus was on anti-diabetic agents of the brown 
algae, exploring their α-glucosidase activities and in vivo 
anti-diabetic activity to lower the blood glucose levels in 
mice after meals (Moheimanian et al. 2022).

Padina tetrastromatica, a brown alga commonly found 
in South Asia and reported from Iranian coastlines of the 
Persian Gulf (Hauck 1886; Sohrabipour and Rabii 1999), 
is a rich source of polyphenols, polysaccharides, fucoxan-
thin and fatty acids, with some biological activities (Sharma 
and Baskaran 2021). For instance, this alga collected from 
the Indian costal area showed various biological activities 
such as anti-diabetic, anti-inflammatory, anti-hypertensive 
and antioxidant activity, with high total phenolic contents 

(Antony and Chakraborty 2019). The acidified methanolic 
extract of P. tetrastromatica showed antioxidant and anti-dia-
betic properties (Naveen et al. 2021). Phytochemical analyses 
resulted in isolation of antioxidant and anti-diabetic dolabel-
lane and dolastane diterpenoids from an ethyl acetate–metha-
nol extract of Indian P. tetrastromatica (Antony et al. 2021). 
Furthermore, some sulphated polysaccharides from the algae, 
showed cardioprotective activity (Lekshmi and Kurup 2019). 
In another investigation,the methanolic extract of P. tetrastro-
matica, from Bangladesh had a high total phenolic content 
and high antioxidant activity (Sobuj et al. 2021).

In the present study, due to the mentioned biologi-
cal activities of P. tetrastromatica, it was studied to find 
α-glucosidase inhibitors.

Materials and methods

Reagents and instrumentation

Yeast ⍺-glucosidase from Saccharomyces cerevisiae, (EC 
3.2.1.20), acarbose and p-nitrophenyl-⍺-D-glucopyranoside 
(PNPG) were from Sigma Aldrich. All solvents were obtained 
from Merck. All used reagents were of analytical grade. 
NMR spectra of compound 8, were achieved on a Bruker 
Avance III 400 NMR, operating at resonance frequencies of 
400 MHz for 1H and 100 MHz for 13C, respectively. It was 
applied for measuring 1H NMR, 13C APT, 1H-1HCOSY, 1H-
13C HSQC and 1H-13C HMBC spectra. EI-MS spectra were 
recorded on an Agilent 5975 C inert GC–MS instrument. 
Various chromatographic techniques were used for isolation, 
including silica gel open column chromatography (70–230 
mesh), and TLC using pre-coated aluminium sheets (silica 
gel 60 F254, Merck) with 0.25 mm film thickness. Reversed-
phase (RP-18) HPLC analyses were carried out for more 
purification, using a Knauer semi-preparative HPLC (K-1050 
pump) and K-2600 UV detector set at λ 210 nm (Jassbi et al. 
2014). A Phenomenex RP-18 column (250 × 10 mm) was 
used for the semi-preparative HPLC, eluting with 90% ace-
tonitrile (solvent B) and 10% in ultrapure water (solvent A). 
The separations, on analytical HPLC, were developed on an 
Azura analytical HPLC with a quaternary low-pressure mix-
ing pump P 6.1L with degasser module, HPLC Knauer col-
umn (C18, 250 × 4.6 mm ID (internal diameter), Germany) 
and UVD 2.1L UV detector set at λ 210 nm.

Collection and extraction of the algae

Padina tetrastromatica was collected from TV Park (N 
28°  59′ 41.0" E 50°  49′ 44.6") in the coastal region of Bush-
ehr city in the Persian Gulf, Iran, in April 2020. The col-
lected sample was identified by Dr. Sohrabipour.
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The algal sample (1.2 kg fresh weight) was first cleaned 
and sliced, then extracted using maceration technique at 
about 25 °C for two times each for 24 h successively in 
2.5 L 80% MeOH and 2.5 L MeOH, respectively. Finally, 
each extract was filtered and the solvents were evaporated 
under vacuum at 38 ºC, to obtain the crude dried 80% MeOH 
(17.9 g) and MeOH (10.9 g) extracts. The 80% MeOH 
extract was dissolved in 50 mL distilled water and then 
subjected to liquid–liquid extraction (LLE), which afforded 
four different fractions including n-hexane (843 mg), ethyl 
acetate (590 mg), n-butanol (2.81 g) and water (12.11 g). 
The fractions were evaluated for α-glucosidase inhibition.

Bioassay guided purification

The hexane fraction (840 mg), as the best enzyme inhibi-
tor, was loaded over silica gel-Flash Column Chromatog-
raphy (FCC) (30 g, 70–230 mesh, 30 × 2.5 cm). The col-
umn was eluted using n-hexane, n-hexane/chloroform, and 
chloroform/MeOH with gradually increasing polarity to 
afford 30 fractions. After pooling the similar fractions using 
TLC analyses into eight new ones, (FH1-4; FH6; FH5,7,8; 
FH9-13; FH14-17; FH18-21; FH22-26; FH27-30) they 
were subjected to α-glucosidase inhibitory assay to select 
the best for further phytochemical analyses. The fraction 
which was eluted with chloroform/MeOH (100/2), FH18-
21, was selected for further isolation due to its significant 
inhibitory activity. Further purification was performed using 
RP18 semi preparative HPLC. The analytical condition was 
concluded from analytical RP18-HPLC. The mobile phase 
was 90% acetonitrile in ultrapure water and the flow rate 
of 4.5 mL  min−1. Compounds 8 (7 mg) and 10 (3.2 mg) 
were isolated with retention times of 7.78, and 24.85 min, 
respectively. Compound 8 was subjected to 1H and 13C NMR 

spectroscopy followed by GC–MS analysis. Based on the 
NMR spectral data  the fatty acid character for compound 8 
was suggested. We then evaluated the compounds again for 
further α-glucosidase inhibitory potential. In addition to the 
purified compounds, fraction FH18-21 itself was subjected 
to GC–MS for the detection of its lipid contents (Table 1).

The bioassay showed the ethyl acetate fraction (590 mg) as 
the second potent fraction of the algal extract and therefore it 
was subjected again to RP18 semi preparative HPLC with the 
same analytical conditions mentioned above. Compounds 6 
(1.1 mg), 7 (1.5 mg) and 11 (0.8 mg) were isolated with reten-
tion times of 8.36, 9.70 and 14.67 min, respectively. The com-
pounds again were subjected to GC–MS analyses to ascertain 
their purification and their chemical characterization. In each 
step, the α-glucosidase inhibition activity test was performed 
as a guide and to measure the potential of the resulting final 
products as illustrated in the schematic diagram (Fig. 1).

α‑Glucosidase inhibition assay

The α-glucosidase test was performed as described by 
Moheimanian et al. (2022). Briefly, 5 μL of each extract, 
fraction, or isolated compound was mixed with 90 μL potas-
sium phosphate buffer (0.1 mM, pH 6.8), in 96-well micro-
plates. Then 20 μL of α-glucosidase (0.25 U  mL−1) in phos-
phate buffer solution was added to the mixture, followed by 
dark incubation at 37 ºC for 10 min. After incubation, 15 
μL of 2.5 mM p-nitrophenyl-α-D-glucopyranoside (a chro-
mogenic substrate) was added and after 30 min storage at 
37 ºC the reaction was stopped by adding 80 μL  Na2CO3 
(0.2 M) into each well. The solutions and the control were 
prepared in DMSO (0.4% final concentration). The change 
in absorbance was measured at a wavelength of 405 nm. 

Fig. 1  Schematic diagram of 
isolating anti-diabetic com-
pounds from P. tetrastromatica, 
by bioassay-guided purification. 
At each step, the items with 
greater α-glucosidase inhibi-
tion were selected for the next 
isolations. LLE: Liquid–liquid 
extraction; FCC: Flash column 
chromatography; HPLC: High-
performance liquid chromatog-
raphy
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Acarbose was used as a positive control. Calculation of the 
% inhibition, was done by the following formula:

where Aextract and Acontrol are the absorbance of the sample and 
the control, respectively. The half-maximal enzyme inhibitory 
concentration  (IC50, µg  mL−1) values were evaluated by a dilu-
tion series of the samples, from 8 µg  mL−1 to 120 µg  mL−1 
using Curve Expert 1.4 software (three replicates).

Gas chromatography–Mass spectrometry analysis

Based on the NMR and TLC analytical results we suggest 
the fatty acids structure of the compounds in the purified 
bioactive fractions. To characterize the bioactive fatty acids, 
they were analysed by GC–MS as performed earlier (Jassbi 

%Inhibition = (Acontrol − Aextract )∕Acontrol × 100

et al. 2013). The GC–MS was operated on an Agilent5975C 
GC plus HP-6890 mass spectrometer operating in electron 
impact mode (EI, 70 eV). The GC column was a HP-5MS 
(30 m × 0.25 mm i.d., 0.25 µm film thickness, J &W Scientific 
column). The oven temperature was programmed at 160˚C 
(held for 2 min), surged to 230˚C at 5˚C  min−1 and held stable 
for 20 min at the final temperature. Helium, as the carrier gas, 
was applied with a flow rate of 1 mL  min−1. The injector tem-
perature was fixed at 250˚C, with the injection volume of 0.1 
μL and a split ratio of 1:10. (Heidary Jamebozorgi et al. 2019).

Derivatization of the fatty acids to their methyl 
esters

Since the fatty acids are not well resolved on the above capil-
lary column, the fraction (FH18-21) or their pure compounds 

Table 1  Fatty acid compositions as their methyl esters of FH18-21 from the hexane fraction of P. tetrastromatica detected by GC–MS

Column type: HP-5 MS: (5%-phenyl)-methylpolysiloxane; VF-5MS: 5% phenylmethyl polysiloxane, DB1: 100% methylsiloxane

Compounds Retention 
time (min)

Relative retention 
index (RI) Column 
type (HP-5 MS)

Relative retention 
index standard 
(Colum stationary 
type)

Area % Base peak (m/z) Molecular weight Reference for Iden-
tification by mass 
spectra

Tetradecanoic acid 
(1)

7.58 1728 1723 (HP-5 MS) 10.6 74 228 (Adams 2017)

Cis-9-hexadecenoic 
acid (2)

10.73 1910 1932 (HP-5 MS) 6.8 55.1 254 webbook.nist.gov

Trans-9-hexadece-
noic acid (3)

10.91 1920 1916 (VF-5MS) 7.7 55.1 254 webbook.nist.gov

Hexadecanoic acid 
(4)

11.11 1931 1921 (HP-5 MS) 19.3 74.1 256 (Adams 2017)

All-cis-6,9,12- 
octadecatrienoic 
acid (5)

13.84 2084 2091 (VF-5MS) 1.8 79.1 278 webbook.nist.gov

All-cis-8,11,14,17-
eicosatetraenoic 
acid (6)

13.97 2091 Not given 8.8 79.1 304 pubchem.ncbi.nlm.
nih.gov

Cis-9,12-octadeca-
dienoic acid (7)

14.13 2100 2085 (HP-5 MS) 8.5 67.1 280 (Adams 2017)

8-Octadecenoic 
acid (8)

14.25 2107 2107 (DB-1) 21.3 55.1 282 (Merlin et al. 2016)

Octadecanoic acid 
(9)

14.68 2132 2125 (HP-5 MS) 2.3 74 284 webbook.nist.gov

All-cis-5,8,11,14-
eicosatetraenoic 
acid (10)

17.03 2261 2274 (VF-5MS) 4.4 79.1 304 webbook.nist.gov

All-cis-
5,8,11,14,17-
eicosapentaenoic 
acid (11)

17.16 2269 2282 (VF-5MS) 1.0 79.1 302 spectrabase.com

1,2-Benzenedi-
carboxylic acid, 
mono(2-ethyl-
hexyl) ester (12)

24.66 2535 Not given 0.8 149 278 spectrabase.com
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were derived to their methyl esters for a better chromato-
graphic resolution (Jassbi et al. 2013). Briefly, 1 mg of sub-
fraction FH18-21 or pure compounds was dissolved in 250 
μL 20%  BF3 in MeOH in a sealed glass vial followed by 
heating in a boiling water bath for 1 h. Afterwards, 1 mL 
distilled water was added to the solution and the organic layer 
was separated by extracting the mixture with 2 mL n-hexane 
(three times). The extracting solvent was evaporated using a 
stream of nitrogen gas after drying with anhydrous  Na2SO4, 
The resulting samples were dissolved in 1 mL hexane and 
used for GC–MS analyses (Jassbi et al. 2013).

Statistical analysis

The data are expressed as mean ± standard error (SE). 
Statistical analysis was done by SPSS software (Ver. 16) 
using one-way analysis of variance (ANOVA). Inhibitory 
concentration  (IC50) values were estimated using Excel 
2016 and CurveExpert1.4 software. P-values ≤ 0.05 were 
considered to be significant.

Molecular docking study

The structure used in this study was ⍺-glucosidase from 
Saccharomyces cerevisiae. The chemical activities of the 
fatty acids obtained from P. tetrastromatica were estimated 
against this enzyme. The fatty acids with the highest and 
lowest inhibitory activity were considered. The 3D struc-
tures of the enzyme (UniProt: P53341) was obtained from 
the EBI Alpha Fold database (https:// alpha fold. ebi. ac. uk) 
(Jumper et al. 2021) and prepared using the protein prepa-
ration module of the Schrödinger Suite (Poustforoosh et al. 
2022a). Accordingly, the lost hydrogen atoms were added 
and the molecules of water were deleted from the system. 
After that, an H-bond network was produced and finally, the 
system was minimized by implementing the OPLS3e force 
field (Poustforoosh et al. 2022b). To obtain more trustwor-
thy results, the active binding site of the enzyme was deter-
mined employing the SiteMap of Schrödinger and a receptor 
grid was generated around the active site. The structure of 
the fatty acids was obtained from the PubChem database 
as SDF files. The accurate protonation states for ligands 
were generated by using the LigPrep module of Schrödinger 
(Poustforoosh et al. 2022c). Ultimately, the molecular dock-
ing was operated using the Glide of Schrödinger suites.

Molecular Dynamics (MD) simulation

The interactions between the fatty acid with the highest 
inhibitory activity and the enzyme were further assessed 

dynamically. Desmond software (a package for molecular 
dynamics simulation) was used to conduct the MD simula-
tion. The complex of the ligand-enzyme obtained from the 
docking calculations was evaluated by performing the MD 
simulation. The simulation was performed in an orthorhom-
bic box and the solvent model of transferable intermolecular 
potential with 3 points (TIP3P) was chosen for the simula-
tion. The proper number of  Na+/Cl− ions with a salt concen-
tration of 0.15 M were used to neutralize the system employ-
ing the system setup of Schrödinger (Sirin et al. 2014). 
The simulation was then accomplished for 100 ns with the 
default relaxation protocol of software and the constant num-
ber of atoms, pressure, and temperature (NPT) ensemble. 
The Nose–Hoover protocol was used to set the temperature 
to 310.15 K (37 °C) and the pressure was adjusted to 1 atm 
employing isotropic scaling (Panwar and Singh 2021).

Results

The 80% MeOH extract of P. tetrastromatica was the 
superior α-glucosidase inhibitor compared to the metha-
nol extract exhibiting a several fold lower  IC50 value of 
57.1 µg  mL−1, with P value < 0.05 (Tables 1, 2). After the 
LLE procedure and performing α-glucosidase assay the 
active aqueous methanol extract resulted in two bioactive 
layers, the hexane and ethyl acetate fractions with  IC50 val-
ues of 38.0 µg  mL−1 and 53.7 µg  mL−1, respectively. The 
more polar fractions, n-butanol and water were less active 
(Table 2). Acarbose, as a positive control, showed an  IC50 
value of 283.1 µg  mL−1.

All sub-fractions obtained after column chromatography 
of the active hexane layer were subjected to the bioassay and 
evaluated for α-glucosidase inhibition at two concentrations, 
120 and 60 µg  mL−1. Among them, F18-21, F22-26, F27-30 

Table 2  IC50 values for α-glucosidase inhibition of P. tetrastromatica 
extracts and LLE fractions

NA not active. Values are the means ± standard error of mean of three 
replicated samples. At least five serially diluted solutions of each 
extract were taken for calculation of the  IC50 values
* IC50 values were calculated by linear regression

P. tetrastromatica Enzyme inhibition 
 IC50 (µg  mL−1)

Extracts 80% MeOH 57.1 ± 0.4
MeOH 106.2 ± 13.0

Liquid fractions from 80% 
MeOH extract

Hexane 38.0 ± 0.3
Ethyl acetate 53.7 ± 2.6
n-Butanol 208.9 ± 10.4
Water NA

Acarbose 283.1 ± 18.8

https://alphafold.ebi.ac.uk
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exhibited the highest percent inhibition of 79.9, 40.2 and 
53.8%, respectively, at 60 µg  mL−1 (Table 3). Therefore, the 
ethyl acetate fraction and F18-21 were chosen for further 
isolation as the best inhibitor resulting in the purified com-
pounds (6, 7, 8, 10 and 11). All of these were unsaturated 
fatty acids (UFA) or poly-unsaturated fatty acids (PUFA). 
Among them, 3 compounds including 8-octadecenoic acid 
(8), all-cis-5,8,11,14-eicosatetraenoic acid (10), and cis-
5,8,11,14,17-eicosapentaenoic acid (11), demonstrated more 
than 70% inhibition in a concentration of 0.1 mM (Table 4).

Structure elucidation of fatty acid compounds

Based on 1H- and 13C NMR spectral data of compound 8, it 
was characterized as a fatty acid (Noorbakhsh et al. 2022). 
As seen in supplemental Table 1, the olefinic protons signals 
was detected at δ 5.35 ppm while the H-2 and H-3 and the 
allylic signals were recorded at δ 2.34 (t, J = 7.5), 2.02 m, 
and 1.61 ppm, respectively. A broad signal at δ 1.30 is char-
acteristic of the aliphatic methines  (CH2). On the other hand, 
the HMBC spectra demonstrated the presence of a carbonyl 
carbon at around 177 ppm (C -1) and double bond signals 
at δ 130.2 (C -8) and 129.9 ppm (C -9), together with 10 
signals at 29.2–29.9  (CH2)10. The signals at δ 33.8 (C-2), 

24.9 (C-3), 14.3 (C-18) together with two signals at 27.3 and 
27.4 were suggested for the allylic positions of the double 
bonds. Two of the signals at 22.8 and 32.1 were assigned to 
two aliphatic methylene carbons. The correlation between 
carbons and protons were confirmed by HSQC cross peaks. 
The structure of the compound and its double bond position 
was decided on the basis of its mass spectral data result-
ing from GC–MS analyses, including RRI on a non-polar 
column (DB5) and MS spectra after their transformation to 
their methyl esters.

In total, twelve compounds were identified in FH18-21 
resulting from the active hexane fraction, in addition to the 
CC and HPLC-purified compounds (supplemental Fig. 1 
and Table 1). GC–MS analyses results of these fatty acids 
and their structures are shown in supplemental Fig. 3 and 
Fig. 2 respectively.

Furthermore, supplemental Fig. 2 shows that after deri-
vatization the chromatogram peaks become more resolved 
to be identified precisely. As mentioned before, 5 fatty acids 
were isolated and identified with one of them being a mono-
unsaturated fatty acid, 8-octadecenoic acid. Interpretation 
of the purified compounds (6-8, 10, 11) was characterized 
according to the mass fragmentation pattern of their methyl 
ester derivatives and in comparison with authentic sam-
ples reported in literature databases (Pub Chem.ncbi, NIST 
Chemistry Web Book and SpectraBase) (Syeda 2011; Merlin 
et al. 2016).

Two saturated fatty acids, TDA and hexadecanoic acid 
constituting 10.6 and 19.3% of the active fraction were 
detected in their methyl esters form. The others were PUFAs 
like omega-3, all-cis-8,11,14,17-eicosatetraenoic acid, all-
cis-5,8,11,14,17-eicosapentaenoic acid methyl ester (8.8 and 
1.0%) and omega-6; cis-9,12-octadecadienoic acid, all-cis-
5,8,11,14-eicosatetraenoic acid methyl ester (8.5 and 4.4%) 
were detected in fraction F18-21 after derivatization.

Molecular docking

Based on the docking results the binding affinities of the 
compounds were not significant. Therefore, we decided 

Table 3  Percentages of α-glucosidase inhibition of FCC sub-fractions 
from the hexane extract of P. tetrastromatica and acarbose

NA not active. Values are the means ± standard error of three replicates

P. tetrastromatica frac-
tions

% inhibition 
(60 µg  mL−1)

% inhibition 
(120 µg  mL−1)

F1-4 7.0 ± 1.0 7.7 ± 1.1
F6 3.5 ± 0.2 6.3 ± 1.3
F5,7,8 5.9 ± 0.5 7.6 ± 1.2
F9-13 7.5 ± 0.7 8.4 ± 2.3
F14-17 NA NA
F18-21 79.9 ± 1.3 97.0 ± 0.7
F22-26 40.2 ± 0.8 79.1 ± 1.2
F27-30 53.8 ± 4.3 73.0 ± 3.3
Acarbose 12.3 ± 1.3 24.5 ± 0.8

Table 4  Percentages of 
α-glucosidase inhibition of the 
pure compounds and acarbose

ND not determined. Values are the means ± standard error of mean of three replicated samples

Pure compounds % inhibition (at 0.1 mM) % inhibition 
(at 0.2 mM)

All-cis-8,11,14,17-eicosatetraenoic acid (6) 25.0 ± 1.6 ND
Cis-9,12-Octadecadienoic acid (7) 46.2 ± 1.6 ND
8-Octadecenoic acid (8) 75.9 ± 2.2 92.4 ± 0.9
All-cis-5,8,11,14-eicosatetraenoic acid (10) 82.1 ± 1.7 96.9 ± 8.7
All-cis-5,8,11,14,17-eicosapentaenoic acid (11) 90.9 ± 2.1 ND
Acarbose 21.9 ± 0.6 29.5 ± 0.1
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to compare the interactions constructed between the com-
pounds and the ⍺-glucosidase enzyme by performing 
molecular docking calculations. For the comparison the 
compounds with the highest (11) and lowest (6) inhibi-
tory activity were selected. The outcomes introduced the 
probable residues of the enzyme that can create strong 
interactions with the compounds. The results of molecular 
docking calculations are presented in Table 5. The dock-
ing pose of compounds 6 and 11 is shown in Fig. 3. The 
interactions constructed between these compounds and 
⍺-glucosidase are presented in Fig. 4. Compound 6 has 
created a salt bridge with the residues Arg212. Compound 

11 has constructed two hydrogen bonds with the residues 
Ala216 and Glu276. These H-bonds are created with the 
hydroxyl group of the ligand. Glu276 is an essential resi-
due of the active site of the enzyme.

Fig. 2  Structures of the fatty acid constituents of FH18-21 from the hexane fraction of P. tetrastromatica 

Table 5  The details of interactions between compounds 6 and 11 and 
⍺-glucosidase obtained from the molecular docking calculations

Compound Interactions Residue Length

6 Salt bridge Lys155 4.75 Å
11 H-bond Ala216 2.59 Å

H-bond Glu276 2.21 Å
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MD simulation

The ligand–protein complex of compound 11, as the most 
active compound against ⍺-glucosidase was further evalu-
ated using the MD simulation for 100 ns. The RMSD value 
of the protein in these simulations converged at about 3 Å 
(Fig. 5) indicating the stability of the systems after 100 ns. 
The ligand–protein interactions between ⍺-glucosidase and 
compound 11 after the simulation time are presented in 
Fig. 6. The residues with the highest interactions fraction 
are Arg212, Ile213, Asp214, Thr215, Glu276, and Phe298.

Discussion

Bioassay-guided purification of extracts of the alga P. tet-
rastromatica was done, showing the high potency of some 
fatty acids to inhibit α-glucosidase. The results showed that 
the 80% methanol extract and its resulting hexane and ethyl 
acetate fractions exhibited α-glucosidase inhibition poten-
tial, comparable to that reported for an Indian collection of 
this alga with an  IC50 value of 28.8 µg  mL−1 for its acidi-
fied methanolic extract (Naveen et al. 2021). In addition, 

Gunathilaka et al. (2019) reported potent anti-diabetic effects 
for ethyl acetate fraction of the methanol extract of the red 
alga, Gracilaria edulis which was free of polysaccharide.

We identified 12 fatty acids in fraction FH18-21 of the 
hexane fraction of P. tetrastromatica; trans-9-hexadecenoate 
(4) (19.3%; area normalized%) and 8-octadecenoic acid (8) 
(21.3%) were the main fatty acids, while hexadecanoic acid 
(5) (1.8%),octadecanoic acid (9) (2.3%), all-cis-5,8,11,14-
eicosatetraenoic acid (10) (4.4%), and cis-5,8,11,14,17-eicos-
apentaenoic acid (11) (1.0%) were the minor ones. Finally, 
5 fatty acids isolated from the alga, inhibited α-glucosidase 
showing that 8-octadecenoic acid, with the most area per-
centage, produced the greatest inhibition. These are common 
polyunsaturated fatty acids (PUFAs) in algae that can be used 
beneficially in different industries (Menaa et al. 2020). As 
reported, α-glucosidase inhibitory activity of fatty acids has 
been confirmed. For instance, cerotic acid, n-octacos-9-enoic 
acid, and 11-eicosenoic acid isolated from the brown alga D. 
hoytii inhibit α-glucosidase activity with n-octacos-9-enoic 
acid showeing the highest inhibition (Ur Rehman et al. 2019). 
Similar to our result, TDA isolated from S. wightii, showed 
α-amylase and also α-glucosidase inhibitory activity (Laksh-
manasenthil et al. 2018).

Fig. 3  The docking pose of 
compounds 6 (a) and 11 (b) in 
the active site of α-glucosidase 
(dashed lines: Yellow: H-bond, 
Pink: salt bridge)
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Fig. 4  The interactions constructed between compounds 6 (a) and 11(b) and α-glucosidase

Fig. 5  The RMSD of the protein 
after 100 ns simulation. The 
fluctuations are converged at 
about 3 Å after simulation time
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Fatty acids as α-glucosidase inhibitors could have benefi-
cial key points in comparison to acarbose or the other inhibi-
tors. They have commercial value and could be used in local 
businesses due to their reasonable price. In addition, they have 
potential applications as additives and supplements for dia-
betic people in the management of type 2 diabetes (Perdana 
et al. 2021). Different supplements have been proposed for 
diabetic people until now, such as chromium and cinnamon 
(Costello et al. 2016a, b). Furthermore, they have biological 
activities such as antioxidant and anti-inflammatory activity 
(Laye et al. 2018; Giacobbe et al. 2020). Fatty acids could 
have another beneficial factor for diabetic people who suffered 
from fatty liver, due to their useful role to improve the disease 
(Hliwa et al. 2021; Prabhakar and Bhuvaneswari 2021).

The presence of some fatty acids in P. tetrastromatica has 
been reported earlier, but this is the first time that they have 
been isolated by bioassay-guided purification from the alga. 
For instance, Naveen et al. (2021) characterised cis-9-tetrade-
cenoic acid and cis-9-hexadecenoic acid as the two main fatty 
acids found in all the lipid fractions of P. tetrastromatica from 
India. Similarly, palmitic acid was reported as the predomi-
nant fatty acid in all three lipid fractions of P. tetrastromatica 
from India (Narayan and Miyazhita 2005). It is supposed that 
secondary metabolites in our investigated alga collected from 
Bushehr city coastal region had different lipid contents com-
pared to those from India, because of the different ecological 
conditions. Overall, among the characterized fatty acids in the 
present study, only compounds 2, 4, 7 and 9, were previously 
reported in P. tetrastromatica (Maheswari et al. 2017; Naveen 
et al. 2021). Therefore, the remaining fatty acids: 1, 3, 5, 6, 8, 
10, 11 and 12 are reported for the first time from this alga. On 
the other hand, α-glucosidase inhibition potential of compound 
7 was reported earlier (Hu et al. 2018), while to the best of 
our knowledge this is the first report on the enzyme inhibition 
potential of the other isolated compounds 8, 6, 10 and 11.

The higher α-glucosidase potential (30.5 µM) of n-octa-
cos-9-enoic acid isolated from D. hoytii was proposed by 
its free carboxylic OH interaction with certain amino acid 
moieties in the active site of S. cerevisiae α-glucosidase (Ur 

Rehman et al. 2019). In addition, the presence of the double 
bond makes this molecule and 11-eicosenoic acid to be active 
but the methylation of the saturated fatty acid, TDA to methyl 
tetradecanoate made its hydrogen bonding impossible with 
the interacting residue of the enzyme confirmed by molecular 
docking studies (Lakshmanasenthil et al. 2018; Ur Rehman 
et al. 2019). The docking study against both α-amylase and 
glucosidase enzymes suggested TDA as an effective inhibi-
tor with the same interacting functional group of carboxylic 
acid which is consistent with the above-mentioned results 
(Lakshmanasenthil et al. 2018). The potent inhibition of the 
enzyme caused by the isolated compounds is compatible 
with the in silico and in vitro enzyme inhibitory tests on the 
fatty acids obtained from D. hoytii and S. wightii (Laksh-
manasenthil et al. 2018; Ur Rehman et al. 2019). Based on 
information from the Uniprot database and the previously 
reported data by Ur Rehman et al. (2019), Asp214, Glu276 
and Asp349 are the catalytic triad of the enzyme’s active 
site and targeting these residues could considerably affect 
the enzyme activity. As could be seen, compound 11 created 
an H-bond with Glu276 with a length of 2.21 Å. This inter-
action can effectively decrease enzyme activity. There are 
also ten hydrophobic contacts between compound 11 and the 
residues of ⍺-glucosidase. These residues are Trp57, Tyr51, 
Ile213, Ala216, Val274, Phe298, Phe300, Tyr344, Ala351, 
and Tyr386. These contacts can increase the binding affinity 
of the ligand to the enzyme. The results of the MD simula-
tion revealed that compound 11 can construct some inter-
actions with Asp214 and Glu276. Targeting these residues 
could enhance the inhibitory activity of compound 11 against 
the enzyme. Furthermore, the fatty acids TDA, hexadecanoic 
acid, cis-9,12-octadecadienoic acid, and cis-9-hexadecenoic 
acid with antioxidant and antibacterial activities have been 
identified in the essential oil of the edible seaweed, Lami-
naria japonica (Patra et al. 2015). Saturated and unsaturated 
fatty acids also have been reported as major lipid components 
of four seaweeds, Ulva rigida, Gracilaria sp., Fucus vesicu-
losus and Saccharina latissima, making them of interest for 
use in food supplementation (Neto et al. 2018).

Fig. 6  The interactions con-
structed between the compound 
11 during the MD simulation
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Conclusion

The Persian Gulf brown alga P. tetrastromatica is a 
rich source of anti-diabetic compounds due to its high 
α-glucosidase activity. Fatty acids are one metabolite class 
found in this alga, showing strong α-glucosidase inhibition. 
α-Glucosidase bioassay-guided fractionation and purification 
of the algal extract resulted in isolation of five unsaturated 
fatty acids with high enzyme inhibition power. In silico study 
suggests that compound 11 could effectively target the cata-
lytic residues of the active site of α-glucosidase. On the other 
hand, the higher molecular weight of the long chain fatty 
acid is another positive point to exhibit the better bioactivity 
via better enzyme-metabolite interaction. The isolation of  
unsaturated fatty acids in the present study confirms previous 
studies and suggest these fatty acids for further anti-diabetic 
investigation. Furthermore, this alga could be recommended 
as an effective nutritious diet for diabetes treatment, and also 
for utilization in other therapeutic areas.
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