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Abstract
Although wastewater reutilization for microalgae culturing can meet the dual goals of wastewater treatment and biomass 
production, some effluents with high contaminant concentrations are toxic to microalgae, necessitating pretreatment proto-
cols to lower the toxicity before bioremediation. The present study aimed to bioremediate the industrial effluents of El Delta 
Co. for Fertilizers and Chemical Industries (Mansoura, Egypt), using sodium alginate as a pretreatment to enable reuse as 
a growth medium for microalgae culturing. Various water quality parameters signified the inferior state of the effluent with 
an ammonia-N concentration of 185.76 mg L−1. Toxicity investigations of the raw industrial effluents revealed toxicity to 
Chlorella sorokiniana, Scenedesmus vacuolatus and Pseudokirchneriella subcapitata. Effluent bioremediation was adopted 
using different concentrations of the biopolymer sodium alginate, and 1.0 g L−1 sodium alginate resulted in the highest 
removal of both ammonia-N and heavy metals. Chlorella sorokiniana and S. vacuolatus successfully grew in the 1.0 g L−1 
alginate-treated effluent. Chlorella sorokiniana removed 87.8% of the ammonia-N, 75% of the copper, and 100% of the 
phosphorus. Scenedesmus vacuolatus consumed 85.7% of the ammonia-N, 66.7% of the copper, and 100% of the phosphorus. 
Adjusting the N:P mass ratio to 9.9 resulted in high tolerance of C. sorokiniana and S. vacuolatus to the effluent toxicity, with 
an EC50 > 100%. The 1.0 g L−1 sodium alginate-treated effluent stimulated C. sorokiniana and S. vacuolatus growth relative to 
the control. Additionally, C. sorokiniana and S. vacuolatus had the highest biomass production and protein content, reaching 
1.42 and 0.74 g L−1 and 57.04 ± 0.04% and 52.19 ± 0.02%, respectively, in the treated effluent. Therefore, it was concluded 
that this bioremediation approach using the 1.0 g L−1 alginate pretreatment followed by microalgal cultivation (C. sorokiniana 
and S. vacuolatus) successfully treated the industrial effluent, representing a promising protocol for bioremediation practices.
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Introduction

Water quantity and water quality are among the major global 
problems facing humanity, particularly due to the limited 
availability of freshwater resources which has caused severe 
water scarcity in some regions (Schwarzenbach et al. 2010; 
Mohie El Din and Moussa 2016). In Egypt water demand 
is continually increasing due to the growing population and 
deterioration of the Nile River caused by anthropogenic 
inputs over several decades (Abd el-Lateef et al. 2011; Ali 
et al. 2014). In a worldwide freshwater survey, Egypt was 

listed among the ten countries that will run out of water by 
2025 (Osman et al. 2016).

Parallel to the water deficit, wastewater production is 
rising due to increasing agricultural, urban, and industrial 
activities, causing extensive water pollution (Yadav 2019). 
Industrial wastewater is a serious issue in developing pop-
ulated countries, including Egypt, particularly affecting 
natural water bodies near industrial areas. Several types 
of pollutants are generated by different industries. For 
example, the industry of fertilizers generates wastewater 
containing high quantities of heavy metals and phosphorus 
and nitrogen-rich compounds that induce eutrophication 
and negatively impact aquatic life and human health (Osi-
banjo et al. 2011; Refaay et al. 2021a). Thus, wastewater 
management offers the hope of slowing, perhaps even halt-
ing, the loss of usable water by producing an effluent that 
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may be directly reused or returned to the water cycle with 
minimal environmental damage (Lofano and Brown 2010).

Characterizing the physical, chemical, and biological 
composition of wastewater is critical to improving and 
tailoring treatment techniques. In this regard, microalgae 
are considered a useful biological indicator of water qual-
ity because they are susceptible to the impacts of pollut-
ants and heavy metal contaminants in wastewater (Parmar 
et al. 2016). Microalgae genera frequently used in toxicity 
bioassays include Chlamydomonas, Chlorella, Scenedes-
mus, and Selenastrum. (Ruiz-Marin et al. 2010; Li et al. 
2011; Mennaa et al. 2015; Xu et al. 2016; Yamagishi et al. 
2017). In short, evaluating the toxicity of different pollut-
ants in the ecosystem using microalgae is highly efficient 
because some microalgae can also remediate water (Ray 
et al. 2021). Microalgae have shown high potential for 
the removal of inorganic phosphorus and nitrogen from 
wastewater (Aslan and Kapdan 2006; Park et al. 2010; 
Posadas et al. 2015).

Despite the ability of microalgae to grow and tolerate 
toxic pollutants in various wastewaters, elevated concen-
trations of ammonium, phosphorus, and heavy metals may 
inhibit microalgae growth (Kumar et al. 2015; Das et al. 
2018; Li et al. 2019). Thus, a pretreatment would be neces-
sary to reduce the concentration of such pollutants to a toler-
able level, enabling microalgae to grow efficiently (Huang 
et al. 2018). Common techniques for wastewater treatment 
include precipitation, adsorption, ion exchange, flocculation, 
and electrochemical methods. Adsorption separation tech-
nology is regarded as a promising option for the remedia-
tion of wastewater due to the simple design and operation 
and time-efficiency of adsorption methods (Hua et al. 2014; 
Gisi et al. 2016).

Among the various types of adsorbents that have been 
used to remove contaminants from wastewater, hydrogels 
are promising due to several unique properties, such as their 
tunable structure, elasticity, high porosity, swelling ability, 
fast sorption rate, and reusability (Gombotz and Wee 2012; 
Makhado et al. 2020). In particular, sodium alginate has 
been widely used to prepare safe, nontoxic, biodegradable, 
and eco-friendly hydrogel. Additionally, the carboxyl groups 
of sodium alginate can serve as an active site for adsorbing 
metal ions from wastewater. Thus, sodium alginate gel is a 
superior adsorbent for ammonium, phosphorus, and heavy 
metals from wastewater (Zouboulis and Katsoyiannis 2002; 
Wan et al. 2014).

The objectives of the current investigation are to assess 
the quality and toxicity of the industrial effluents from El 
Delta Co. for Fertilizers and Chemical Industries (EFCI), 
bioremediate the wastewater using sodium alginate, and 
evaluate the suitability of the biologically treated wastewa-
ter for producing Chlorella sorokiniana and Scenedesmus 
vacuolatus.

Materials and methods

The study area

The investigated wastewater receives alkaline ammonia-rich 
industrial effluents from EFCI, located about 2 km north of 
Mansoura City, Egypt (31° 04′ 20.1" N, 31° 23′ 57.5" E).

Wastewater sampling and characterization

Sample collection, handling, and processing were conducted 
according to Peltier and Weber (1985). Wastewater samples 
were filtered through a GF/C glass microfiber filter (47 mm) 
and stored at 4 °C in the dark until analysis. The following 
physicochemical parameters were investigated according to 
the methods described in APHA (2005): water temperature, 
pH, biological oxygen demand (BOD), dissolved reactive 
phosphorus (DRP), ammonia-N, total alkalinity, nitrate–N, 
nitrite-N, total dissolved phosphorous (TDP), chemical oxy-
gen demand (COD), dissolved oxygen (DO) and heavy met-
als (Fe, Zn, Cu, Pb, Ni, Cd, and Mn).

Microalgal isolates and culture conditions

The isolates (Chlorella sorokiniana and Scenedesmus vacu-
olatus) used in this study were obtained from the culture 
collection of the phycology laboratory of the Faculty of 
Science, Mansoura University, Egypt. Axenic cultures from 
each isolate were identified and deposited in GenBank under 
the accession numbers (MZ348902 and MZ348903). Cul-
tures were maintained in modified Navicula nutrient medium 
(Starr 1978) at 25 °C under constant illumination (50 µmol 
photons m−2 s−1).

Wastewater toxicity assessment

Wastewater toxicity was evaluated using an algal growth 
inhibition assay according to the International Organiza-
tion for Standardization (ISO 2005) protocol. The standard 
test alga Pseudokirchneriella subcapitata and, in parallel, 
C. sorokiniana and S. vacuolatus were used to assess the 
effluent toxicity. A serial dilution technique was used to pre-
pare nine concentrations of the test effluent. Three culture 
flask replicates were used for each effluent concentration 
and algal species. About 10 mL of algal nutrient solution 
medium (Miller and Greene 1978) was added to each flask, 
except flask (1). Next, 1.0 mL aliquots of 5-day old cultures 
of P. subcapitata, C. sorokiniana, and S. vacuolatus with 
cell densities of 5,000 cells mL−1 were separately inocu-
lated into the test flasks. The flasks were incubated for 5 days 
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on a shaker at 20 °C under constant illumination (50 µmol 
photons m−2 s−1). The direct cell count was used to assess 
toxicity.

The half-maximal effective concentration (EC50) 
expresses the minimum effluent concentrations that inhibit 
algal growth by 50% compared with the control culture. The 
toxicity response parameter data were plotted as the relative 
percentage of its control against the corresponding effluent 
concentration. EC50 was calculated using the straight-line 
graphical interpolation method (Walsh et al. 1987).

Biopolymer‑based industrial effluent treatment

The bioremediation protocol was performed using three 
doses of powdered sodium alginate (0.25, 0.5, and 1.0 g per 
1.0 L of effluent). After stirring for 5 min, 250 mL of 0.1-M 
calcium chloride was added with continuous stirring. The 
mixture was then incubated at room temperature overnight 
(12 h) to allow for complete precipitation of the calcium 
alginate. After 12 h, the supernatants were carefully col-
lected to analyze the ammonia-N, nitrate–N, nitrite-N, dis-
solved reactive phosphorus, total dissolved phosphorus, total 
alkalinity, and copper contents.

Investigation of C. sorokiniana and S. vacuolatus 
growth in the sodium alginate‑treated effluent

The partially treated industrial effluents (200 mL) were used 
as a nutrient medium for C. sorokiniana and S. vacuolatus 
growth in 500 mL conical flasks. The treated effluent was 
inoculated with 20 mL of 5-day-old culture and incubated 
for 7 days at 25 °C under constant illumination (50 µmol 
photons m−2 s−1). A parallel set of control cultures for each 
test alga was prepared in Navicula nutrient medium and 
cultured under the same growth conditions. At the end of 
the incubation period, cultures were kept in the dark and 
allowed to stand overnight for autoflocculation. The clear fil-
trate was separated by centrifugation (2,688 × g for 10 min) 
to determine the residual ammonium-N, nitrate–N, nitrite-N, 
dissolved reactive phosphorus, total dissolved phosphorus, 
and copper contents.

N:P mass ratio optimization

The 1.0 g sodium alginate treatment induced the highest 
efficiency of nutrient removal from the effluent, but the N:P 
mass ratio calculation revealed a condition of P-limitation. 
Thus, the N:P mass ratio was adjusted to 9.9 using P-stock 
(K2HPO4.3H2O) modified Navicula nutrient medium solu-
tion to promote C. sorokiniana and S. vacuolatus growth 
(Miller and Greene 1978; Li et al. 2011; Wang et al. 2012).

Small‑scale mass cultivation experiment 
for growing the test algae in sodium 
alginate‑treated effluent with and without N:P mass 
ratio adjustment

The small-scale mass cultivation experiment was con-
ducted using three 10-L plastic jars. C. sorokiniana and S. 
vacuolatus were separately cultivated in 1.0 g L−1 sodium 
alginate-treated effluent with and without N:P mass ratio 
adjustment, using modified Navicula nutrient medium as a 
control. Each jar was inoculated with 800 mL of 5-day-old 
cultures of C. sorokiniana and S. vacuolatus and incubated 
for 7 days at 25 °C under constant illumination (50 µmol 
photons m−2 s−1). At the end of the incubation period, the 
culture jars were allowed to stand overnight in the dark to 
reach complete sedimentation. Then, cells were collected by 
centrifugation (2,688 × g for 5 min). The algal biomass was 
oven-dried (60° C) and the protein, carbohydrate, and lipid 
contents were determined.

Biochemical analysis of microalgae biomass

Crude protein was analyzed using the Bradford (1976) 
method, with modifications described by Stoscheck (1990). 
The total carbohydrate content was estimated according to 
Hedge et al. (1962). Lipids were extracted via the Soxhlet 
solvent extraction method (Sadasivam and Manickam 1996) 
and gravimetrically measured.

Statistical analysis

The values for each measurement represent the mean of 
three replicates ± SD (standard deviation). Multiple means 
were compared by analysis of variance (one-way ANOVA 
and post-hoc tests) using SPSS v. 20 for Windows 10.

Results

Effluent characteristics

The mean values of the investigated physicochemical param-
eters of the wastewater are presented in Table 1. The waste-
water was alkaline with a pH of 9.79. The effluent contained 
high amounts of ammonium-N (185.76 mg L−1), nitrite-N 
(2.93 mg L−1), and nitrate–N (1.95 mg L−1) and low quanti-
ties of TDP (0.511 mg L−1) and DRP (0.31 mg L−1). The 
N:P mass ratio (232.4) revealed a P-limitation condition in 
the effluent. Total alkalinity was high, with a mean value of 
1,998.02 mg CaCO3 L−1. BOD (18.05 mg L−1) and COD 
(18.9 mg L−1) values were found to be higher than the DO 
value (4.97 mg L−1). For the heavy metals, the effluent 
had a high copper concentration (0.149 mg L−1) and low 
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manganese concentration (0.125 mg L−1), as illustrated in 
Table 1.

Toxicity assessment of raw industrial wastewater

The dose–response curves (Fig. 1) illustrate the growth pat-
terns of C. sorokiniana, S. vacuolatus, and P. subcapitata 
in response to different concentrations of the raw effluent. 
The results presented in Table 2 and Fig. 1A show the high 
toxicity of all effluent doses on the growth of P. subcapitata 
(EC50 = 0.061%), S. vacuolatus (EC50 = 16.8%), and C. soro-
kiniana (EC50 = 25.9%).

Effluent characteristics after treatment with sodium 
alginate

The data presented in Table 3 demonstrate the signifi-
cant (p ≤ 0.05) removal of nutrients after sodium algi-
nate treatments (0.25, 0.5, and 1.0 g L−1). Treatment with 
1.0 g L−1 of sodium alginate induced the highest nutrient 
bioremoval of the major nutrients present in the efflu-
ent: ammonium-N concentration declined from 185.76 to 
70.22 mg L−1 (62.2% removal), nitrate–N concentration 
declined from 1.95 to 1.01 mg L−1 (48.2% removal), and 
nitrite-N concentration declined from 2.93 to 1.85 mg L−1 
(36.9% removal). Similarly, DRP and TDP concentrations 
were reduced from 0.31 to 0.26 mg L−1 (16.1% removal) 

Table 1   Summary statistics of the mean value of some physical 
and chemical wastewater parameters concentrations investigated at 
Eldelta for Fertilizers and Chemical industries (EFCI) company

Parameter Unit Values 

pH 9.79 ± 0.01
Water temperature °C 17.97 ± 0.06
Ammonia-N mg L−1 185.76 ± 0.14
Nitrite-N mg L−1 2.93 ± 0.09
Nitrate–N mg L−1 1.95 ± 0.03
DRP mg L− 1 0.31 ± 0.009
TDP mg L−1 0.511 ± 0 .02
N:P weight ratio 232.4
Total alkalinity mg CaCO3 L−1 1998.02 ± 0.03
DO mg L−1 4.97 ± 0.06
BOD mg L−1 18.05 ± 0.02
COD mg L−1 18.9 ± 0.09
Cu mg L−1 0.339 ± 0.002
Mn mg L−1 0.125 ± 0.002
Cd mg L−1 0.031 ± 0.001
Pb mg L−1 0.175 ± 0.02
Ni mg L−1 0.142 ± 0.02
Fe mg L−1 0.149 ± 0.005
Zn mg L−1 0.150 ± 0.002

Fig. 1   Dose–response curves of test algae Chlorella sorokiniana, 
Scenedesmus vacuolatus and Pseudokirchneriella subcapitata grown 
in different concentrations of the raw effluent (A), in different con-
centrations of 1.0 g sodium alginate-treated effluent (B) and in 1.0 g 
sodium alginate-treated effluent with N:P mass ratio adjustment (C)
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and 0.51 to 0.41 mg L−1 (19.6% removal), respectively. 
Total alkalinity was reduced from 1,998.02 to 986.1 mg 
CaCO3 L−1 (50.6% removal), and copper was reduced 
from 0.339 to 0.12 mg L−1 (64.6% removal).

Investigation of C. sorokiniana and S. vacuolatus 
growth in sodium alginate‑treated effluent

The dry biomass production of the algae grown in sodium 
alginate-treated effluent is shown in Table 4. C. soro-
kiniana and S. vacuolatus biomass production was sig-
nificantly higher (p ≤ 0.05) in 1.0 g L−1 sodium alginate-
treated effluent at 0.362 and 0.164 g L−1, respectively, 
whereas no growth was observed in the 0.25 and 0.5 g 
L−1 sodium alginate-treated effluents for both test algae.

Table 2   Toxicity (EC50) of raw effluent, 1.0 g sodium alginate treated effluent, and 1.0 g sodium alginate-treated effluent after N:P adjustment on 
growth of Pseudokirchneriella subcapitata, Chlorella sorokiniana and Scenedesmus vacuolatus 

Test algae EC 50 of the raw effluent EC 50 of 1.0 g sod. alginate treated 
effluent

EC 50 after 
N:P adjust-
ment

Pseudokirchneriella subcapitata 0.061% 5.6% 11.5%
Chlorella sorokiniana 25.9% 83.7% ˃ 100%
Scenedesmus vacuolatus 16.8% 53.6% ˃ 100%

Table 3   The chemical wastewater parameters concentrations of raw effluent samples before and after sodium alginate treatment. Data represents 
mean ± SD, n = 3. Different letters indicate significant differences at p ≤ 0.05

*  % bioremoval

Parameter Unit Raw sample Sodium alginate treatments (g L−1)

0.25 0.5 1.0 LSD 0.05

pH Unit 9.79 ± 0.01a 9.05 ± 0.02b

(7.6%)*
8.86 ± 0.03c

(9.4%)
8.01 ± 0.02d

(18.2%)
0.042

Ammonium-N mg L−1 185.76 ± 0.14 a 119.84 ± 0.01 b
(35.5%)

97.63 ± 0.02 c
(47%)

70.22 ± 0.006 d
(62.2%)

0.153

Nitrite-N mg L−1 2.93 ± 0.09 a 2.35 ± 0.01 b
(19.8%)

2.13 ± 0.02 c
(27.3%)

1.85 ± 0.02 d
(36.9%)

0.089

Nitrate–N mg L−1 1.95 ± 0.03 a 1.55 ± 0.02 b
(20.5%)

1.28 ± 0.02 c
(34.4%)

1.01 ± 0.02 d
(48.2%)

0.048

DRP mg L−1 0.31 ± 0.009 a 0.296 ± 0.006 b
(4.5%)

0.293 ± .006 b
(5.5%)

0.26 ± 0.003 c
(16.1%)

0.441

TDP mg L−1 0.51 ± 0.02 a 0.475 ± 0.006 b
(6.8%)

0.443 ± 0.006 c
(13.1%)

0.41 ± 0.006 d
(19.6%)

0.023

N:P 232.5 a 160.49 b 137.28 c 109.07 d 7.95
Total alkalinity mg CaCO3 L−1 1998.02 ± 0.03 a 1569.06 ± 0.02 b

(21.5%)
1254.23 ± 0.02 c
(37.2%)

986.1 ± 0.01 d
(50.6%)

0.032

Copper mg L−1 0.339 ± 0.002 a 0.28 ± 0.01 b
(17.4%)

0.18 ± 0.01 c
(46.9%)

0.12 ± 0.02 d
(64.6%)

0.025

Table 4   Chlorella sorokiniana and Scenedesmus vacuolatus biomass 
(dry wt. g L −1) grown on different alginate-treated effluents. Data 
represents mean ± SD, n = 3. Different letters indicate significant dif-
ferences at p ≤ 0.05

*  Modified Navicula medium

Treatments Dry weight biomass (g L−1)

Test algae

Chlorella sorokiniana Scenedesmus vacuolatus

Control* 0.451 ± 0.012 g a 0.242 ± 0.011 g a

0.25 g No growth b No growth b

0.5 g No growth b No growth b

1.0 g 0.362 ± 0.018 g c 0.164 ± 0.005 g c

LSD 0.05 0.066 0.009
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Bioremoval potentiality of C. sorokiniana and S. 
vacuolatus for sodium alginate‑treated effluent 
chemical components

Figure 2 illustrates the decline in ammonium-N content in 
1.0 g L−1 sodium alginate-treated effluent, from an initial con-
centration of 70.22 mg L−1 to 8.54 mg L−1 and 10.03 mg L−1 
with the test algae C. sorokiniana and S. vacuolatus, respec-
tively. Generally, the bioremoval percentage of the total solu-
ble inorganic nitrogen (ammonium-N, nitrite-N, and nitrate–N) 
fluctuated between 77.3 and 100%. Furthermore, phosphorus 
was completely removed in both C. sorokiniana and S. vacu-
olatus cultures, and the copper concentration was reduced by 
75% and 66.7%, respectively.

Toxicity assessment of 1.0 g L−1 sodium 
alginate‑treated effluent

The results illustrated in Table 2 and Fig. 1B show that 1.0 g 
L−1 sodium alginate-treated effluent stimulated the growth of 
both S. vacuolatus and C. sorokiniana, with an EC50 of 53.6% 
and 83.7%, respectively, P. subcapitata growth was slightly 
increased with an EC50 of 5.6%.

Toxicity assessment after N:P mass ratio adjustment 
of 1.0 g L−1 sodium alginate‑treated effluent

The (9.9 w/w) N:P mass ratio adjustment of sodium alginate-
treated effluent resulted in the growth stimulation of S. vacu-
olatus and C. sorokiniana as the EC50 was typically ˃ 100% 
for both test algae, whereas the P. subcapitata EC50 value was 
11.5% (Table 2; Fig. 1C).

Growth responses of C. sorokiniana and S. 
vacuolatus grown in 1.0 g L−1 sodium 
alginate‑treated effluent with and without N:P mass 
ratio adjustment

The 1.0 g L−1 sodium alginate-treated effluent with an 
adjusted N:P mass ratio generated the maximum protein 
content in C. sorokiniana (57.04 ± 0.04%), whereas the 
lowest content (54.79 ± 0.01%) was recorded in the control 
culture. However, C. sorokiniana also exhibited the highest 
lipid content (16.01 ± 0.01%) and total carbohydrate content 
(16.03 ± 0.04%) in the control culture (Fig. 3A).

The highest S. vacuolatus protein content (52.19 ± 0.02%) 
was recorded in the 1.0  g L−1 sodium alginate-treated 
effluent with an adjusted N:P ratio. The highest total 
lipid content (12.16 ± 0.03%) and total carbohydrate con-
tent (10.03 ± 0.01%) were observed in the control culture 
(Fig. 3B).

Fig. 2   Bioremoval (%) of total soluble inorganic nitrogen (NH4-N, 
NO3-N and NO2-N), phosphorus and copper after 7 days growth of 
Chlorella sorokiniana and Scenedesmus vacuolatus 

Fig. 3   Mean variations in wt % of total protein, total carbohydrate, 
and total lipid contents of Chlorella sorokiniana (A) and Scenedes-
mus vacuolatus (B) grown in 1.0  g sodium alginate-treated effluent 
with and without N:P mass ratio adjustment
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The highest dry weight biomass for C. sorokiniana 
(1.42 g L−1) and S. vacuolatus (0.74 g L−1) were recorded 
in the 1.0 g L−1 sodium alginate effluent with an adjusted 
N:P mass ratio (Fig. 4).

Discussion

Bioremediation and wastewater recycling have become nec-
essary for human life, as water is the most precious natu-
ral resource. Furthermore, the continuous discharging of 
wastewater to ecosystems without appropriate treatment has 
created severe environmental and health hazards (Osibanjo 
et al. 2011). Therefore, developing methods for the sustain-
able treatment and reuse of wastewater is a significant global 
challenge (Li et al. 2011; Ji et al. 2013).

The physicochemical analysis (Table 1) revealed that 
EFCI effluents were highly rich in inorganic nitrogen 
(ammonium-N) and copper, which reflects the grossly pol-
luted conditions of the effluent. The toxicity of ammonium-
N to aquatic organisms is strongly pH-dependent; in natural 
aquatic habitats with high alkalinity and pH values above 
8, most ammonium-N forms unionized ammonia, which 
is highly toxic to aquatic communities (Leta et al. 2003; 
Seyoum et al. 2003; Shiwanand and Tripathi 2013). Similar 
results were also reported by El-Sheekh et al. (2005) Abdel-
Hamid et al. (2017) and Refaay et al. (2021a) in the same 
study area. However, it is difficult to predict the toxicity of 
wastewater from physical and chemical analysis; thus, algal 
bioassay toxicity assessments were performed to assess the 
toxicity of the investigated effluent.

Toxicity assessment using algal bioassays (Table  2 
and Fig. 1A) revealed the toxic effects of the effluent on 

the three test algae (P. subcapitata, C. sorokiniana, and S. 
vacuolatus); the low EC50 values indicated the high toxic-
ity of the tested sample (Walsh et al. 1987). The marked 
growth inhibition of C. sorokiniana and S. vacuolatus may 
be attributed to the high concentration of ammonium-N and 
copper. In this context, Levy et al. (2008) and Kondzior and 
Butarewicz (2018) reported that copper was the most toxic 
element, affecting the growth rate and photosynthesis of 
microalgae via the reduction of chlorophyll a and b, total 
carotenoids, and starch granules. In addition, copper expo-
sure alters metabolism as well as chloroplast ultrastructure 
and increase intra-thylakoid space in microalgae (Kropat 
et al. 2015; Yong et al 2021).

Khanh et al. (2013), Markou et al. (2016), and Li et al. 
(2019) suggested high ammonia concentrations induce an 
uncoupling effect on electron transport in photosystems I 
and II by breaking down the proton gradient required for 
photophosphorylation and affecting the oxygen evolution 
complexes, delaying microalgae growth. The current find-
ings are consistent with those of Park et al. (2010), Posadas 
et al. (2017), and Li et al. (2019), who reported the marked 
growth inhibition of C. sorokiniana and Scenedesmus sp. at 
concentrations of ammonium higher than 100 ppm.

Therefore, the sodium alginate pretreatment process was 
necessary to minimize the concentrations of toxic ammo-
nia-N and heavy metals, particularly copper, in the effluent 
to support the growth of C. sorokiniana and S. vacuolatus 
in this study. Several studies have reported using natural 
polymers, such as sodium alginate, as efficient and eco-
friendly biosorbents for environmental pollutants (Zou-
boulis and Katsoyiannis 2002; Hussain et al. 2007; Durai 
and Rajasimman 2011; Wan et al. 2014). Our results indi-
cated the excellent capability of 1.0 g L−1 sodium alginate 
treatment to remove toxic pollutants from the investigated 
effluent (Table 3). The removal capacity may be ascribed 
to the alginate structure which is rich in carboxyl groups, 
favoring the biosorption of inorganic impurities and heavy 
metals and is suggested to be superior to other techniques 
for wastewater treatment (Tsekova et al. 2010; Molina and 
Quiroga 2012). Moreover, alginate can form stable biode-
gradable gels in the presence of divalent cations, such as 
Ca2+. Hydrogen ions displace calcium ions on the carboxylic 
acid groups of the adjacent chains, forming a calcium algi-
nate polymeric matrix characterized by excellent pollutant 
biosorption capability via passive adsorption between metal 
ions and the binding sites on the molecular structure (Alluri 
et al. 2007; Singh et al. 2012; Tiwari and Kathane 2013). 
The present results are in harmony with those obtained by 
(Shukr 2005; El-Tayieb et al. 2013).

The current experimental outcomes suggest the possibil-
ity of using this partially treated effluent as the sole N source 
for the mass production of microalgae that are capable of 
high biomass production in nutrient-rich media, like C. 

Fig. 4   Mean variation of dry biomass (g L−1) of Chlorella sorokini-
ana and Scenedesmus vacuolatus grown in 1.0  g sodium alginate-
treated effluent with and without N:P mass ratio adjustment
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sorokiniana and S. vacuolatus (Refaay et al., 2021b; Spain 
et al. 2021). The 1.0 g L−1 sodium alginate-treated efflu-
ent (ammonia-N 70.22 mg L−1) was found to stimulate the 
growth of both C. sorokiniana and S. vacuolatus relative to 
control. Similar results were also reported by Wang et al. 
(2010a, 2010b) and Khanh et al. (2013), who observed algal 
growth at ammonium-N concentrations from 43 to 100 mg 
L−1. Consequently, the present results (Fig. 2) confirmed 
the bioremediating potential of C. sorokiniana and S. vacu-
olatus on the partially treated effluent, enabling its usage as a 
commercial nutrient medium supporting growth production.

In this regard, numerous studies have indicated that 
microalgae possess high capabilities for the bioremoval of 
inorganic pollutants, particularly nitrogen, phosphorus, and 
copper, from wastewaters through assimilatory uptake into 
the cell (Hoffmann 1998; Aslan and Kapdan 2006; Garcia 
et al. 2006; Park et al. 2010; Posadas et al. 2015).

Moreover, Mandal et al. (2018), Pritchard et al. (2015) 
and Lachmann et al. (2019) indicated that ammonium is 
the preferable nitrogen form for microalgae because of the 
low metabolic cost to reduce it to organic matter, whereas 
microalgae must consume energy and produce enzymes 
(i.e., nitrate reductase and nitrite reductase) for nitrate/
nitrite reduction. Furthermore, microalgae have apparent 
differences in their copper removal abilities, which mainly 
depend on the structure and type of algae cells as well as the 
quantities of related groups (Zeraatkar et al. 2016). Previous 
studies have shown that the early absorption of copper could 
be due to copper adsorption to the outer cell components 
of microalgae, such as polysaccharides, mucilage, and cell 
walls. Additionally, the copper absorption process in algae 
may be due to rapid non-metabolic-dependent adsorption 
followed by a slow metabolic-dependent uptake process 
(Kaplan 2013; Anu et al. 2016).

The high tolerance of both C. sorokiniana and S. vacuola-
tus to the treated effluent toxicity (Fig. 2B) and their marked 
growth stimulation at low effluent concentration levels were 
the pillars upon which these microalgae were selected for the 
bioremediation process of the partially treated wastewater. 
In this regard, the inorganic nutrient bioremoval efficiencies 
of microalgae are determined by various factors, such as the 
initial concentration of nutrients and the mass ratio of N/P 
(De-Bashan et al. 2002; Aslan and Kapdan 2006; Zhen-Feng 
et al. 2011; Kim et al. 2016). Miller and Greene (1978), Li 
et al. (2011), and Wang et al. (2012) reported that the opti-
mal N:P ratio for freshwater microalgae (i.e., Chlorella sp. 
and Scenedesmus sp.) cultivation was 5–10. Therefore, the 
N:P mass ratio of the treated effluent was adjusted to 9.9 to 
optimize the growth of C. sorokiniana and S. vacuolatus.

However, Dominguez-Bocanegra et al. (2004), Richmond 
(2004), and Borowitzka (2005) documented that the media 
type affected the growth and composition of microalgae in 
addition to the mass ratios of different components. The 

present results revealed an increase in dry biomass without 
a marked alteration in biomass composition (lipid, protein, 
and carbohydrate contents) of both C. sorokiniana and S. 
vacuolatus when grown in the treated effluent after N:P mass 
ratio adjustment, which may have contributed to the improve-
ments in supplying phospholipids, genetic materials, and 
energy for cell division as reported by Wu et al. (2015) and 
Meza et al. (2015).

In terms of the cost of chemicals used in the treatment pro-
tocol of this study, according to the estimates of international 
prices from different suppliers, the average price of sodium 
alginate is 2 US$ kg−1, and the price for K2HPO4 is 0.12 US$ 
kg−1. Thus, the cost per 1 m3 (effluent) is 2.00456 US$ m−3. 
The mixing could be performed using the infrastructure of 
the wastewater treatment tanks. This emphasizes the merits of 
such a treatment strategy, not only as a low-cost alternative but 
also as a simple technology that can be easily incorporated into 
current practices to treat industrial effluents for the economic 
production of microalgae biomass.

Conclusions

It can be concluded that the treatment of ammonia-N rich 
industrial effluents with powdered sodium alginate polymer 
(1.0 g L−1) followed by microalgae (C. sorokiniana and S. 
vacuolatus) production, using this treated effluent as the sole 
nitrogen source, succeeded as an effective and simple proto-
col for bioremediating such industrial effluents and generating 
considerable microalgae biomass. This bioremediation strat-
egy is a simple and cost-effective approach, and the treated 
effluent can be considered a commercial medium for micro-
algae growth.
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