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Abstract

High salinity, nutrient deficiency, heavy metals, desiccation, temperature fluctuations, and ultraviolet radiations are major
abiotic stress factors considered inhospitable to algal growth and development in natural and artificial environments. All these
stressful conditions cause effects on algal physiology and thus biochemical functioning. For instance, long-term exposure
to hyper/hypo salinity conditions inhibits cell differentiation and reduces growth. Photosynthesis is completely blocked in
algae's dehydrated state, resulting in photoinhibition or photodamage. The limitation of nutrients in aquatic environments
inhibits primary production via regulating phytoplankton community development and structure. Hence, in response to
these stressful conditions, algae develop plenty of cellular, physiological, and morphological defences to survive and thrive.
The conserved and generalized defence responses in algae include the production of secondary metabolites, desaturation
of membrane lipids, activation of reactive species scavengers, and accumulation of compatible solutes. Moreover, a well-
coordinated and timely response to such stresses involves signal perception and transduction mainly via phytohormones that
could sustain algae growth under abiotic stress conditions. In addition, the combination of abiotic stresses and plant hormones
could further elevate the biosynthesis of metabolites and enhance the ability of algae to tolerate abiotic stresses. This review
aims to present different kinds of stressful conditions confronted by algae and their physiological and biochemical responses,
the role of phytohormones in combatting these conditions, and, last, the future transgenic approaches for improving abiotic
stress tolerance in algae.
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Introduction

Stress is described as a "disparity from nominal conditions
for as long as homeostasis allows" (Borowitzka 2018).
Nutrient deficiency, especially nitrogen deprivation, low/
high light intensity, low/high temperature, low/high salinity
levels, and pH variations, are all considered physiologically
stressful conditions for algae as they reduce the growth rate.
The impact of these environmental factors, whether negative
or positive, may significantly affect microalgal physiology
and biochemical processes (Rosenberg et al. 2008). Acute
variations in temperature, irradiance, salinity, or pH will
disturb cellular homoeostasis by affecting cellular integrity
and bio-molecular composition (Jauzein and Erdner 2013).
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Under salinity stress, the turgor pressure, ion distribution,
and organic solutes in the cell are disrupted, resulting in
reactive oxygen species (ROS), which induce cell oxida-
tive damage (Liu and Pang 2010). Long-term exposure to
hyper/hypo salinity conditions inhibits cell differentiation
and decreases growth (Kumar et al. 2010).

Similarly, light intensity affects algal growth through its
impact on photosynthesis (Stockenreiter et al. 2013). The
growth rate of algae is maximum at saturation intensity
and decreases with both rising and fall in light intensity.
Microalgae undergo photoadaptation/photoacclimation,
which results in a change in cell properties and increased
photosynthetic activity. This will help the microalgae to
survive in changed conditions of light intensity. Photoadap-
tation (a change in genotype that occurs over many genera-
tions in response to a change in light intensity) can occur
through various processes, including changes in pigment
types and quantities, growth rate, dark respiration rate, and
essential fatty acid supply (Fabregas et al. 2004). Reversible
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phenotypic adjustments such as changes in cell volume and
the number of thylakoid membranes per stack accompany
morphological photoacclimation (Berner et al.1989).

Moreover, ultraviolet (UV) light (wavelengths
215-400 nm) has harmful effects on algae (Pessoa 2012).
At comparable intensities, UV-B (215-380 nm) does more
significant damage to the cells than UV-A (380—400 nm)
(Pessoa 2012). UV-B radiation causes direct damage to
DNA molecules, whereas UV-A radiation induces indirect
damage by generating reactive oxygen and hydroxyl radicals.
Self-shading through mat formation, migration to greater
water depth (lower UV-levels), activation of anti-oxidative
processes involving enzymatic and non-enzymatic strategies,
or the synthesis of specific secondary metabolites such as
mycosporine-like amino acids (MAAs), scytonemin, and
carotenoids comprising myxoxanthophyll, f-carotene, and
its derivatives (such as echinenone and zeaxanthin) are all
established acclimation mechanisms in algae and cyanobac-
teria (Rastogi et al. 2014).

Environmental stress can cause significant damage and
trigger responses that result in either acclimation or pro-
grammed cell death. Algae use various stress control and
repair techniques, including modifying fatty acid saturation
to change membrane fluidity, synthesising chaperonins for
correct folding of denatured proteins, accumulating compat-
ible solutes to sustain cell osmolality and controlling photo-
synthesis to regulate energy output and consumption. This
review highlights the different kinds of abiotic stress condi-
tions faced by algae and their physiological and biochemi-
cal responses. The role of phytohormones to combat abiotic
stress and lipid production during these conditions is also
discussed. In addition, transgenic approaches to cope with
these stressful conditions are also considered in this review.

High salt stress

When algae are subjected to high salt stress, their photosyn-
thetic activity is significantly reduced. This kind of inhibi-
tion appears in the photosystem II (PSII) complex. Reduced
PSII activity was linked to state-2 transition in the green
alga Dunaliella tertiolecta (Gilmour et al. 1984, 1985). Endo
et al. (1995) confirmed this and proposed that the reduc-
tion of quantum yield of PSII electron transport in Chla-
mydomonas reinhardtii caused by salinity stress is connected
to the state-2 transition. Lu and Vonshak (2002) demon-
strated that the damage to phycobilisome and shifted the dis-
tribution of excitation energy favouring PSI in Arthrospira
(Spirulina) platensis due to inhibition of the electron trans-
port at donor and acceptor sides of PSII under salt stress.
Moreover, stress due to high salt concentration also
leads to ROS generation and deficiency of different cations
(such as potassium (K%), calcium (Ca?h), and manganese
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(Mn**)), thus decreasing photosynthetic activity by inter-
fering with several physiological and biochemical pro-
cesses (Sudhir and Murthy 2004; Fal et al. 2022). Light-
harvesting complexes (LHCs) of PSI and proteins of PSII
involved in oxygen (O,) evolution are damaged by ROS at
high salt concentrations in C. reinhardtii (Subramanyam
et al. 2010; Neelam and Subramanyam 2013). However,
to eliminate the ROS and misfolded protein production,
the salt-stressed cells of C. reinhardtii, undergo upregu-
lation of several genes such as glutathione transferase,
glutaredoxin, plastid Fe superoxide dismutase 1 (SOD),
thioredoxins, a GrpE family protein, heat shock protein
HSP20 and heat shock factor binding proteins (Perrineau
et al. 2014). In response to a spike in salt concentration,
Dunaliella salina a salt-tolerant microalga, increases the
Chlorophyll-a (Chl-a) content to raise the photosynthetic
activity (Talebi et al. 2013).

Different responses are reported in algal species to com-
bat salinity stress, as shown in Fig. 1.

Khona et al. (2016) reported that when C. reinhardtii cells
are exposed to high salt stress, they undergo a temporary
stage known as “palmelloid” (Fig. 2). Palmelloid form has
undergone several structural changes, including the loss of
flagella, cell clustering having a minimum of two cells per
cluster, increased secretion of exopolysaccharide (EPS),
surrounding cells by EPS matrix, and individual cell wall
thickening. The synthesis of EPS requires a lot of energy;
however, the EPS matrix's protection permits to survive the
stressed cells under adverse conditions. EPSs accelerate
water accumulation and decrease ion influx, protecting the
membrane system on palmella formation in D. salina (Wei
et al. 2017).

Algal genera like Dunaliella and Chlorella have alter-
native strategies for dealing with salt stress. As Dunaliella
does not have a cell wall, allowing the cells to rapidly alter
volume during severe salinity stress by altering internal ion
and glycerol content, restoring the cells’ osmotic pressure
(Ben-Amotz and Avron 1980; Katz and Avron 1985; Kacka
and Donmez 2008). On the other hand, Chlorella cells
employ osmoregulation to maintain osmotic homeostasis
by producing organic solutes and accumulating inorganic
ions due to rigid cell walls. These solutes, also known as
compatible solutes, are typically small organic compounds
with a neutral charge and minimal toxicity at significant con-
centrations. Glycerol is an excellent example of an effective
compatible solute generated by algal species during high salt
stress. Glycerol accumulation in Chlamydomonas HS-5 was
proportional to salt concentration, with higher salt concen-
tration resulting in higher glycerol content (Miyasaka et al.
1998). Starch breakdown correlated closely with glycerol
formation in Chlamydomonas pulsatilla, suggesting that
glycerol was synthesised by the breakdown of starch (Hel-
lebust and LIN 1989).
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Fig. 1 Algal response to tolerate high salt stress

Proline is another osmoregulatory solute whose content
increases linearly with increasing salt in algae (Brown and
Hellebust 1978). Exogenous proline application reduces
the adverse effects of high salinity by decreasing sodium
(Nat*) and chloride (C17) accumulation in C. reinhardtii
(Reynoso and De Gamboa 1982). During salt stress, Pico-
chlorum oklahomensis (Henley et al. 2004) and Picochlorum
SE3 (Foflonker et al. 2016) both showed up-regulation of
genes involved in proline synthesis. In contrast to Chla-
mydomonas sp. and D. salina, where glycerol is the primary
osmolyte and starch degradation increases, proline is the
primary osmolyte in Picochlorum species, and starch syn-
thesis is increased (Xia et al. 2014; Foflonker et al. 2016).
Besides proline and glycerol, trehalose also has a recog-
nised involvement in the stability of proteins by raising the

transition temperature of proteins and as an osmoregulatory
molecule (Kaushik and Bhat 2003). High salt stress in Chla-
mydomonas (Wang et al. 2018a), Chlorella, and Scytonema
increased trehalose production (del Pilar Bremauntz et al.
2011). Other polyols such as mannitol and sorbitol are also
crucial in osmoregulation (Foflonker et al. 2016).

Another critical technique for dealing with salt stress is
ion uptake and export via the cell membrane, which helps
to maintain intracellular ion balance (Reed et al. 1981;
Talebi et al. 2013). In hypersaline conditions, Dunaliella is
reported to use a redox-driven sodium pump to remove
Na* ions (Katz and Pick 2001). High Na* concentrations
can interfere with the absorption of other cations, particu-
larly K* (Chakraborty et al. 2016). As K* is involved in a
variety of physiological activities in plants, maintaining
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Fig.2 Conceptual diagram that
shows the clustering of C. rein-
hardtii cells (Palmelloid stage)
upon salt stress
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the cytosolic K*/Na™ ratio is very critical in salty circum-
stances (Degl’Innocenti et al. 2009). By transporting K*
ions through membrane transport proteins, upregulation of
membrane transport proteins can give resistance to high
salinity in halotolerant algal species. Salt-adapted mutants
of C. reinhardtii showed increased expression of numer-
ous membrane transport proteins, as reported by Sithti-
sarn et al. (2017). When salt-sensitive C. reinhardtii cells
were subjected to salt stress, genes for K* ion transport
were dramatically increased (Wang et al. 2018a), perhaps
compensating for the disruption in K* absorption induced
by elevated Na* ion concentrations. In addition to mem-
brane transport proteins, the amount of two plasma mem-
brane proteins, P150 and P60, increased significantly with
increasing salt content in D. salina (Fisher et al. 1996).
Furthermore, the induction of these proteins correlated
with enhanced growth immediately after a severe hyper-
osmotic shock, indicating their role in salt acclimation.
Most green algae exhibit storage lipid buildup when
subjected to salt stress. Several researches have been con-
ducted on using high salinity conditions to improve algal
lipids production. Chlamydomonas sp. JSC4 is a salt-
tolerant strain obtained from a marine environment that
exhibits substantial lipid accumulation when subjected to
extreme salt stress. This strain was used to investigate the
mechanism of lipid production in extreme salt stress (Ho
et al. 2014). Under salt stress, Chlamydomonas sp. JSC4
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exhibits a highly selective transition from starch synthesis
to lipid synthesis (Ho et al. 2017).

Carotenoids act as antioxidants situated inside the chlo-
roplast envelope and protect the PSII (primarily the de
novo synthesis of D1 protein required to repair PSII) and
LHC from the damage induced by ROS. In response to high
salt stress D. salina synthesizes a high amount of carote-
noids, which is exploited in industries for carotenoid produc-
tion (Massyuk 1965; Borowitzka et al. 1985, 1990; Avron
and Ben-Amotz 1992; Borowitzka 1995; Ye et al. 2008).
At moderate levels of salt stress (0.05 M-0.15 M), C. rein-
hardtii and Chlorella vulgaris also show high carotenoid
production (Annamalai et al. 2016).

Several studies showed that low salinity conditions also
affect various physiological processes of marine algae. For
instance, Wilson et al. (2004) reported the decrease in the
photosynthetic efficiency (F,/F,,) of the red alga Lithotham-
nion glaciale after 5-week exposure to a salinity of 3.
Despite an initial reduction in photosynthetic parameters and
an increase in respiration, the physiology of the Gelidium
coulteri was reported to be partially recovered after a 5-week
exposure to a low-salinity environment (Macler 1988). In the
brown algae, Alaria esculenta, a reduction in photosynthetic
efficiency was detected in the microscopic zoospores but
not during adult life stages when exposed to a salinity of 20
(Fredersdorf et al. 2009). Moreover, Burdett et al. (2015)
investigated the effect of low salinity on the intracellular
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concentration of dimethylsulphoniopropionate (DMSP), pig-
ment composition and photosynthetic characteristics in L.
glaciale. No significant difference in intracellular DMSP
concentrations was observed. However, photosynthetic
parameters (comprising pigment composition) exhibited a
mixed response, indicating some degree of photosynthetic
resilience to decreased salinity. This study shows evidence of
intracellular mechanisms adopted by L. glaciale in response
to reduced salinity.

Nutrient stress in algae

The limitation of nitrogen (N) and phosphorus (P) in aquatic
environments inhibits primary production via regulat-
ing phytoplankton community development and structure
(Harke et al. 2016). In algae, depending on which nutri-
ent is reduced and to what degree, significant differences
in biochemical composition can be found under conditions
of nutrient limitation. Nitrogen and phosphorus deficiency,
for example, causes lipid metabolism to switch from mem-
brane lipid synthesis to neutral lipid storage. As a result,
the overall lipid content of green algae rises, although the
lipid contents in the plasma membrane decrease. Studies
have shown that P-stressed cells upregulate gluconeogen-
esis over glycolysis transcriptionally. Trehalose concentra-
tions rise dramatically in P-stressed cells. P-stressed cells
displayed higher taurocholate levels, indicating that P-stress
promotes triacylglycerol (TAG) mobilization (McLean et al.
2021). Moreover, phosphorus-containing lipids (P-lipids) of
membranes are reported to get replaced with other non-P
substitutes under situations of P deficiency in the diatom
Thalassiosira pseudonana (Martin et al. 2011; Hunter et al.
2018). This response permits the phytoplankton to decrease
its P demands in P-limited environments (Van Mooy et al.
2009).

Microalgae degrade nitrogen-containing macromolecules
such as proteins, mainly when nitrogen is low. As a result of
the lack of nitrogen, microalgae accumulate vast quantities
of carbohydrates and fats. Current research has used nutrient
limitation approaches (such as sulfur, nitrogen, and phos-
phate) to induce microalgae to convert protein or peptides
into carbohydrates to enhance carbohydrate accumulation
(Dragone et al. 2011; Harun and Danquah 2011). The car-
bohydrate content of the microalga C. vulgaris rose to 22.4%
from the normal content of 16.0% on a dry weight basis
under nutritional (nitrogen) stress, which is more acceptable
in terms of the biomass required to create bioethanol (Kim
et al. 2014).

Depending on the nutritional composition of the growth
medium, the same algal strain might be a source of vari-
ous fatty acids. Saturated fatty acids, particularly palmitic
acid and total lipid content in the green alga Scenedesmus

obliquus, are affected by Na, iron (Fe), cobalt (Co), and
molybdenum (Mo). High potassium and magnesium trigger
the production of the most polyunsaturated acids (PUFA)
and oleic acid, whereas nitrogen and phosphorus trigger
the least. The maximum levels of monounsaturated acids
(MUFA?), particularly a-linolenic acid (ALA), are acquired
when nitrogen and phosphorus deficiency retards devel-
opment and results in a buildup of fatty acids that form
MUFAS, particularly elaidic acid (Darki et al. 2017).

Microalgae growth and phosphate absorption are also
directly related to biomass production (Solovchenko et al.
2016). Chu et al. (2013) showed that in phosphate-sufficient
circumstances, the lipid yield of C. vulgaris for biodiesel
generation was 58.39 mg L~! day~!, which was more signifi-
cant than in phosphate-deficient situations. Consequently, it
is possible to deduce that phosphate is a crucial macronutri-
ent for the production of microalgal lipids. However, due
to a lack of light and a decline in carbon dioxide (CO,) and
O, levels in the growth medium, the phosphorus absorption
rate by microalgae can achieve saturation (Chu et al. 2013).

Few experimental studies in the literature highlight the
effect of high concentrations of nutrients on the physiologi-
cal processes of algae. Reef et al. (2012) reported the effect
of nutrient enrichment (N and P) on the growth rate, pho-
tosynthesis, nucleic acid composition, and elemental stoi-
chiometry of three coral reef macroalgae (Caulerpa ser-
rulata, Laurencia intricata, Sargassum polyphyllum). They
observed that nutrient enrichment had positive effects on
photosynthetic rates and investment in RNA. However, no
correlation of growth was found with either photosynthetic
rates or RNA content. Macroalgae, especially L. intricata,
accumulated P to very high levels (>0.6% of dry weight).
Negative effects of P accumulation on growth were observed
above 0.21%. N was not stored, but evidence of futile cycling
(significant reduction in N signatures following the enrich-
ment) was observed. The ability to store large amounts of P
is probably an adaptation to the tropical oceans' patchy and
low nutrient environment. Moreover, nutrient enrichment of
lakes leads to eutrophication, which results in the growth of
harmful and undesirable algal species. It causes changes in
the physical and chemical quality of water and sediments,
affecting the entire ecohydrology of lakes along with varia-
tions in diversity, composition and richness of algal species
(Dubey and Dutta 2020).

Desiccation stress

Water-stressed environments lead to desiccation in certain
poikilohydric plants such as algae and lichens quickly, as
they cannot manage their water content actively. In the dehy-
drated state of algae, photosynthesis is completely blocked,
and due to which, it cannot use any absorbed energy for
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electron excitation, which results in photoinhibition or pho-
todamage. Allakhverdiev et al. (2008) reported different des-
iccation sensitive sites in the photosynthetic machinery of
cyanobacteria, green algae, lichens, and mosses. These sites
include the photosystems, particularly PSII with its oxygen-
evolving complex, ATP-generation, and carbon assimilation
processes. Due to desiccation in algae, the supply of CO,
used in carbon fixation may also decrease, resulting in the
decrease of the D1 protein repair by inactivating the trans-
lation machinery (Takahashi and Murata 2008). Hence, it
is not the photodamage but the loss of repair mechanism
responsible for reducing photosynthesis in green algae dur-
ing desiccation.

Terada et al. (2021) reported that the photosynthetic
response to dehydration stress differs between two het-
eromorphic life-history stages of the red alga Neopyropia
yvezoensis f. narawaensis collected from Saga, Kyushu
Island, Japan. In the microscopic sporophyte, the effec-
tive quantum yield of photosystem II dropped to zero after
a 5-min of acute emersion (~ 1440-min) under 50% humid-
ity and did not recover to initial values regardless of a fol-
lowing 24 h immersion in seawater. However, the macro-
scopic gametophyte almost recovered to initial values after
the subsequent 24 h immersion in seawater. Thus, their
results suggest that the photochemical efficiency in micro-
scopic sporophytes appears to be sensitive to dehydration
stress, unlike the macroscopic gametophyte.

Gasulla et al. (2013) found ultrastructural alterations in
Asterochloris erici cells after 3 h of rehydration following
quick (60 min) or gradual (5-6 h) desiccation. Delayed
dehydration led to an increase in the number of lipid bodies
(with a decrease in their size), the amount of starch depos-
its and electron-dense deposits in the chloroplasts (Gasulla
et al. 2013). The plasma membrane remained somewhat
retracted from the cell wall in the progressively dried and
rehydrated cells. Rapidly dried Asterochloris cells, on the
other hand, showed a clear degenerate ultrastructure after
being rehydrated. The cytoplasm was highly vacuolated and
filled with lipid bodies. The cytoplasm and the chloroplasts
still appeared shrunken, thylakoids were swollen or fused,
and numerous starch deposits were visible (Gasulla et al.
2013). It also exhibited extensive plasmolysis and cytoly-
sis. However, even with this damage, the cells survived the
dehydration treatment.

Recently, Terlova et al. (2021) found that the degree of
recovery from dehydration followed by short- and long-term
rehydration in the case of the green algae Tetradesmus spp.
was dependent on the habitat of origin and the dehydra-
tion scenario in terrestrial, but not in aquatic species. Dur-
ing dehydration and rehydration, both aquatic and desert
species maintained their cell ultrastructure uniformly, but
staining with an amphiphilic styryl dye showed damage to
the plasma membrane due to osmotically induced water loss
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in aquatic species. Thus, their analyses indicate that terres-
trial Tetradesmus possess a vegetative desiccation tolerance
phenotype, making them suitable for comparative omics
studies to investigate the origins of the desiccation machin-
ery in that group.

One method against desiccation of aeroterrestrial and
aquatic green algae is to prevent dehydration through self-
protection. Klebsormidium, an aeroterrestrial filamentous
green algae, can form multi-layered mat-like structures on
top of or interwoven with the upper millimetres of soil in
natural conditions, resulting in a high degree of self-shading
and reduced water loss from individual filaments within such
a population. Arctic Zygnema sp. is also reported to form
mats (Pichrtova et al. 2013) and provides desiccation toler-
ance in the field-collected Zygnema ericetorum in the Alps
(Aigner et al. 2013).

Temperature stress response of algae

Like higher plants, numerous metabolic activities of algae
are affected due to fluctuations in temperature. Many studies
highlight the effect of temperature change on photosynthetic
activity (Zheng et al. 2020), the composition and produc-
tion of lipids (Calhoun et al. 2021), and many other mac-
romolecules of algae (Zhao et al. 2020a). Zhang and Liu
(2016) have reported that the activity of PS II was reduced
with increasing temperature (from 25 to 37 °C) due to its
structural damage, while the activity of PSI was increased
and synchronized with high O, production in the marine
cyanobacterium Arthrospira (Spirulina). However, on
increasing the temperature to 40 °C, the rate of photosyn-
thetic O, evolution was decreased, and severe reduction in
PSII activity, but the rise in PSI activity was reported. Thus,
photosynthetic activity of Arthrospira increased at heat
stress (30-37 °C) by upregulating the PSI electron transport
activity, and it was decreased at strong heat stress (40 °C)
due to inhibition of PSII electron transport activity. Chlo-
rella pyrenoidosa is cultivated largely due to its commercial
importance. In C. pyrenoidosa, high temperature (38 and 41
‘C) stimulates the production of active oxygen species that
damage photosynthetic machinery due to the suppression of
activities of antioxidant enzymes at 41 °C (Ma et al. 2020).

Algae also show broad acclimations and tolerance to
changing temperatures (Zheng et al. 2020), such as changes
in lipids and fatty acid proportions with fluctuating tempera-
tures. With increasing temperature, the amount of PUFA
reported being reduced in Navicula, a diatom collected from
Antarctica (Teoh et al. 2013) and in Nannochloropsis sp.
(Hu and Gao 2006). In addition, a decrease in temperature
increased the proportion of unsaturated and short-chain fatty
acids in algae has also been documented in several studies
(Miihling et al. 2005; Mangelsdorf et al. 2009).
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A study on a high-temperature tolerant strain of Pyropia
haitanensis showed that high-temperature response depends
upon the length of exposure to stress. Short-term exposure
caused changes in transcriptome profile simultaneous reduc-
tion in photosynthesis and utilization of energy, while long-
term exposure induced an anti-oxidative response with an
increase in energy utilization (Wang et al. 2018b). Toler-
ance to high temperature in some algal species may depend
upon the biogeographical distribution that has also been
reported. For instance, a difference in tolerance capacity to
high temperature has been observed in two strains of the
dinoflagellate Alexandrium tamarense collected from Japan
and Malaysia (Kobiyama et al. 2010). Malaysian strains
could survive at a higher temperature range (15- 30 “C) than
Japanese strains (0 -25°C), delineating their biogeographical
boundaries.

The low-temperature stress is less explored than the high
temperature in the case of microalgae (Ermilova 2020).
However, some recent studies have focused on finding the
effects of cold stress in C. reinhardtii (Zalutskaya et al.
2019; Li et al. 2020), a unicellular green alga, the best
available model for studying the response to temperature
fluctuations (Ermilova 2020). A change in the production
of heat shock proteins (HSPs) as a low-temperature acclima-
tion has also been reported in C. reinhardtii (Maikova et al.
2016). It shows variations in the expression of 3471 genes
responsible for various biological processes, including cell
cycle, protein synthesis, and protein kinase-based phospho-
rylation under cold stress (Li et al. 2020). The C. reinhardtii
showed a decrease in growth due to photo-oxidative damage
of several macromolecules under low temperatures (Zheng
et al. 2020). A recent study by Calhoun et al. (2021) on a
halotolerant microalga Scenedesmus reported an increase in
the expression of genes that encode fatty acids, metabolic
enzymes, and variations in the levels of amino acids under
cold stress. Menegol et al. (2017) demonstrated increased
w3-fatty acids production due to low temperature in Hetero-
chlorella luteoviridis.

CO,/pH/ocean acidification stress

The process in which a rise in atmospheric CO, leads to
a drop in the pH of the ocean surface is known as ocean
acidification. CO, uptake by the ocean changes the carbonate
chemistry of seawater following a reduction in pH (Raven
et al. 2005). Experiments have shown that increasing pCO,
causes decreased calcification of crustose coralline algae
(Anthony et al. 2008). Burdett et al. (2012) examined the
effect of low pH on the red coralline alga L. glaciale on epi-
thelial cell morphology and DMSP/DMS(P) production. No
change in DMS(P) production was observed at low pHbut
cracks were observed between the cell walls of the algal

skeleton. They proposed that this structural change may
cause membrane damage that allows DMS(P) to leak from
the cells into the water column, with subsequent implica-
tions for the cycling of DMS(P) in coralline algae habitats.
Kamenos et al. (2013) observed the coralline algae survived
by enhancing their rate of calcification during the day to
compensate for the dissolution that happens during the night
at low pH. Moreover, when the low pH change occurred
at a fast rate, they observed the weakening of the calcite
skeleton. The weakening of the structure decreases the
potential of the alga to withstand wave energy (Ragazzola
et al. 2012). Lithothamnion glaciale also show changes in
the structure after incubating under increasing pCO, (589
patm). In the case of Chlorella ellipsoidea the carbohydrate
content attained its maximum value at alkaline pH while
the pigment content decreased. Moreover, vitamin E content
was higher at pH 10 than at pH 6, but there was a significant
reduction in vitamin C content of C. ellipsoidea both at pH
6 and pH 10 (Khalil et al. 2010).

Different macroalgae respond differently to increasing
pCO,. The red alga Lomentaria articulata, Gracilaria spp
and Porphyra yezoensis show an increase in the growth rate
under increasing CO, concentration (Gao et al. 1991, 1993;
Kiibler et al. 1999). Several macroalgae are reported to show
neutral effects on the growth at elevated CO, levels (Roleda
et al. 2012). Moreover, coralline alga Arthrocardia corym-
bosa showed the highest growth rate at pH 8.05; however,
at pH 7.65, the growth rate was lowest (Roleda et al. 2007).
In the coralline alga Lithophyllum cabiochae respiration was
unaltered by pCO,_but photosynthesis was decreased under
elevated pCO, whereas calcification responds differently
depending on the season; net calcification decreased with
increasing temperature under elevated pCO, but increased
under ambient pCO, with rising temperature (Martin et al.
2013).

Some experimental results of ocean acidification effects
on calcareous marine macroalgae are listed in Table 1. Most
studies indicate a negative effect of low pH and high CO,
on calcification.

Heavy metal (HM) stress

Metals at low concentrations are essential for algal cells
to carry out cellular functions as they act as cofactors for
nitrogen assimilation (Fe, V and Mo in nitrogenase (Bothe
et al. 2010)), DNA transcription, RNA polymerase (such
as Zn (Zinc) (Sunda 2012)), and CO, fixation (Zn in car-
bonic anhydrase). However, high concentrations of HMs
such as Chromium (Cr), Lead (Pb), Cadmium (Cd), Arsenic
(As), Mercury (Hg) in algal cells show adverse effects like
blockage of cell division, reduction in photosynthesis and
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Table 1 Effects of ocean acidification on calcareous marine macroalgae

Algal Species pH CO, Effects Source

Corallina officinalis 8.30 384 At a high CO, level, low relative growth (Hofmann et al. 2012)

Corallina sessilis 8.4 380 At high CO,, calcification is low and lowers the ~ (Gao and Zheng 2010)
phycoerythrin and Chl-a

Hydrolithon sp. 791 765 At high CO,, coralline recruitment loss (Kuffner et al. 2008)

Lithothmnion cabiochae 8.06 417 No effect of CO, on calcification (Martin and Gattuso 2009)

Porolithon onkodes 7.90 613 At high CO,, caused bleaching (Diaz-Pulido et al. 2012)

inhibition of various thiol group-containing enzyme activi-
ties (Monteiro et al. 2012).

Multiple studies highlight the effect of HMs on algae exist
in the literature (Table 2). For instance, the effect of HMs
such as copper (Cu) and Cd was carried out on the diatom
Amphora coffeaeformis. These HMs drastically decreased
the protein and carbohydrate content. The lipid and amino
acid content were also reduced. Thus, high concentrations
of these HMs affect the diatom by reducing its growth and

Table 2 Effects of different heavy metals on the algal species

biochemical composition (Anantharaj et al. 2011). On the
other hand, Cd plays a beneficial role in diatoms; they use
Cd as a catalytic metal atom in carbonic anhydrase (CA),
where Zn is nearly depleted in oceans (Park et al. 2007;
Xu et al. 2008). In Ulva lactuca exposure to high Cr (VI)
concentration decreased cell viability and altered thallus cell
morphology. When the cells were treated with 1 and 5 mM
of Cr (VI), the amount of necrotic cells increased around
76.93% and 84.23%, respectively (Unal et al. 2010).

Algal species HM Concentrations Effects Source
that cause effect
Amphora coffeaeformis Cu and Cd 10 ppm Reduction in the amount of pro- (Anantharaj et al. 2011)
teins, carbohydrates, lipids and
amino acids
Acutodesmus obliquus Pb 500 pM Growth inhibited (Piotrowska-Niczyporuk et al.
2017)
A. obliquus Pb 100 uM Disturbance in phytohormone (Piotrowska-Niczyporuk et al.
homeostasis (severe depletion of ~ 2020)
auxins, cytokinins and gibberel-
lin and increase in abscisic acid
content)
Alexandrium pacificum Zn, Pb, Cu and Cd 6 yM Changes in membrane proteomes, (Chetouhi et al. 2020)
cell growth and morphometry
Chlorella sorokiniana Pb, Cd 250 pM Deformed chloroplast and lipid (Carfagna et al. 2013)
droplets in the cytoplasm
Chlorella vulgaris Zn and Cu Zn: 100 mg dm™>  Reduction of photosynthetic pig-  (Kondzior and Butarewicz 2018)

C. vulgaris

Desmidium

Gomphonema pseudoaugur

Microcystis aeruginosa

Phaeocystis antarctica

Raphidocelis subcapitata

Zygnema Sp.

Cr, Cd, Cu, Pb and Zn
Zn
Selenium (Se) and Pb

Pb

Cu

Cu, Ni and Zn

Cd and Zn

Cu: 0.15 mg dm~3
5 pmol L™
10 uM

Not mentioned

0.5mgL™!

59 ug L7}

Cu: 0.15mg L™!
Ni: 0.50 mg L™
Zn: 0.20 mg L™!
66 mM

ments
Growth inhibited
Mitochondria enlargement

Induces deformities in diatom
frustules and increased lipid
body size

Effect on photosynthesis, decrease
in bound extracellular polysac-
charides (bEPS)

Increased in cell size and granu-
larity

Growth inhibition

Decrease in quantum yield (Fy/Fy);
inhibition of photosynthesis

(Ouyang et al. 2012)
(Andosch et al. 2015)
(Gautam et al. 2017)

(Wang et al. 2021)

(Gissi et al. 2015)

(Filova et al. 2021)

(Hernandez 2016)
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Recently, the influence of Zn and Cu HMs on the reduc-
tion of photosynthesis pigments in cells of C. vulgaris has
been shown (Kondzior and Butarewicz 2018). After 7 days
of incubation, at the highest Cu concentration, C. vulgaris
cells contain less carotenoid, Chl-a and Chl-b content by
60%, 63% and 58% respectively. The influence of Zn con-
centration shows that C. vulgaris reduced carotenoid con-
tent by 79%, while Chl-a and Chl-b were reduced by 88%
in 79%, respectively, compared to the control. Hernandez
(2016) reported that the primary photosynthetic processes
of Zygnema were sensitive to Zn and Cd. However, in cul-
tures treated with Zn and Cd (66 mM), the potential quan-
tum yield (Fy/Fy;) of PS II and relative fluorescence decline
ratio (RFd) was decreased, the PS II centres still shown
photosynthetic activity even after 5 h 40 min exposure to
the heavy metals. Thus they concluded that Zygnema is
relatively resistant to these heavy metals. Moreover, Chen
et al. (2016) reported that the Hill reaction activity (HRA)
of chloroplast was decreased at a high concentration of Cu
(IT) under both dark and illuminating conditions in C. vul-
garis. Content of malondialdehyde (MDA) and activities of
catalase (CAT) and SOD were also reduced at high Cu?t,
accompanied with the formation of ROS, thus inhibiting the
algal growth. However, Cu is an essential element at low
concentrations and acts as a cofactor in several enzymes
such as cytochrome c oxidase, plastocyanin, Cu/Zn super-
oxide dismutase, polyphenol oxidase, amino oxidase and
laccase (Yruela 2005).

In Gracilaria tenuistipitata, the addition of sub-lethal
concentrations of Cd** and Cu®* for the short-term causes
increased oxidative stress, decreasing growth and increasing
lipids and proteins oxidation. However, algae respond to this
oxidative stress by increasing the activity of the reactive oxy-
gen metabolism. As Cu?* addition has increased SOD, CAT,
and ascorbate peroxide (APX) activities, while the addition
of Cd** only induced the catalase activity. Additionally, the
amount of B-carotene and lutein has increased by adding
both HMs (Collén et al. 2003).

UV-A and B stress on algae

Increasing the amount of ultraviolet radiation (UVR) on
the earth's surface has a significant direct negative effect on
photoautotrophs like plants and algae, as they cannot escape
light because it is needed for photosynthetic processes. This
UVR caused morphological alterations in certain macroalgal
species. In Laminaria ochroleuca, high UVR induced tissue
deformation, blistering, lesions, and thickening of the mer-
istematic tissues of the lamina (Roleda et al. 2006). How-
ever, many organisms, such as cyanobacteria and algae, have
evolved a variety of strategies to minimise UVR damage,
including behavioural avoidance, photoprotection, and DNA

repair mechanisms. Many photosynthetic organisms have
evolved coping mechanisms against such changes, including
the synthesis of UV defensive compounds such as MAAs,
phlorotannins, antioxidants, phenolics, HSPs, DNA repair
mechanisms, and microRNA regulation. Many Arctic and
Antarctic strains of Zygnema have been shown to produce
sporopollenin as extracellular cell walls of zygospores in
response to UV exposure. An extracellular mucilage coating
in some polar Zygnema strains acts as a protective sheath.
Zygnema also has macroscopic mat production to self-shade
and shield cells from excessive radiation (Holzinger et al.
2009).

Effects of UV-B radiation on algae

Effects on photosynthesis Under increased UV-B (280-
315 nm), the marine microalgae Tetraselmis (Platymonas)
subcordiformis and Nitzschia closterium show a decrease in
growth rates, Chl-a content, and carotenoid content (Zhang
et al. 2005). When measured using the Chl-a fluorescence
technique, photosynthetic output in some of the Arctic and
Antarctic strains of Zygnema was reduced at increased UV
to photosynthetically active radiation (PAR), likely due to
a reduction in PS-II efficiency under UV stress (Pichrtova
et al. 2013). Overall photosynthesis decreases when verti-
cal mixing brings deeper organisms to the surface and vice
versa, as photoinhibition of deep-water algal species occurs,
and upper dwellers travel deeper, where light becomes a
limiting factor for them. UVR causes mild photosynthetic
inhibition in eulittoral species, but substantial inhibition
in sublittoral species and eulittoral species recover faster
from stress than sublittoral species. Reproductive cells also
are more vulnerable to increased UVR than gametophytic
stages, and the impact is species-specific, as Condrus car-
pospores were more sensitive to increased UVR than Mas-
tocarpus carpospores (Roleda et al. 2013).

Damage to DNA UV-B causes DNA to modify its molecular
structure. Formation of dimers and pyrimidine primidone
photoproducts, which modify DNA and interfere with proper
transcription and replication, as well as being misread into
genetic codes, resulting in mutations and death. In D. salina,
UV-B directly damaged cellular DNA, causing physiological
damage and elevated death rates (Tian and Yu 2009). High
UV to PAR ratio causes DNA damage in Arctic and Antarc-
tic Zygnema strains (Pichrtovi et al. 2013).

ROS production The majority of microalgae suffer from oxi-
dative damage by increased UV-B levels. Higher amounts
of thiobarbituric acid reactive substance (TBARS) and
hydrogen peroxide (H,0,) have been reported in D. salina
in response to increased UV-B levels, but no such change
in controls, indicating acclimation to reduce UV or solar
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radiation levels (Tian and Yu 2009). ROS generation and
oxidative stress are also seen in Zygnema strains from the
Arctic and Antarctic (Pichrtova et al. 2013).

Suppression of antioxidant system Non-enzymatic anti-
oxidants such as carotenoids and glutathione (GSH) were
reported to decrease under increased UV-B in T. subcordi-
formis and N. closterium. In both species enzymatic anti-
oxidants like SOD and CAT were also reduced as UV-B
radiation levels increased. UV irradiation has different
adverse effects depending on the species. For N. closterium,
increased UV-B is more harmful than for P. subcordiformis
(Zhang et al. 2005).

Adaptations against harmful UV radiations in algae

DNA repair Algae primarily use photoenzymatic repair in
which DNA photolyase monomerizes cyclobutane dimers
in the presence of UV-A or visible light to repair damaged
DNA. Nucleotide excision repair is enrolled to recognise
damaged DNA strands, then excision and resynthesis of the
damaged portions by DNA polymerase enzyme. Damaged
DNA is repaired by the recombinational repair mechanism,
bypassed by the replication mechanism (Karentz et al. 1991).
In certain arctic and Antarctic Zygnema strains, photodam-
age to DNA activates multiple DNA repair pathways (Pichr-
tova et al. 2013).

Adaptations for photosynthesis Short-term acclimation,
such as fluorescence or heat dissipation via the xanthophyll
cycle, or energy redistribution between the two photosys-
tems, are made to protect the photosynthetic system against
excessive UVR. To protect macroalgal species from ROS,

Table 3 Common MAAs occur in algal species

defensive mechanisms such as antioxidant enzymes, carot-
enoid production inside cellular membranes, and the crea-
tion of water-soluble reductants occur in the cytosol during
long-term UVR exposure (Dunlap and Chalker 1986). UVR
damages PS-II directly, resulting in ROS generation, which
slows protein synthesis, particularly of PS-II D1 proteins,
which are necessary to replace damaged D1 proteins (Nishi-
yama et al. 2004). Photodamage caused by high UVR is con-
trolled by the steady-state oxidation—reduction of the main
quinone acceptor (QA). Seaweeds in the sublittoral zones
are particularly vulnerable to UVR because they cannot
downregulate photosynthesis via photoprotection (Hanelt
and Nultsch 2003).

Production of mycosporine- like amino acids MAAs are
chemical compounds with a low molecular weight that
absorb the most light in the UV range of 310-365 nm. They
are called MAAs because they're similar to mycosporines
found in terrestrial fungi. Some of the MA As that have been
identified in algal species are included in the table below
(Table 3). They are essentially sunscreen chemicals that
protect organisms from damaging UV radiation and act as
antioxidants that scavenge toxic ROS.

The percentage of MAAs reported being greatest in red
algae and with the most MAAs kinds and numbers (Sun
et al. 2021). MAAs in macroalgae have been found in the
arctic to tropical species. MAAs levels have been observed
to be decreasing in species that grow at greater depths and
in species that live at higher latitudes. The distribution of
MAASs in macroalgae is mainly based on three patterns: Ini-
tially high MAAs content with no further growth in their
amount after light treatment, increased MAAs content with

MAAs Algal species Reference
Palythinol Porphyra endiviifolium, Hydropuntia corhea ~ (Hoyer et al. 2002; Alvarez-Gomez et al. 2019)
Mycosporine-glycine, Palythenic acid, Por- Gyrodinium aureolum, Gyrodinium gala- (Llewellyn and Airs 2010)

phyra-334 theanum, Gyrodinium venificum

Two hexose-bound palythine-threonine deriva- Nostoc commune
tives
Shinorine
Mycosporine-Glycine
7-O-(p-arabinopyranosyl)-porphyra-334, Nostoc commune
Hexose-bound porphyra-334
Asteria-330
Asterina-330, Shinorine Lyngbya sp.
Porphyra-334, Shinorine, Mycosporine-Gly-
cine, Palythine, Asterina-330
halophytica

Gadusol, Shinorine, Palythine, Porphyra-334,
Palythenic acid

Scytonema cf. crispum

Aphanothece halophytica

Gracilariopsis longissina

Nostoc commune, Alexandrium excavatum,
Mmicrocystis aeruginosa, Aphanothece

Bangia fusco-purpurea, Gelidium amansii,
Gracilaria confervoides, Gracilaria sp.

(Nazifi et al. 2013, 2015)

(D'Agostino et al. 2016)
(Ngoennet et al. 2018)
(Li and Guo 2018)

(Alvarez-Goémez et al. 2019)
(Fuentes-Tristan et al. 2019)

(Kageyama and Waditee-Sirisattha 2019;
Geraldes et al. 2020)

(Sun et al. 2021)
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increasing light treatment but no initial MAAs or generation
after light treatment (Sinha et al. 2001).

Antioxidant production Increased UV radiation favoured a
rise in Chl-a in case of D. salina at first, although carotenoid
content did not appear to alter. Many green microalgae, such
as Chlamydomonas nivalis (Bidigare et al. 1993), Chlorella
sp. (Sayed and Hegazy 1992), Chlamydomonas nivalis
(Remias et al. 2010), can accumulate secondary carotenoids
under stress. Some Arctic and Antarctic strains of Zygnema
also exhibit higher quantities of secondary carotenoids, but
no secondary carotenoids or MA As have been found in Zyg-
nematophyceae (Remias et al. 2012).

Haematococcus pluvialis accumulates astaxanthin in
cytoplasmic globules. $-carotene synthesised in the chloro-
plast is first transported to the cytoplasm for oxygenation,
where the keto group is added to C4 and C4', as well as
hydroxyl groups to C3 and C3'. This is done using the prod-
ucts of crto/bkt, and crt R-b, which are nuclear genes that
encode phytoene desaturase. Nuclear factor X regulates the
expression of these genes. Three distinct bkt genes have been
identified, each of which is up-regulated at different amounts
in response to stress. The presence of numerous bkt genes
has been shown to be critical for H. pluvialis' production of
significant quantities of astaxanthin under stressful condi-
tions (Huang et al. 2006). When green algae, such as H. plu-
vialis, are stressed, they produce secondary ketocarotenoids
such as canthaxanthin and astaxanthin. Astaxanthin storage
is a cost-effective way to store energy and carbon in less
demanding environments. Furthermore, the high quantity
of astaxanthin prevents oxidative stress generated by various
stressors, including UV-B radiation, making it a multifunc-
tional stress response (Lemoine and Schoefs 2010).

Production of phenolics The production of phenolics in sev-
eral arctic and Antarctic Zygnema species represents a stress
adaptation. Because phenolics are stored in electron-dense
particles and vacuoles at the cell's perimeter, they operate
like UVR screens, safeguarding its internal organelles. After
UV exposure, Antarctic strains exhibit the largest quantities
of phenolics and have high variable fluorescence by maxi-
mum fluorescence (Fy/F,) ratio, indicating that phenolics
preserve photosynthetic machinery. Zygnemopis decussata
with high phenolic content has a high Fy/F, ratio and the
best photosynthetic rates (Figueroa et al. 2009). Phenolics,
as phlorotannins, are widely found in brown algae (Abdala-
Diaz et al. 2006), can serve as cell wall components (Schoe-
nwaelder 2002), deter herbivores (Targett and Arnold 1998),
and protect from UVR (Pavia et al. 1997). Several studies
have found that the release of phlorotannin in response to
UV exposure varies depending on the species, season, and
stage of thalli formation. After two weeks of UV-B treat-
ment, the concentration of phlorotannin in Ascophyllum

nodosum (Pavia et al. 1997) increased by 30%. However, no
similar effect of UV-B on the concentration of phlorotan-
nin was found in another investigation of Fucus gardneri
juveniles and embryos (Henry and Van Alstyne 2004). Lack
of phlorotannin accumulation in Fucus vesiculosus under
UV-B exposure is linked to lack of overexpression of genes
Pks-1IT and other genes involved in phlorotannin modifica-
tions such as ast6 and vbpo, implying that this metabolism
is not activated and only constitutive accumulation of phlo-
rotannins occurs during the development of F. vesiculosus
rather than inducible processes (Creis et al. 2015). Several
Chlorophyceae and Rhodophyceae have been shown to have
phlorotannins, which operate as UVR absorbers.

MicroRNA regulation Because most of the UV adaptation
in algae has focused on physiological control and linked
protein-coding genes, there have been few publications on
connected protein non-coding genes. Heat stress caused
Cre-miRNA to be downregulated, responsible for heat shock
adaptation. Using qPCR and bioinformatics computing, the
function of Cre-miR914 and its target gene was determined
under UV stress. Cre-miR914 was downregulated, result-
ing in increased expression of its target gene, ribosomal
protein L18 (RPL18), promoting UV-B adaptation in Chla-
mydomonas (Fig. 3). So, overexpression of Cre-miR914
lowered UV-B tolerance in algae, but overexpression of
RLP18 increased UV-B tolerance and lowered ROS and
MDA levels (Wang et al. 2019a).

Mechanical stress

Macroalgae experience considerable mechanical stress in
the form of hydrodynamic movements (acceleration, drag,
and lift). Studies as early as 1932 (Delf 1932; Koehl 1982,
1986) have shown that although the seaweeds are dependent
upon ambient seawater flow for the transport of nutrients and
are generally adapted to hydrodynamic stress, occasional
wave actions could be powerful enough to shear the thal-
lus (“pruning”), especially in wave-swept rocky shores. In
general, benthic macroalgae are more susceptible to hydro-
dynamic stresses than planktonic species. Among diatoms,
studies have shown that nonfilamentous species have higher
resistance than filamentous ones against mechanical stress
(Biggs and Thomsen 1995).

Various adaptations against mechanical stress have
been documented in marine algae, including the cell wall
composition of long-chain polysaccharides (Janot and
Martone 2016) and the ability to secrete viscous mucilage.
Recently discovered porous helical microstructure of
mineralized coralline alga Jania sp. might also play roles in
mechanical stress resistance as an adaptation (Bianco-Stein
et al. 2020). A morphological convergence in the form of
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UV Stress

Cre-miRNA

Target Gene ( RPL18)

Reduction in ROS and MDA levels
Increased UV tolerance

Fig.3 Schematic diagram showing miRNA regulation under UV
stress in Chlamydomonas

cellulosic secondary cell-wall in coralline algae at wave-
swept habitats has also been described recently (Martone
et al. 2019). Phylogenetic analysis of character evolution
of uncalcified joints (genicula) in coralline red algae
indicated three independent origins as a bending strategy to
cope with the hydrostatic force (Janot and Martone 2018).
Benthic seaweeds at turbulent coasts like Chondracanthus
exasperates tend to have softer, extensible and flexible tissues
that act as a shock absorber and stipes that can be twisted
and bent (Koehl 2000). The red seaweed Mastocarpus
papillatus has been shown that its stipe had similar thickness
throughout (to avoid a single point prone for shear), and its
thallus had a streamlined shape to flow along with waves
(Carrington 1990). Mechanical forces were also reported
to constrain the size of intertidal seaweeds in wave-swept
habitats (Gaylord et al. 1994). Such physiological adaptations
are expected to have ramifications in the form of trade-offs
with other physiological processes, including photosynthesis,
in the so-called ‘form-function hypothesis’ (Dudgeon et al.
1995). Morphological switch from one thallus morphology
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to another in response to stress is a well-known adaptation
in marine algae. For example, the brown seaweed Ecklonia
radiata have shown that the species had wide, thin thallus at
sheltered habitats while narrow, thick thallus with thick stipes
at exposed habitats (Fowler-Walker et al. 2006). Reciprocal
transplantation of algae from one habitat to another also
confirmed this morphological plasticity in response to
environmental constraints. Similar morphological plasticity
in response to exposure gradients has also been reported for
Laminaria longicruris (Gerard and Mann 1979) Durvillaea
potatorum (Cheshire and Hallam 1989), F. vesiculosus
(Bick 1993) and Egregia menziesii (Blanchette et al. 2002).
A recent study approached physiological adaptation to the
wind-swept habitat in a more integrative fashion, combining
biomechanics with seasonality and herbivory in kelp E.
menziesii (Burnett and Koehl 2019). They suggest correlated
physiological strategies with season and herbivory, such as
higher growth rate (leading to more softer tissues) during
summer months when the wave action is comparatively
weaker, while lower growth rate (leading to hardened tissue)
during winter when wave action is stronger.

Self-pruning of algal thalli has been suggested as a pos-
sible adaptation for helping the alga to reduce the size and
reducing the risk of dislodgement from substratum (Black
1976; Demes et al. 2013). However, a recent study sug-
gested this conjecture is flawed because on a long run,
unpruned individuals of kelp E. menziesii survived better
than the pruned individuals (Burnett and Koehl 2020). Yet
another recent study revealed that the attachment strength
of isomorphic red alga Chondrus verrucosus differs with
its life-history stages. The tetrasporophyte stage of this alga
tends to have weaker stipe-holdfast junctions rendering them
more susceptible to thallus dislodgement compared with the
gametophyte stage (Bellgrove and Aoki 2020).

There have been a few experimental studies to assess the
hydrodynamic effects on microalgae. The green microalga
Dunaliella sp. has been shown to be sensitive to increasing
specific bubble rates in tubular airlift photobioreactor, that
can be minimized by the addition of carboxymethylcellulose
and agar (Silva et al. 1987). Photosynthetic rate, growth
rate and cellular morphology of green cyanobacterium
A. platensis also has been shown to be affected with the
hydrodynamic flow rate (Mitsuhashi et al. 1994). Higher
rates of mechanical agitation also have been shown to induce
cell damage in the chrysophyte Ochromonas malhamensis
(Yang and Wang 1992) and the red microalga Porphyridium
cruentum (Camacho et al. 2000).

On the other hand, studies conducted on several fresh-
water red algae have shown that no preferential advan-
tage was apparent for one morphological form over the
other for the hydrodynamic stress resistance, perhaps
indicative of the adaptations that these various species
have been going through for a very long period (Sheath
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and Handbook 1988). Such algae of various morpho-
logical forms, including tufts, mucilaginous filament,
nonmucilaginous erect filament and so on, might have
evolved through independent mechanisms for hydrody-
namic resistance. Studies of the red seaweeds Chondrus
crispus and Mastocarpus stellatus also concluded that no
clear relationships exist between algal morphology and
its responses to environmental variation (Dudgeon et al.
1995). However, algal thallus morphology should not be
assessed for its adaptations from hydrodynamic stress in
isolation, as most of the algal communities exist in nature
as large canopies consisting of multi-species communi-
ties. Studies of the red alga C. crispus have shown that
although bushy morphology in isolated thalli increases
the drag- seemingly a counter-intuitive to resist the wave-
action, this morphology significantly reduce the drag when
in canopy (Johnson 2001). A recent study contextualized
the adaptation strategies of windswept kelps within the
broader evolutionary framework of avoidance-tolerance
spectra. The study concluded that kelps are either strong
and tenacious (tolerance-dominant) or streamlined (avoid-
ance-dominant), but not both concurrently, thus indicat-
ing a trade-off between these two strategies (Starko and
Martone 2016).

Algal hormones involved in response
to stress

A well-coordinated and timely response to various abiotic
stresses in plants involves signal perception and transduc-
tion mainly via plant hormones, that is, phytohormones.
Phytohormones comprise a wide array of signaling com-
pounds present in minute quantities in cells, playing crucial
roles in minimizing environmental stresses by facilitating
growth, developmental processes and coordinating vari-
ous signal transduction pathways during stress responses.
The main classes of phytohormones include (1) classical
phytohormones such as auxin (AUX), abscisic acid (ABA),
brassinosteroids (BRs), ethylene (ET), gibberellins (GAs),
and cytokinin (CK); (2) molecular phytohormones, for
example, jasmonic acid (JA), salicylic acid (SA), and nitric
oxide (NO); and (3) newly discovered karrikins (KARs),
and strigolactones (SLs) (Smith and Li 2014; Pandey et al.
2016). In different phylogenetic groups of algae, all known
plant hormones are found. Generally, phytohormones of
various algal groups are poorly understood because of the
extreme diversity of this group and difficulties in working
methodologies due to their small size. So here in this review,
we tried to summarize the published data elucidating the
role of phytohormones in algae in combating various abiotic
stress conditions.

Nitrogen stress Certain hormones such as GA;, triacontanol
(TRIA), kinetin (K), and zeatin (Z) promote cell elonga-
tion, cell division, growth and photosynthesis under nitro-
gen deficiency (Park et al. 2013; Babu et al. 2017; Renuka
et al. 2017). Indole-3-acetic acid (IAA), GA, K, 1- TRIA
improved biomass in nitrogen-deficient C. reinhardtii (Park
et al. 2013). This treatment with several coupled hormones
increased the Fy/F\; and relative electron transport rate
(rETR) of certain algae under nitrogen limitation condi-
tions. Thus, the combination of several phytohormones
may enhance algal growth and lipid production under abi-
otic stress more efficiently than one phytohormone alone
by regulating oxidative stress and photosynthetic rate. By
keeping in view, zeatin and kinetin enhanced algal growth
and lipid production in A. obliquus (Renuka et al. 2017)
under nitrogen stress. Babu et al. (2017) reported that under
nitrogen limitation, the low doses of IAA and diethyl ami-
noethyl hexanoate (DAH) treatments in C. sorokiniana
showed the highest enhancement in biomass productivity
over the control. Yu et al. (2018) reported that the combi-
nation of the phytohormones such as naphthylacetic acid
(NAA) and indolebutyric acid (IBA) has positive effects on
growth and lipid production in Scenedesmus sp. SDEC-8 and
C. sorokiniana SDEC-18 under nitrogen starvation. Salama
et al. (2014) demonstrated that the biomass was increased
by 1.9- and 2.5-fold, and the PUFA content was enhanced
by up to 56% and 59% at 10 —5 M by the application of
TIAA and DAH, respectively. The treatment with these cou-
pled hormones induced antioxidant enzyme activities, which
protect cells from damage caused by abiotic stresses, and
significantly upregulated the levels of RuBisCO and ACCase
under N limitation.

ROS Fulvic Acid (FA) appeared to promote microalgal
lipid biosynthesis significantly by regulating cellular ROS
levels. The application of FA, melatonin (MT), butylated
hydroxyanisole (BHA), and butylated hydroxytoluene
(BHT) reduced high light intensity and nutrient deficiency
stress resulting in increased biomass and enhancement of
various pigments such as astaxanthin, - carotene and lipids
in H. pluvialis (Ding et al. 2018a; b; 2019; Zhao et al. 2018b;
2019a; b). These studies indicated that the application of
phytohormones could sustain or induce cell growth and
metabolite accumulation in microalgae under abiotic stress
conditions, mainly by regulating oxidative stress.

HM stress In response to HM stress in microalgae, the
application of several hormones such as Z, K, IBA, GA,
JA, TAA, NAA and phenylacetic acid (PAA) are involved in
the induction of cellular growth and division and augmenta-
tion of photosynthetic activity (Bajguz 2011; Piotrowska-
Niczyporuk et al. 2012) and can alleviate stress symptoms
by preventing HM biosorption. Cr stress is alleviated by
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K in Nostoc muscorum. Here K application significantly
improved the dry weight and carotenoid production of the
cyanobacterium N. muscorum (Tiwari et al. 2018). The pos-
sible reason for this change is that K triggers photosynthesis
and antioxidant enzyme activities while depressing respira-
tion and oxidative stress in algae. The endogenous levels
of auxins (IAA) and CKs (transzeatin, tZ) were reduced in
the green alga, C. vulgaris (Bajguz 2011) and A. obliquus
(Piotrowska-Niczyporuk et al. 2017) when subjected to the
higher concentration (100 pM) of Pb. In this case, the endog-
enous application of auxin and CKs mitigated toxicity, pro-
moted growth and development, and regulated HM sorption
in C. vulgaris (Piotrowska-Niczyporuk et al. 2012) and A.
obliquus (Piotrowska-Niczyporuk et al. 2018a). Exogenous
CKs were found to protect proteins and scavenge various
components of photosynthetic apparatus (Chls, carotenoids,
xanthophylls) and significantly reduce damaging effects of
HMs on green algae, C. vulgaris (Piotrowska-Niczyporuk
et al. 2012), and A. obliquus (Piotrowska-Niczyporuk et al.
2018b). CKs alleviated HM toxicity by inhibiting ROS for-
mation in C. vulgaris when challenged by Cd, Cu, or Pb
(Piotrowska-Niczyporuk et al. 2012).

Not many reports are available regarding the biological
functions of GAs in algae; however, their presence has
been confirmed in multiple microalgae strains (Stirk et al.
2013). GA; showed the positive effect on growth, protein
contents, Chl-a and b, carotenoids, and monosaccharides
in C. vulgaris exposed to HMs (Falkowska et al. 2011;
Piotrowska-Niczyporuk et al. 2012). Here in this study, GA,
activated defence responses and decreased oxidative damages
by promoting the production of thiol compounds which
could bind to HM ions (Bajguz 2002) in cells of C. vulgaris
(Falkowska et al. 2011; Piotrowska-Niczyporuk et al. 2012).
These results indicate that GA; can help algae to withstand
the toxic concentrations of Cd and Pb based upon the
efficiency of cellular division in C. vulgaris (Falkowska et al.
2011). Exogenous presence of JA exacerbated Cd, Cu, or Pb
toxicity accompanied by an increase in metal biosorption,
lipid peroxidation and H,O, level in C. vulgaris. In response
to JA treatment under HM exposure, several indicators of cell
health and their ability to deal with HM, like cell number,
Chl levels, carotenoids, monosaccharides, soluble proteins,
ascorbate and GSH content, and antioxidant enzyme activity,
were considerably reduced (Piotrowska-Niczyporuk et al.
2012). These findings concluded that high amounts of JA
accelerated the senescence program and algal cell death
(Czerpak et al. 2006).

Heat stress BRs enhanced the level of ABA in C. vulgaris in
response to short term (3 h) heat stress (30-40 °C) (Bajguz
2009). Exogenous BL partially overcomes the inhibitory
effect of HMs on C. vulgaris, reducing the accumulation
of HMs in the cells and increasing ABA, TAA and zeatin
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content (Bajguz 2011). Endogenous level of BRs increases
in response to salt and low temperature (15 °C) stress in
several species of algae such as Chlorococcum ellipsoideum,
Gyoerffyana humicola, Nautococcus mamillatus,
Acutodesmus acuminatus, Protococcus viridis and C.
vulgaris. The response of algal cultures was observed within
30 min of the salt shock.

In macroalgae, studies regarding the role of phytohor-
mones are limited. Application of ACC (the ethylene pre-
cursor 1-aminocylopropanel-carboxylic acid) repressed
gametophytes and enhanced tolerance to oxidative stress in
Pyropia yezoensis (Uji et al. 2016). Gene expression pro-
files of small heat shock proteins in P. yezoensis showed that
exogenous application of ACC could significantly increase
the expression levels of small heat shock proteins (Uji et al.
2019) against heat stress. Wang et al. (2019b) showed that
SA and jasmonic acid (JA) could promote the growth of
algae and enhance the resistance of P. haitanensis against
temperature stress. Transcriptome data showed that the phy-
tohormones GA and ABA played essential roles in respond-
ing to temperature stress in P. yezoensis (Sun et al. 2014;
Wang et al. 2017).

Plant hormones are also associated with signal trans-
duction pathways, including pathways that use NO, Ca’,
mitogen-activated protein kinase (MAPK) and specifically
stress hormones (ABA, SA and GA), which form a com-
plex signalling network connected to growth, metabolic, and
stress tolerance in higher plants (Peleg and Blumwald 2011;
Lu et al. 2014; de Zelicourt et al. 2016; Wani et al. 2016;
Raja et al. 2017). These stress hormones may promote cell
growth by improving photosynthetic activity by increasing
Chl content (Lu and Xu 2015). NO, and Ca* are cellular
second messengers that mediate oxidative stress and metabo-
lite synthesis in algae under abiotic stress conditions (Zhang
et al. 2017; Kovacik and Dresler 2018). Figure 4 shows the
signal transduction pathway of phytohormones that includes
the NO and Ca’* as second messengers during abiotic stress
conditions.

Abiotic stress to stimulate lipid production

Algae are widely studied due to their ability to accumulate
high content of lipids and bioactive compounds under vari-
ous abiotic stress conditions such as temperature, nutrient
deprivation, UV-radiation, salinity, pH, phytohormones
and HMs (Paliwal et al. 2017; Dong et al. 2019). Micro-
algae have attracted particular interest due to their high-
value applications in nutraceuticals, pharmaceuticals,
biofuel production, and capacity to accumulate a large
amount of lipids, high growth rate, economical and envi-
ronmentally friendly (mitigating fossil CO, pollution) (Yu
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et al. 2012; Barati et al. 2019). During abiotic stresses,
algae modulate their metabolites in their physiology and
biochemistry to survive through adaptation (Roleda et al.
2013; Bermejo et al. 2018). Upon exposure to numerous
abiotic stresses, algae influenced their intracellular con-
centration of lipids, antioxidant enzymes, carotenes, and
other metabolites (Rothschild and Mancinelli 2001; Forjan
et al. 2015). However, under prolonged stress conditions,
the algal growth ceases and leads to programmed cell

death (PCD) or apoptosis (Zuppini et al. 2010; Markou and
Nerantzis 2013; Bermejo et al. 2018; Barati et al. 2019).
Microalgae are a potential biofuel producing source
as they are not dependent on fertile land, can begrown in
wastewater, and offer higher productivities. However, large-
scale production of lipids is facing a cost-related bottleneck
because of low biomass production, high water footprint,
high nutrient input, low cell density, and harvesting issues.
Currently, several strategies have been explored to overcome
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the challenges and achieve maximum growth and large-scale
production of lipids (Kim et al. 2016; Wang et al. 2016;
Babu et al. 2017). Recently, advanced strategies have been
employed to overcome this kind of problem, which are a
combination of two different stresses; two-stage cultivation;
co-culturing with other organisms; and the addition of phy-
tohormones (ABA, IAA, CKs, GAs, and ET), salts, and flue
gases (CO,, NO,, SO,) (Lu and Xu 2015; Li et al. 2017;
Salama et al. 2018). The two-stage cultivation strategy has
been extensively used, in which cells are firstly grown in
nutrient-sufficient conditions (for higher biomass), and then
stress conditions are induced, which stimulates the accumu-
lations of higher amounts of proteins, carbohydrates, lipids,
fatty acids and other bioactive compounds (Fig. 5) (Chen
et al. 2011; Aziz et al. 2020).

Microalgal lipids are categorized into structural lipids
such as PUFAs, and storage lipids like non-polar saturated
fatty acids (SFAs) and MUFAs. Storage lipids (PUFAs),
primarily stored in the form of TAGs, are transesterified to
produce biofuel (Thompson Jr 1996). Moreover, eicosap-
entaenoic acid (EPA) and docosahexaenoic acid (DHA) are
the most valuable fatty acids in the microalgae, which make
them suitable for high biofuel production (Gimpel et al.

Fig.5 Two-stage cultivation of
algae to enhance pigment and
lipid production

2015). Nutrient starvation (primarily nitrogen and phos-
phate) and salinity have been well documented to stimulate
TAG accumulation in microalgae (Li et al. 2008; Yeesang
and Cheirsilp 2011; Paliwal et al. 2017; Shi et al. 2017;
Wase et al. 2017). The algal lipid production under varying
abiotic stress factors is summarised below (Table 4).

Transgenic approaches for stress resistance
in algae

Significant breakthroughs in genetic modification of green
microalgae have been made over the years (Mayfield and
Golden 2015), as evidenced by the synthesis of omega-3
fatty acids, carotenoids, biofuels, and better photosynthetic
growth (Gimpel et al. 2015). Following the development
of advanced automated sequencing technology over the last
two decades, genomics has become a potent tool. Bioinfor-
matics is used to assemble DNA sequences and evaluate
gene structure and expression. In the case of microalgae,
whole-genome sequencing of strains with commercial poten-
tial will allow scientists to apply other omics technologies
to gain a better knowledge of high-value cell components,
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Table 4 The effect of varying abiotic stress factors on algal lipid production

Algal species Abiotic stress factors Operation strategy Lipid production References
Acutodesmus dimorphus N deficiency N starvation (2 days) 29.92% (Chokshi et al. 2017)
A. dimorphus Temperature-induced oxi-  Temperature 38 °C than at  22.7% (Chokshi et al. 2015)
dative stress 25°C
Acutodesmus obliquus N limitation + phytohor- Z (0.5 mg L7, IAA 77.20% (Renuka et al. 2018)
mone (1.0 mg LY, and GA
(5.0mg L™ +-(N)
Chlamydomonas reinhardtii N deficiency + melatonin 5 pM melatonin+no N 66.7% (Meng et al. 2020)
C. reinhardtii Salinity stress 100 mM NaCl/100 mM 73.4% (Mori et al. 2020)
CaCl,
Chlorella minutissima N limitation 03gL7'of N 579.86 mg L™ (Chandra and Ghosh 2019)
Chlorella sorokiniana N deficiency + IAA+Die-  TAA (107 M) or DA-6 69 mg L~ day™! (Babu et al. 2017)
thyl aminoethyl hexanoate (10~ M)+ (49% increase)
(DA-6) N limitation
C. sorokiniana Salinity 30 g L' NaCl 036 gL} (Kim et al. 2016)
C. sorokiniana Low temperature + glycine 18 °C+GB at 500 mg L™'  376.2 mg L! (Wang et al. 2016)
betaine (GB)
C. sorokiniana SDEC-18 N deficiency + phytohor- 20mg L' NAA and IBA  55.76% (Yu et al. 2017)
mone
Chlorella sp. HS2 Heat Shock 12 h heat-shock at (50 °C)  2.64 g 17! day_1 (Kim et al. 2020)
Chlorella vulgaris High Temperature + (BRs) 2, 4- epibrassinolide 50% (Liu et al. 2018)
(EBL)+25 °C
C. vulgaris N modulation 250 mg L™! of total 70 mg/L~! (Cho et al. 2019)
nitrogen (TN)
Coccomyxa melkonianii pH pH 4.0 and 8.0 24 and 22% (Soru et al. 2019)
Coccomyxa onubensis Salinity 100 mM NaCl 416.16 mg g~ dw (Bermejo et al. 2018)
C. onubensis PAR+UVA Continue PAR + UVA 487.26 mg g~ dw (Bermejo et al. 2018)
8.7 W m™?)
Haematococcus pluvialis High-light and N defi- 120 pmol photons m2 571, 46% (Zhao et al. 2018b)
ciency + BHT 2mg L~ BHT
H. pluvialis High-light and nitrogen- 50 pmol photons m™2s~!,  42.84%, (Ding et al. 2019)
deficiency + BHA 2 mg L™ BHA
H. pluvialis Low light + glycerol Low light+1 mL L™! 36.8% (Zhang et al. 2020)
glycerol
Monoraphidium sp. QLY-1 N deficiency + melatonin N deficiency +1 pM 51.38% (Zhao et al. 2018a)
melatonin
Monoraphidium sp. QLY-1  Melatonin + Photoinduction 1 pM melatonin 49.6% (Lietal. 2017)
Monoraphidium sp. QLY-1  Salinity + FA 20g L' NaCl+1.20 g 59.53% (Lietal. 2019)

Monoraphidium sp. QLY-1
Monoraphidium sp. QLY-1
Monoraphidium sp. QLY-1
Nannochloropsis oceanica
Nannochloropsis oculata
N. oculata

N. oculata

Scenedesmus sp.

Scenedesmus sp. CCNM
1077

N deficiency +JA + strigol-
actone (SL)

HM Cd
HM Cd+GABA

low-temperature + Bicar-
bonate

High light+ N deficiency
UV radiation + quizalofop

Magnetic fields (MF) and
nitrate

HM Pb
Salinity

L~'FA
1 pM SL+25 pM JA

80 pM and 40 pM Cd
2.5 mM GABA +Cd

Bicarbonate (1.0 g L™H+

low-temperature (16 °C)

250 pmol photons m™>

s~ (high light+ (-) N

120 min for 1x 10° cells
mL™!

MF (20 mT) and N
(150 mg L™

1 mg/L Pb

400 mM NaCl

312.35 mg L™! day~!

96.75 mg L~! day™!

55.37%
57%

402 mg g~ DW
58.38 mg g~! DW
38 mg L~! day™!

31%
33.13%

(Song et al. 2020)

(Zhao et al. 2019a, b)
(Zhao et al. 2020b)
(Yuan et al. 2019)

(Ma et al. 2016)
(Moha-Leon et al. 2019)
(Chu et al. 2020)

(Pham et al. 2020)
(Pancha et al. 2015)
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Table 4 (continued)

Algal species Abiotic stress factors Operation strategy Lipid production References
Scenedesmus sp. SDEC-8 N deficiency + Phytohor- 20mg L' NAA and IBA  56.17% (Yu et al. 2017)
mone

lipid metabolism, and overall cell activity under stress and
non-stress conditions. The genomes of Botryococcus brau-
nii Showa, Botryococcus braunii UTEX 572, C. reinhardtii,
Chlorella sp. NC64A, Coccomyxa sp. C-169, D. salina, Mic-
romonas pusilla, N. oceanica and Ostreococcus tauri were
recently sequenced.

The understanding of mechanisms for the adaptation of
microalgae to extreme environments has been contributed by
comparative genome analysis. Microalgae genomes can be
altered in the nuclear, chloroplast, or mitochondrial genomes
(Specht et al. 2010). The majority of enzymes involved in
secondary metabolism are encoded in the nuclear genome,
although others are directed to the chloroplast to accomplish
their function (Heydarizadeh et al. 2013). In these circum-
stances, the nuclear or plastid genomes might be modified to
confer a particular metabolic function (Johanningmeier and
Fischer 2010). The major ways for delivering DNA to micro-
algae include electroporation, shaking with glass beads, and
particle gun bombardment (biolistic), with the letter proving
to be the only effective way for chloroplast transformation
thus far (Purton et al. 2013).

The pursuit of stress-tolerant lines has led to an unprec-
edented rise in algae genetic modification for peptides,
enhanced photosynthesis, and key metabolic routes, includ-
ing the production of lucrative dietary supplements, pharma-
ceuticals, and hydrocarbons (Gangl et al. 2015). Moreover,
genetic sequence omics have assisted in efficient algal mod-
ification. Despite enormous accomplishments, only a few
algae species continue to display strong and stable expres-
sions of foreign proteins. There are several microalgal gene
silencing methods, including oppressive histone H3 lysine
alteration, DNA cytosine modification, RNA interference,
and miRNA gene regulatory systems to eliminate highly
unstable external transcription proteins. Chlamydomonas
has been shown to have effective but simple nuclear gene tar-
geting mechanisms (Zorin et al. 2009). Various promoters,
and 5"UTR modifications, such as the 16S rRNA promoters
and the atpA 5"UTR, were shown to allow sufficient het-
erogeneous genome editing and efficient transgenic protein
production within the C. reinhardtii plastid (Tissot-Lecuelle
et al. 2014). Codon enhanced gene regulation hemH and lba
throughout the plastid of C. reinhardtii for optimum bio-
hydrogen production is evidence of genetic manipulation
in microalgae (Wu et al. 2010). Furthermore, chemically
synthesized promoters were created to induce high levels of
nuclear gene expression in Chlamydomonas (Scranton et al.
2016). Moreover, increased targeted genomic alteration in
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C. reinhardtii has been described using zinc finger nuclease
enzymes, activator effectors, and the recently discovered
clustered, regularly interspersed short palindromic repeat
(CRISPR) pathway (Jiang et al. 2014).

Although most genetic engineering strategies are aimed
at enhancing the production of high-value metabolites (such
as antioxidant pigments and PUFAs) and biofuel molecules
(such as hydrogen and TAG), a few attempts have been
made toward developing resilient strains for applications
such as HM mitigation and CO, sequestration. A moth len-
til d1-pyrroline-5-carboxylate synthetase (P5CS) allele, for
instance, was already found to be primarily expressed in
Chlamydomonas transformants used to have 80 times better
free-Pro levels, exponential growth at detrimental Cd con-
centration levels, and remarkable binding at four-fold higher
Cd densities than wild-type cell types. The findings suggest
that free-Proasan antioxidant plays a function in Cd-stressed
cells, with greater GSH levels promoting more excellent
phytochelatin production and Cd sequestration. Speedy
genomic manipulation of such algae was being utilized
to increase HM susceptibility and binding selectivity for
contaminated water bodies and sediments. Changing both
the large and small subunits of Rubisco (rbcS and rbcL) as
possibilities for enhancing net CO, uptake (photosynthesis)
and sequestration through growth promotion received a lot
of interest (Whitney et al. 2011). Chlamydomonas is a sig-
nificant host genetic manipulator in this regard since it can
cause alterations in both the rbcS and rbcL genes. Hybrid
Rubiscos, for instance, have indeed been created by combin-
ing plant’s small (rbcS) subunits with algae large (rbcL) sub-
units by transforming a C. reinhardtii mutant deficient in the
rbeS gene. Despite an increase in CO,/O, binding of 3—11
per cent, the transgenic enzyme retains high Vmax ratios
and enzymatically efficient Rubisco. Genetically modified
strains, on either hand, are deficient in plastid pyrenoids and
also have restricted photosynthesis. Continued research to
build and evaluate better Rubiscos, according to (Whitney
et al. 2011), would mainly rely on algae in vitro experiments,
especially Chlamydomonas.

Conclusion

Algae are considered a source of many bioactive com-
pounds with attractive properties, including pigments, car-
bohydrates, lipids, proteins, and vitamins. They are stud-
ied as encouraging feedstocks to satisfy future sustainable
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energy demands as they have a high ability to absorb
CO,, no need for arable land, and year-round cultivation
that make them attractive for commercial exploitation.
However, the growth and development of algae may be
inhibited by adverse stresses such as high salinity, nutri-
ent deficiency, HMs, low or excessive water, temperature
fluctuations, and UVRs. These stressful conditions cause
a variety of metabolic, physiological, biochemical and
molecular alterations, subsequently causing oxidative
damage and ultimately declining cell growth and biomass.
It has been reported that the algal species respond to these
stressful conditions by modifying their metabolites. Nitro-
gen and phosphorus deficiency, for example, causes lipid
metabolism to switch from membrane lipid synthesis to
neutral lipid storage. Salinity stress causes the accumula-
tion of various osmoregulatory solutes (like glycerol, pro-
line, trehalose), antioxidants, and lipids. The increase in
temperature is considered the most tuning factor for poly-
unsaturated fatty acid production, whereas a decrease in
temperature increases the composition of unsaturated and
short-chain fatty acids. In recent years, phytohormones
emerged as a topic of intense focus in microalgae research.
They could sustain the growth of microalgae under abiotic
stress conditions. Moreover, it is widely studied that the
abiotic stress conditions (such as a two-stage cultivation
strategy) can be used to produce lipids and high-value by-
products in microalgae.

Recent advancement in our understanding of the
molecular mechanisms underlying the responses of algae
to abiotic stresses emphasizes their multilevel nature that
involves multiple processes such as sensing, signaling,
transcription, transcript processing, translation and post-
translational protein alterations. However, there is con-
siderable uncovered ground in understanding how algae
signal each other to start the cascade of pathways that will
improve survival. Moreover, comparative genome analy-
sis has contributed to understanding mechanisms for the
adaptation of microalgae to extreme environments. Fur-
ther, studies integrated with next-generation sequencing
strategies and directed experimental evolution approaches
will continue to raise and deepen our knowledge of how
algae respond and adapt to stressful conditions.
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