
Vol.:(0123456789)1 3

https://doi.org/10.1007/s10811-022-02746-7

Abiotic stress in algae: response, signaling and transgenic approaches

Manpreet Kaur1  · Khem Chand Saini1  · Hiramoni Ojah1 · Rajalakshmi Sahoo1 · Kriti Gupta1  · Adesh Kumar1 · 
Felix Bast1 

Received: 29 December 2021 / Revised and accepted: 5 April 202 
© The Author(s), under exclusive licence to Springer Nature B.V. 2022

Abstract
High salinity, nutrient deficiency, heavy metals, desiccation, temperature fluctuations, and ultraviolet radiations are major 
abiotic stress factors considered inhospitable to algal growth and development in natural and artificial environments. All these 
stressful conditions cause effects on algal physiology and thus biochemical functioning. For instance, long-term exposure 
to hyper/hypo salinity conditions inhibits cell differentiation and reduces growth. Photosynthesis is completely blocked in 
algae's dehydrated state, resulting in photoinhibition or photodamage. The limitation of nutrients in aquatic environments 
inhibits primary production via regulating phytoplankton community development and structure. Hence, in response to 
these stressful conditions, algae develop plenty of cellular, physiological, and morphological defences to survive and thrive. 
The conserved and generalized defence responses in algae include the production of secondary metabolites, desaturation 
of membrane lipids, activation of reactive species scavengers, and accumulation of compatible solutes. Moreover, a well-
coordinated and timely response to such stresses involves signal perception and transduction mainly via phytohormones that 
could sustain algae growth under abiotic stress conditions. In addition, the combination of abiotic stresses and plant hormones 
could further elevate the biosynthesis of metabolites and enhance the ability of algae to tolerate abiotic stresses. This review 
aims to present different kinds of stressful conditions confronted by algae and their physiological and biochemical responses, 
the role of phytohormones in combatting these conditions, and, last, the future transgenic approaches for improving abiotic 
stress tolerance in algae.
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Introduction

Stress is described as a "disparity from nominal conditions 
for as long as homeostasis allows" (Borowitzka 2018). 
Nutrient deficiency, especially nitrogen deprivation, low/
high light intensity, low/high temperature, low/high salinity 
levels, and pH variations, are all considered physiologically 
stressful conditions for algae as they reduce the growth rate. 
The impact of these environmental factors, whether negative 
or positive, may significantly affect microalgal physiology 
and biochemical processes (Rosenberg et al. 2008). Acute 
variations in temperature, irradiance, salinity, or pH will 
disturb cellular homoeostasis by affecting cellular integrity 
and bio-molecular composition (Jauzein and Erdner 2013). 

Under salinity stress, the turgor pressure, ion distribution, 
and organic solutes in the cell are disrupted, resulting in 
reactive oxygen species (ROS), which induce cell oxida-
tive damage (Liu and Pang 2010). Long-term exposure to 
hyper/hypo salinity conditions inhibits cell differentiation 
and decreases growth (Kumar et al. 2010).

Similarly, light intensity affects algal growth through its 
impact on photosynthesis (Stockenreiter et al. 2013). The 
growth rate of algae is maximum at saturation intensity 
and decreases with both rising and fall in light intensity. 
Microalgae undergo photoadaptation/photoacclimation, 
which results in a change in cell properties and increased 
photosynthetic activity. This will help the microalgae to 
survive in changed conditions of light intensity. Photoadap-
tation (a change in genotype that occurs over many genera-
tions in response to a change in light intensity) can occur 
through various processes, including changes in pigment 
types and quantities, growth rate, dark respiration rate, and 
essential fatty acid supply (Fábregas et al. 2004). Reversible 
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phenotypic adjustments such as changes in cell volume and 
the number of thylakoid membranes per stack accompany 
morphological photoacclimation (Berner et al.1989).

Moreover, ultraviolet (UV) light (wavelengths 
215–400 nm) has harmful effects on algae (Pessoa 2012). 
At comparable intensities, UV-B (215–380 nm) does more 
significant damage to the cells than UV-A (380–400 nm) 
(Pessoa 2012). UV-B radiation causes direct damage to 
DNA molecules, whereas UV-A radiation induces indirect 
damage by generating reactive oxygen and hydroxyl radicals. 
Self-shading through mat formation, migration to greater 
water depth (lower UV-levels), activation of anti-oxidative 
processes involving enzymatic and non-enzymatic strategies, 
or the synthesis of specific secondary metabolites such as 
mycosporine-like amino acids (MAAs), scytonemin, and 
carotenoids comprising myxoxanthophyll, β-carotene, and 
its derivatives (such as echinenone and zeaxanthin) are all 
established acclimation mechanisms in algae and cyanobac-
teria (Rastogi et al. 2014).

Environmental stress can cause significant damage and 
trigger responses that result in either acclimation or pro-
grammed cell death. Algae use various stress control and 
repair techniques, including modifying fatty acid saturation 
to change membrane fluidity, synthesising chaperonins for 
correct folding of denatured proteins, accumulating compat-
ible solutes to sustain cell osmolality and controlling photo-
synthesis to regulate energy output and consumption. This 
review highlights the different kinds of abiotic stress condi-
tions faced by algae and their physiological and biochemi-
cal responses. The role of phytohormones to combat abiotic 
stress and lipid production during these conditions is also 
discussed. In addition, transgenic approaches to cope with 
these stressful conditions are also considered in this review.

High salt stress

When algae are subjected to high salt stress, their photosyn-
thetic activity is significantly reduced. This kind of inhibi-
tion appears in the photosystem II (PSII) complex. Reduced 
PSII activity was linked to state-2 transition in the green 
alga Dunaliella tertiolecta (Gilmour et al. 1984, 1985). Endo 
et al. (1995) confirmed this and proposed that the reduc-
tion of quantum yield of PSII electron transport in Chla-
mydomonas reinhardtii caused by salinity stress is connected 
to the state-2 transition. Lu and Vonshak (2002) demon-
strated that the damage to phycobilisome and shifted the dis-
tribution of excitation energy favouring PSI in Arthrospira 
(Spirulina) platensis due to inhibition of the electron trans-
port at donor and acceptor sides of PSII under salt stress.

Moreover, stress due to high salt concentration also 
leads to ROS generation and deficiency of different cations 
(such as potassium  (K+), calcium  (Ca2+), and manganese 

 (Mn2+)), thus decreasing photosynthetic activity by inter-
fering with several physiological and biochemical pro-
cesses (Sudhir and Murthy 2004; Fal et al. 2022). Light-
harvesting complexes (LHCs) of PSI and proteins of PSII 
involved in oxygen  (O2) evolution are damaged by ROS at 
high salt concentrations in C. reinhardtii (Subramanyam 
et al. 2010; Neelam and Subramanyam 2013). However, 
to eliminate the ROS and misfolded protein production, 
the salt-stressed cells of C. reinhardtii, undergo upregu-
lation of several genes such as glutathione transferase, 
glutaredoxin, plastid Fe superoxide dismutase 1 (SOD), 
thioredoxins, a GrpE family protein, heat shock protein 
HSP20 and heat shock factor binding proteins (Perrineau 
et al. 2014). In response to a spike in salt concentration, 
Dunaliella salina a salt-tolerant microalga, increases the 
Chlorophyll-a (Chl-a) content to raise the photosynthetic 
activity (Talebi et al. 2013).

Different responses are reported in algal species to com-
bat salinity stress, as shown in Fig. 1.

Khona et al. (2016) reported that when C. reinhardtii cells 
are exposed to high salt stress, they undergo a temporary 
stage known as “palmelloid” (Fig. 2). Palmelloid form has 
undergone several structural changes, including the loss of 
flagella, cell clustering having a minimum of two cells per 
cluster, increased secretion of exopolysaccharide (EPS), 
surrounding cells by EPS matrix, and individual cell wall 
thickening. The synthesis of EPS requires a lot of energy; 
however, the EPS matrix's protection permits to survive the 
stressed cells under adverse conditions. EPSs accelerate 
water accumulation and decrease ion influx, protecting the 
membrane system on palmella formation in D. salina (Wei 
et al. 2017).

Algal genera like Dunaliella and Chlorella have alter-
native strategies for dealing with salt stress. As Dunaliella 
does not have a cell wall, allowing the cells to rapidly alter 
volume during severe salinity stress by altering internal ion 
and glycerol content, restoring the cells’ osmotic pressure 
(Ben-Amotz and Avron 1980; Katz and Avron 1985; Kaçka 
and Dönmez 2008). On the other hand, Chlorella cells 
employ osmoregulation to maintain osmotic homeostasis 
by producing organic solutes and accumulating inorganic 
ions due to rigid cell walls. These solutes, also known as 
compatible solutes, are typically small organic compounds 
with a neutral charge and minimal toxicity at significant con-
centrations. Glycerol is an excellent example of an effective 
compatible solute generated by algal species during high salt 
stress. Glycerol accumulation in Chlamydomonas HS-5 was 
proportional to salt concentration, with higher salt concen-
tration resulting in higher glycerol content (Miyasaka et al. 
1998). Starch breakdown correlated closely with glycerol 
formation in Chlamydomonas pulsatilla, suggesting that 
glycerol was synthesised by the breakdown of starch (Hel-
lebust and LIN 1989).
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Proline is another osmoregulatory solute whose content 
increases linearly with increasing salt in algae (Brown and 
Hellebust 1978). Exogenous proline application reduces 
the adverse effects of high salinity by decreasing sodium 
 (Na+) and chloride  (Cl−) accumulation in C. reinhardtii 
(Reynoso and De Gamboa 1982). During salt stress, Pico-
chlorum oklahomensis (Henley et al. 2004) and Picochlorum 
SE3 (Foflonker et al. 2016) both showed up-regulation of 
genes involved in proline synthesis. In contrast to Chla-
mydomonas sp. and D. salina, where glycerol is the primary 
osmolyte and starch degradation increases, proline is the 
primary osmolyte in Picochlorum species, and starch syn-
thesis is increased (Xia et al. 2014; Foflonker et al. 2016). 
Besides proline and glycerol, trehalose also has a recog-
nised involvement in the stability of proteins by raising the 

transition temperature of proteins and as an osmoregulatory 
molecule (Kaushik and Bhat 2003). High salt stress in Chla-
mydomonas (Wang et al. 2018a), Chlorella, and Scytonema 
increased trehalose production (del Pilar Bremauntz et al. 
2011). Other polyols such as mannitol and sorbitol are also 
crucial in osmoregulation (Foflonker et al. 2016).

Another critical technique for dealing with salt stress is 
ion uptake and export via the cell membrane, which helps 
to maintain intracellular ion balance (Reed et al. 1981; 
Talebi et al. 2013). In hypersaline conditions, Dunaliella is 
reported to use a redox-driven sodium pump to remove 
 Na+ ions (Katz and Pick 2001). High  Na+ concentrations 
can interfere with the absorption of other cations, particu-
larly  K+ (Chakraborty et al. 2016). As  K+ is involved in a 
variety of physiological activities in plants, maintaining 

Fig. 1  Algal response to tolerate high salt stress
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the cytosolic  K+/Na+ ratio is very critical in salty circum-
stances (Degl’Innocenti et al. 2009). By transporting  K+ 
ions through membrane transport proteins, upregulation of 
membrane transport proteins can give resistance to high 
salinity in halotolerant algal species. Salt-adapted mutants 
of C. reinhardtii showed increased expression of numer-
ous membrane transport proteins, as reported by Sithti-
sarn et al. (2017). When salt-sensitive C. reinhardtii cells 
were subjected to salt stress, genes for  K+ ion transport 
were dramatically increased (Wang et al. 2018a), perhaps 
compensating for the disruption in  K+ absorption induced 
by elevated  Na+ ion concentrations. In addition to mem-
brane transport proteins, the amount of two plasma mem-
brane proteins, P150 and P60, increased significantly with 
increasing salt content in D. salina (Fisher et al. 1996). 
Furthermore, the induction of these proteins correlated 
with enhanced growth immediately after a severe hyper-
osmotic shock, indicating their role in salt acclimation.

Most green algae exhibit storage lipid buildup when 
subjected to salt stress. Several researches have been con-
ducted on using high salinity conditions to improve algal 
lipids production. Chlamydomonas sp. JSC4 is a salt-
tolerant strain obtained from a marine environment that 
exhibits substantial lipid accumulation when subjected to 
extreme salt stress. This strain was used to investigate the 
mechanism of lipid production in extreme salt stress (Ho 
et al. 2014). Under salt stress, Chlamydomonas sp. JSC4 

exhibits a highly selective transition from starch synthesis 
to lipid synthesis (Ho et al. 2017).

Carotenoids act as antioxidants situated inside the chlo-
roplast envelope and protect the PSII (primarily the de 
novo synthesis of D1 protein required to repair PSII) and 
LHC from the damage induced by ROS. In response to high 
salt stress D. salina synthesizes a high amount of carote-
noids, which is exploited in industries for carotenoid produc-
tion (Massyuk 1965; Borowitzka et al. 1985, 1990; Avron 
and Ben-Amotz 1992; Borowitzka 1995; Ye et al. 2008). 
At moderate levels of salt stress (0.05 M–0.15 M), C. rein-
hardtii and Chlorella vulgaris also show high carotenoid 
production (Annamalai et al. 2016).

Several studies showed that low salinity conditions also 
affect various physiological processes of marine algae. For 
instance, Wilson et al. (2004) reported the decrease in the 
photosynthetic efficiency (Fv/Fm) of the red alga Lithotham-
nion glaciale after 5-week exposure to a salinity of 3. 
Despite an initial reduction in photosynthetic parameters and 
an increase in respiration, the physiology of the Gelidium 
coulteri was reported to be partially recovered after a 5-week 
exposure to a low-salinity environment (Macler 1988). In the 
brown algae, Alaria esculenta, a reduction in photosynthetic 
efficiency was detected in the microscopic zoospores but 
not during adult life stages when exposed to a salinity of 20 
(Fredersdorf et al. 2009). Moreover, Burdett et al. (2015) 
investigated the effect of low salinity on the intracellular 

Fig. 2  Conceptual diagram that 
shows the clustering of C. rein-
hardtii cells (Palmelloid stage) 
upon salt stress
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concentration of dimethylsulphoniopropionate (DMSP), pig-
ment composition and photosynthetic characteristics in L. 
glaciale. No significant difference in intracellular DMSP 
concentrations was observed. However, photosynthetic 
parameters (comprising pigment composition) exhibited a 
mixed response, indicating some degree of photosynthetic 
resilience to decreased salinity. This study shows evidence of 
intracellular mechanisms adopted by L. glaciale in response 
to reduced salinity.

Nutrient stress in algae

The limitation of nitrogen (N) and phosphorus (P) in aquatic 
environments inhibits primary production via regulat-
ing phytoplankton community development and structure 
(Harke et al. 2016). In algae, depending on which nutri-
ent is reduced and to what degree, significant differences 
in biochemical composition can be found under conditions 
of nutrient limitation. Nitrogen and phosphorus deficiency, 
for example, causes lipid metabolism to switch from mem-
brane lipid synthesis to neutral lipid storage. As a result, 
the overall lipid content of green algae rises, although the 
lipid contents in the plasma membrane decrease. Studies 
have shown that P-stressed cells upregulate gluconeogen-
esis over glycolysis transcriptionally. Trehalose concentra-
tions rise dramatically in P-stressed cells. P-stressed cells 
displayed higher taurocholate levels, indicating that P-stress 
promotes triacylglycerol (TAG) mobilization (McLean et al. 
2021). Moreover, phosphorus-containing lipids (P-lipids) of 
membranes are reported to get replaced with other non-P 
substitutes under situations of P deficiency in the diatom 
Thalassiosira pseudonana (Martin et al. 2011; Hunter et al. 
2018). This response permits the phytoplankton to decrease 
its P demands in P-limited environments (Van Mooy et al. 
2009).

Microalgae degrade nitrogen-containing macromolecules 
such as proteins, mainly when nitrogen is low. As a result of 
the lack of nitrogen, microalgae accumulate vast quantities 
of carbohydrates and fats. Current research has used nutrient 
limitation approaches (such as sulfur, nitrogen, and phos-
phate) to induce microalgae to convert protein or peptides 
into carbohydrates to enhance carbohydrate accumulation 
(Dragone et al. 2011; Harun and Danquah 2011). The car-
bohydrate content of the microalga C. vulgaris rose to 22.4% 
from the normal content of 16.0% on a dry weight basis 
under nutritional (nitrogen) stress, which is more acceptable 
in terms of the biomass required to create bioethanol (Kim 
et al. 2014).

Depending on the nutritional composition of the growth 
medium, the same algal strain might be a source of vari-
ous fatty acids. Saturated fatty acids, particularly palmitic 
acid and total lipid content in the green alga Scenedesmus 

obliquus, are affected by Na, iron (Fe), cobalt (Co), and 
molybdenum (Mo). High potassium and magnesium trigger 
the production of the most polyunsaturated acids (PUFA) 
and oleic acid, whereas nitrogen and phosphorus trigger 
the least. The maximum levels of monounsaturated acids 
(MUFAs), particularly α-linolenic acid (ALA), are acquired 
when nitrogen and phosphorus deficiency retards devel-
opment and results in a buildup of fatty acids that form 
MUFAs, particularly elaidic acid (Darki et al. 2017).

Microalgae growth and phosphate absorption are also 
directly related to biomass production (Solovchenko et al. 
2016). Chu et al. (2013) showed that in phosphate-sufficient 
circumstances, the lipid yield of C. vulgaris for biodiesel 
generation was 58.39 mg  L−1  day−1, which was more signifi-
cant than in phosphate-deficient situations. Consequently, it 
is possible to deduce that phosphate is a crucial macronutri-
ent for the production of microalgal lipids. However, due 
to a lack of light and a decline in carbon dioxide  (CO2) and 
 O2 levels in the growth medium, the phosphorus absorption 
rate by microalgae can achieve saturation (Chu et al. 2013).

Few experimental studies in the literature highlight the 
effect of high concentrations of nutrients on the physiologi-
cal processes of algae. Reef et al. (2012) reported the effect 
of nutrient enrichment (N and P) on the growth rate, pho-
tosynthesis, nucleic acid composition, and elemental stoi-
chiometry of three coral reef macroalgae (Caulerpa ser-
rulata, Laurencia intricata, Sargassum polyphyllum). They 
observed that nutrient enrichment had positive effects on 
photosynthetic rates and investment in RNA. However, no 
correlation of growth was found with either photosynthetic 
rates or RNA content. Macroalgae, especially L. intricata, 
accumulated P to very high levels (> 0.6% of dry weight). 
Negative effects of P accumulation on growth were observed 
above 0.21%. N was not stored, but evidence of futile cycling 
(significant reduction in N signatures following the enrich-
ment) was observed. The ability to store large amounts of P 
is probably an adaptation to the tropical oceans' patchy and 
low nutrient environment. Moreover, nutrient enrichment of 
lakes leads to eutrophication, which results in the growth of 
harmful and undesirable algal species. It causes changes in 
the physical and chemical quality of water and sediments, 
affecting the entire ecohydrology of lakes along with varia-
tions in diversity, composition and richness of algal species 
(Dubey and Dutta 2020).

Desiccation stress

Water-stressed environments lead to desiccation in certain 
poikilohydric plants such as algae and lichens quickly, as 
they cannot manage their water content actively. In the dehy-
drated state of algae, photosynthesis is completely blocked, 
and due to which, it cannot use any absorbed energy for 
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electron excitation, which results in photoinhibition or pho-
todamage. Allakhverdiev et al. (2008) reported different des-
iccation sensitive sites in the photosynthetic machinery of 
cyanobacteria, green algae, lichens, and mosses. These sites 
include the photosystems, particularly PSII with its oxygen-
evolving complex, ATP-generation, and carbon assimilation 
processes. Due to desiccation in algae, the supply of  CO2 
used in carbon fixation may also decrease, resulting in the 
decrease of the D1 protein repair by inactivating the trans-
lation machinery (Takahashi and Murata 2008). Hence, it 
is not the photodamage but the loss of repair mechanism 
responsible for reducing photosynthesis in green algae dur-
ing desiccation.

Terada et al. (2021) reported that the photosynthetic 
response to dehydration stress differs between two het-
eromorphic life-history stages of the red alga Neopyropia 
yezoensis  f.  narawaensis  collected from Saga, Kyushu 
Island, Japan. In the microscopic sporophyte, the effec-
tive quantum yield of photosystem II dropped to zero after 
a 5-min of acute emersion (~ 1440-min) under 50% humid-
ity and did not recover to initial values regardless of a fol-
lowing 24 h immersion in seawater. However, the macro-
scopic gametophyte almost recovered to initial values after 
the subsequent 24 h immersion in seawater. Thus, their 
results suggest that the photochemical efficiency in micro-
scopic sporophytes appears to be sensitive to dehydration 
stress, unlike the macroscopic gametophyte.

Gasulla et al. (2013) found ultrastructural alterations in 
Asterochloris erici cells after 3 h of rehydration following 
quick (60 min) or gradual (5–6 h) desiccation. Delayed 
dehydration led to an increase in the number of lipid bodies 
(with a decrease in their size), the amount of starch depos-
its and electron-dense deposits in the chloroplasts (Gasulla 
et al. 2013). The plasma membrane remained somewhat 
retracted from the cell wall in the progressively dried and 
rehydrated cells. Rapidly dried Asterochloris cells, on the 
other hand, showed a clear degenerate ultrastructure after 
being rehydrated. The cytoplasm was highly vacuolated and 
filled with lipid bodies. The cytoplasm and the chloroplasts 
still appeared shrunken, thylakoids were swollen or fused, 
and numerous starch deposits were visible (Gasulla et al. 
2013). It also exhibited extensive plasmolysis and cytoly-
sis. However, even with this damage, the cells survived the 
dehydration treatment.

Recently, Terlova et al. (2021) found that the degree of 
recovery from dehydration followed by short- and long-term 
rehydration in the case of the green algae Tetradesmus spp. 
was dependent on the habitat of origin and the dehydra-
tion scenario in terrestrial, but not in aquatic species. Dur-
ing dehydration and rehydration, both aquatic and desert 
species maintained their cell ultrastructure uniformly, but 
staining with an amphiphilic styryl dye showed damage to 
the plasma membrane due to osmotically induced water loss 

in aquatic species. Thus, their analyses indicate that terres-
trial Tetradesmus possess a vegetative desiccation tolerance 
phenotype, making them suitable for comparative omics 
studies to investigate the origins of the desiccation machin-
ery in that group.

One method against desiccation of aeroterrestrial and 
aquatic green algae is to prevent dehydration through self-
protection. Klebsormidium, an aeroterrestrial filamentous 
green algae, can form multi-layered mat-like structures on 
top of or interwoven with the upper millimetres of soil in 
natural conditions, resulting in a high degree of self-shading 
and reduced water loss from individual filaments within such 
a population. Arctic Zygnema sp. is also reported to form 
mats (Pichrtová et al. 2013) and provides desiccation toler-
ance in the field-collected Zygnema ericetorum in the Alps 
(Aigner et al. 2013).

Temperature stress response of algae

Like higher plants, numerous metabolic activities of algae 
are affected due to fluctuations in temperature. Many studies 
highlight the effect of temperature change on photosynthetic 
activity (Zheng et al. 2020), the composition and produc-
tion of lipids (Calhoun et al. 2021), and many other mac-
romolecules of algae (Zhao et al. 2020a). Zhang and Liu 
(2016) have reported that the activity of PS II was reduced 
with increasing temperature (from 25 to 37 °C) due to its 
structural damage, while the activity of PSI was increased 
and synchronized with high  O2 production in the marine 
cyanobacterium Arthrospira (Spirulina). However, on 
increasing the temperature to 40 °C, the rate of photosyn-
thetic  O2 evolution was decreased, and severe reduction in 
PSII activity, but the rise in PSI activity was reported. Thus, 
photosynthetic activity of Arthrospira increased at heat 
stress (30–37 °C) by upregulating the PSI electron transport 
activity, and it was decreased at strong heat stress (40 °C) 
due to inhibition of PSII electron transport activity. Chlo-
rella pyrenoidosa is cultivated largely due to its commercial 
importance. In C. pyrenoidosa, high temperature (38 and 41 
℃) stimulates the production of active oxygen species that 
damage photosynthetic machinery due to the suppression of 
activities of antioxidant enzymes at 41 ℃ (Ma et al. 2020).

Algae also show broad acclimations and tolerance to 
changing temperatures (Zheng et al. 2020), such as changes 
in lipids and fatty acid proportions with fluctuating tempera-
tures. With increasing temperature, the amount of PUFA 
reported being reduced in Navicula, a diatom collected from 
Antarctica (Teoh et al. 2013) and in Nannochloropsis sp. 
(Hu and Gao 2006). In addition, a decrease in temperature 
increased the proportion of unsaturated and short-chain fatty 
acids in algae has also been documented in several studies 
(Mühling et al. 2005; Mangelsdorf et al. 2009).
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A study on a high-temperature tolerant strain of Pyropia 
haitanensis showed that high-temperature response depends 
upon the length of exposure to stress. Short-term exposure 
caused changes in transcriptome profile simultaneous reduc-
tion in photosynthesis and utilization of energy, while long-
term exposure induced an anti-oxidative response with an 
increase in energy utilization (Wang et al. 2018b). Toler-
ance to high temperature in some algal species may depend 
upon the biogeographical distribution that has also been 
reported. For instance, a difference in tolerance capacity to 
high temperature has been observed in two strains of the 
dinoflagellate Alexandrium tamarense collected from Japan 
and Malaysia (Kobiyama et al. 2010). Malaysian strains 
could survive at a higher temperature range (15- 30 ℃) than 
Japanese strains (0 -25℃), delineating their biogeographical 
boundaries.

The low-temperature stress is less explored than the high 
temperature in the case of microalgae (Ermilova 2020). 
However, some recent studies have focused on finding the 
effects of cold stress in C. reinhardtii (Zalutskaya et al. 
2019; Li et al. 2020), a unicellular green alga, the best 
available model for studying the response to temperature 
fluctuations (Ermilova 2020). A change in the production 
of heat shock proteins (HSPs) as a low-temperature acclima-
tion has also been reported in C. reinhardtii (Maikova et al. 
2016). It shows variations in the expression of 3471 genes 
responsible for various biological processes, including cell 
cycle, protein synthesis, and protein kinase-based phospho-
rylation under cold stress (Li et al. 2020). The C. reinhardtii 
showed a decrease in growth due to photo-oxidative damage 
of several macromolecules under low temperatures (Zheng 
et al. 2020). A recent study by Calhoun et al. (2021) on a 
halotolerant microalga Scenedesmus reported an increase in 
the expression of genes that encode fatty acids, metabolic 
enzymes, and variations in the levels of amino acids under 
cold stress. Menegol et al. (2017) demonstrated increased 
ω3-fatty acids production due to low temperature in Hetero-
chlorella luteoviridis.

CO2/pH/ocean acidification stress

The process in which a rise in atmospheric  CO2 leads to 
a drop in the pH of the ocean surface is known as ocean 
acidification.  CO2 uptake by the ocean changes the carbonate 
chemistry of seawater following a reduction in pH (Raven 
et al. 2005). Experiments have shown that increasing  pCO2 
causes decreased calcification of crustose coralline algae 
(Anthony et al. 2008). Burdett et al. (2012) examined the 
effect of low pH on the red coralline alga L. glaciale on epi-
thelial cell morphology and DMSP/DMS(P) production. No 
change in DMS(P) production was observed at low pHbut 
cracks were observed between the cell walls of the algal 

skeleton. They proposed that this structural change may 
cause membrane damage that allows DMS(P) to leak from 
the cells into the water column, with subsequent implica-
tions for the cycling of DMS(P) in coralline algae habitats. 
Kamenos et al. (2013) observed the coralline algae survived 
by enhancing their rate of calcification during the day to 
compensate for the dissolution that happens during the night 
at low pH. Moreover, when the low pH change occurred 
at a fast rate, they observed the weakening of the calcite 
skeleton. The weakening of the structure decreases the 
potential of the alga to withstand wave energy (Ragazzola 
et al. 2012). Lithothamnion glaciale also show changes in 
the structure after incubating under increasing  pCO2 (589 
μatm). In the case of Chlorella ellipsoidea the carbohydrate 
content attained its maximum value at alkaline pH while 
the pigment content decreased. Moreover, vitamin E content 
was higher at pH 10 than at pH 6, but there was a significant 
reduction in vitamin C content of C. ellipsoidea both at pH 
6 and pH 10 (Khalil et al. 2010).

Different macroalgae respond differently to increasing 
 pCO2. The red alga Lomentaria articulata, Gracilaria spp 
and Porphyra yezoensis show an increase in the growth rate 
under increasing  CO2 concentration (Gao et al. 1991, 1993; 
Kübler et al. 1999). Several macroalgae are reported to show 
neutral effects on the growth at elevated  CO2 levels (Roleda 
et al. 2012). Moreover, coralline alga Arthrocardia corym-
bosa showed the highest growth rate at pH 8.05; however, 
at pH 7.65, the growth rate was lowest (Roleda et al. 2007). 
In the coralline alga Lithophyllum cabiochae respiration was 
unaltered by  pCO2, but photosynthesis was decreased under 
elevated  pCO2.whereas calcification responds differently 
depending on the season; net calcification decreased with 
increasing temperature under elevated  pCO2 but increased 
under ambient  pCO2 with rising temperature (Martin et al. 
2013).

Some experimental results of ocean acidification effects 
on calcareous marine macroalgae are listed in Table 1. Most 
studies indicate a negative effect of low pH and high  CO2 
on calcification.

Heavy metal (HM) stress

Metals at low concentrations are essential for algal cells 
to carry out cellular functions as they act as cofactors for 
nitrogen assimilation (Fe, V and Mo in nitrogenase (Bothe 
et al. 2010)), DNA transcription, RNA polymerase (such 
as Zn (Zinc) (Sunda 2012)), and  CO2 fixation (Zn in car-
bonic anhydrase). However, high concentrations of HMs 
such as Chromium (Cr), Lead (Pb), Cadmium (Cd), Arsenic 
(As), Mercury (Hg) in algal cells show adverse effects like 
blockage of cell division, reduction in photosynthesis and 
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inhibition of various thiol group-containing enzyme activi-
ties (Monteiro et al. 2012).

Multiple studies highlight the effect of HMs on algae exist 
in the literature (Table 2). For instance, the effect of HMs 
such as copper (Cu) and Cd was carried out on the diatom 
Amphora coffeaeformis. These HMs drastically decreased 
the protein and carbohydrate content. The lipid and amino 
acid content were also reduced. Thus, high concentrations 
of these HMs affect the diatom by reducing its growth and 

biochemical composition (Anantharaj et al. 2011). On the 
other hand, Cd plays a beneficial role in diatoms; they use 
Cd as a catalytic metal atom in carbonic anhydrase (CA), 
where Zn is nearly depleted in oceans (Park et al. 2007; 
Xu et al. 2008). In Ulva lactuca exposure to high Cr (VI) 
concentration decreased cell viability and altered thallus cell 
morphology. When the cells were treated with 1 and 5 mM 
of Cr (VI), the amount of necrotic cells increased around 
76.93% and 84.23%, respectively (Ünal et al. 2010).

Table 1  Effects of ocean acidification on calcareous marine macroalgae

Algal Species pH CO2 Effects Source

Corallina officinalis 8.30 384 At a high  CO2 level, low relative growth (Hofmann et al. 2012)
Corallina sessilis 8.4 380 At high  CO2, calcification is low and lowers the 

phycoerythrin and Chl-a
(Gao and Zheng 2010)

Hydrolithon sp. 7.91 765 At high  CO2, coralline recruitment loss (Kuffner et al. 2008)
Lithothmnion cabiochae 8.06 417 No effect of  CO2 on calcification (Martin and Gattuso 2009)
Porolithon onkodes 7.90 613 At high  CO2, caused bleaching (Diaz‐Pulido et al. 2012)

Table 2  Effects of different heavy metals on the algal species

Algal species HM Concentrations 
that cause effect

Effects Source

Amphora coffeaeformis Cu and Cd 10 ppm Reduction in the amount of pro-
teins, carbohydrates, lipids and 
amino acids

(Anantharaj et al. 2011)

Acutodesmus obliquus Pb 500 μM Growth inhibited (Piotrowska-Niczyporuk et al. 
2017)

A. obliquus Pb 100 µM Disturbance in phytohormone 
homeostasis (severe depletion of 
auxins, cytokinins and gibberel-
lin and increase in abscisic acid 
content)

(Piotrowska-Niczyporuk et al. 
2020)

Alexandrium pacificum Zn, Pb, Cu and Cd 6 μM Changes in membrane proteomes, 
cell growth and morphometry

(Chetouhi et al. 2020)

Chlorella sorokiniana Pb, Cd 250 μM Deformed chloroplast and lipid 
droplets in the cytoplasm

(Carfagna et al. 2013)

Chlorella vulgaris Zn and Cu Zn: 100 mg  dm−3

Cu: 0.15 mg  dm−3
Reduction of photosynthetic pig-

ments
(Kondzior and Butarewicz 2018)

C. vulgaris Cr, Cd, Cu, Pb and Zn 5 μmol  L−1 Growth inhibited (Ouyang et al. 2012)
Desmidium Zn 10 µM Mitochondria enlargement (Andosch et al. 2015)
Gomphonema pseudoaugur Selenium (Se) and Pb Not mentioned Induces deformities in diatom 

frustules and increased lipid 
body size

(Gautam et al. 2017)

Microcystis aeruginosa Pb 0.5 mg  L−1 Effect on photosynthesis, decrease 
in bound extracellular polysac-
charides (bEPS)

(Wang et al. 2021)

Phaeocystis antarctica Cu 5.9 μg  L−1 Increased in cell size and granu-
larity

(Gissi et al. 2015)

Raphidocelis subcapitata Cu, Ni and Zn Cu: 0.15 mg  L−1

Ni: 0.50 mg  L−1

Zn: 0.20 mg  L−1

Growth inhibition (Filová et al. 2021)

Zygnema sp. Cd and Zn 66 mM Decrease in quantum yield  (FV/FM); 
inhibition of photosynthesis

(Hernandez 2016)
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Recently, the influence of Zn and Cu HMs on the reduc-
tion of photosynthesis pigments in cells of C. vulgaris has 
been shown (Kondzior and Butarewicz 2018). After 7 days 
of incubation, at the highest Cu concentration, C. vulgaris 
cells contain less carotenoid, Chl-a and Chl-b content by 
60%, 63% and 58% respectively. The influence of Zn con-
centration shows that C. vulgaris reduced carotenoid con-
tent by 79%, while Chl-a and Chl-b were reduced by 88% 
in 79%, respectively, compared to the control. Hernandez 
(2016) reported that the primary photosynthetic processes 
of Zygnema were sensitive to Zn and Cd. However, in cul-
tures treated with Zn and Cd (66 mM), the potential quan-
tum yield  (FV/FM) of PS II and relative fluorescence decline 
ratio (RFd) was decreased, the PS II centres still shown 
photosynthetic activity even after 5 h 40 min exposure to 
the heavy metals. Thus they concluded that Zygnema is 
relatively resistant to these heavy metals. Moreover, Chen 
et al. (2016) reported that the Hill reaction activity (HRA) 
of chloroplast was decreased at a high concentration of Cu 
(II) under both dark and illuminating conditions in C. vul-
garis. Content of malondialdehyde (MDA) and activities of 
catalase (CAT) and SOD were also reduced at high  Cu2+, 
accompanied with the formation of ROS, thus inhibiting the 
algal growth. However, Cu is an essential element at low 
concentrations and acts as a cofactor in several enzymes 
such as cytochrome c oxidase, plastocyanin, Cu/Zn super-
oxide dismutase, polyphenol oxidase, amino oxidase and 
laccase (Yruela 2005).

In Gracilaria tenuistipitata, the addition of sub-lethal 
concentrations of  Cd2+ and  Cu2+ for the short-term causes 
increased oxidative stress, decreasing growth and increasing 
lipids and proteins oxidation. However, algae respond to this 
oxidative stress by increasing the activity of the reactive oxy-
gen metabolism. As  Cu2+ addition has increased SOD, CAT, 
and ascorbate peroxide (APX) activities, while the addition 
of  Cd2+ only induced the catalase activity. Additionally, the 
amount of β-carotene and lutein has increased by adding 
both HMs (Collén et al. 2003).

UV‑A and B stress on algae

Increasing the amount of ultraviolet radiation (UVR) on 
the earth's surface has a significant direct negative effect on 
photoautotrophs like plants and algae, as they cannot escape 
light because it is needed for photosynthetic processes. This 
UVR caused morphological alterations in certain macroalgal 
species. In Laminaria ochroleuca, high UVR induced tissue 
deformation, blistering, lesions, and thickening of the mer-
istematic tissues of the lamina (Roleda et al. 2006). How-
ever, many organisms, such as cyanobacteria and algae, have 
evolved a variety of strategies to minimise UVR damage, 
including behavioural avoidance, photoprotection, and DNA 

repair mechanisms. Many photosynthetic organisms have 
evolved coping mechanisms against such changes, including 
the synthesis of UV defensive compounds such as MAAs, 
phlorotannins, antioxidants, phenolics, HSPs, DNA repair 
mechanisms, and microRNA regulation. Many Arctic and 
Antarctic strains of Zygnema have been shown to produce 
sporopollenin as extracellular cell walls of zygospores in 
response to UV exposure. An extracellular mucilage coating 
in some polar Zygnema strains acts as a protective sheath. 
Zygnema also has macroscopic mat production to self-shade 
and shield cells from excessive radiation (Holzinger et al. 
2009).

Effects of UV‑B radiation on algae

Effects on photosynthesis Under increased UV-B (280-
315 nm), the marine microalgae Tetraselmis (Platymonas) 
subcordiformis and Nitzschia closterium show a decrease in 
growth rates, Chl-a content, and carotenoid content (Zhang 
et al. 2005). When measured using the Chl-a fluorescence 
technique, photosynthetic output in some of the Arctic and 
Antarctic strains of Zygnema was reduced at increased UV 
to photosynthetically active radiation (PAR), likely due to 
a reduction in PS-II efficiency under UV stress (Pichrtová 
et al. 2013). Overall photosynthesis decreases when verti-
cal mixing brings deeper organisms to the surface and vice 
versa, as photoinhibition of deep-water algal species occurs, 
and upper dwellers travel deeper, where light becomes a 
limiting factor for them. UVR causes mild photosynthetic 
inhibition in eulittoral species, but substantial inhibition 
in sublittoral species and eulittoral species recover faster 
from stress than sublittoral species. Reproductive cells also 
are more vulnerable to increased UVR than gametophytic 
stages, and the impact is species-specific, as Condrus car-
pospores were more sensitive to increased UVR than Mas-
tocarpus carpospores (Roleda et al. 2013).

Damage to DNA UV-B causes DNA to modify its molecular 
structure. Formation of dimers and pyrimidine primidone 
photoproducts, which modify DNA and interfere with proper 
transcription and replication, as well as being misread into 
genetic codes, resulting in mutations and death. In D. salina, 
UV-B directly damaged cellular DNA, causing physiological 
damage and elevated death rates (Tian and Yu 2009). High 
UV to PAR ratio causes DNA damage in Arctic and Antarc-
tic Zygnema strains (Pichrtová et al. 2013).

ROS production The majority of microalgae suffer from oxi-
dative damage by increased UV-B levels. Higher amounts 
of thiobarbituric acid reactive substance  (TBARS) and 
hydrogen peroxide  (H2O2) have been reported in D. salina 
in response to increased UV-B levels, but no such change 
in controls, indicating acclimation to reduce UV or solar 
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radiation levels (Tian and Yu 2009). ROS generation and 
oxidative stress are also seen in Zygnema strains from the 
Arctic and Antarctic (Pichrtová et al. 2013).

Suppression of antioxidant system Non-enzymatic anti-
oxidants such as carotenoids and glutathione (GSH) were 
reported to decrease under increased UV-B in T. subcordi-
formis and N. closterium. In both species enzymatic anti-
oxidants like SOD and CAT were also reduced as UV-B 
radiation levels increased. UV irradiation has different 
adverse effects depending on the species. For N. closterium, 
increased UV-B is more harmful than for P. subcordiformis 
(Zhang et al. 2005).

Adaptations against harmful UV radiations in algae

DNA repair Algae primarily use photoenzymatic repair in 
which DNA photolyase monomerizes cyclobutane dimers 
in the presence of UV-A or visible light to repair damaged 
DNA. Nucleotide excision repair is enrolled to recognise 
damaged DNA strands, then excision and resynthesis of the 
damaged portions by DNA polymerase enzyme. Damaged 
DNA is repaired by the recombinational repair mechanism, 
bypassed by the replication mechanism (Karentz et al. 1991). 
In certain arctic and Antarctic Zygnema strains, photodam-
age to DNA activates multiple DNA repair pathways (Pichr-
tová et al. 2013).

Adaptations for photosynthesis Short-term acclimation, 
such as fluorescence or heat dissipation via the xanthophyll 
cycle, or energy redistribution between the two photosys-
tems, are made to protect the photosynthetic system against 
excessive UVR. To protect macroalgal species from ROS, 

defensive mechanisms such as antioxidant enzymes, carot-
enoid production inside cellular membranes, and the crea-
tion of water-soluble reductants occur in the cytosol during 
long-term UVR exposure (Dunlap and Chalker 1986). UVR 
damages PS-II directly, resulting in ROS generation, which 
slows protein synthesis, particularly of PS-II D1 proteins, 
which are necessary to replace damaged D1 proteins (Nishi-
yama et al. 2004). Photodamage caused by high UVR is con-
trolled by the steady-state oxidation–reduction of the main 
quinone acceptor (QA). Seaweeds in the sublittoral zones 
are particularly vulnerable to UVR because they cannot 
downregulate photosynthesis via photoprotection (Hanelt 
and Nultsch 2003).

Production of mycosporine‑ like amino acids MAAs are 
chemical compounds with a low molecular weight that 
absorb the most light in the UV range of 310-365 nm. They 
are called MAAs because they're similar to mycosporines 
found in terrestrial fungi. Some of the MAAs that have been 
identified in algal species are included in the table below 
(Table 3). They are essentially sunscreen chemicals that 
protect organisms from damaging UV radiation and act as 
antioxidants that scavenge toxic ROS.

The percentage of MAAs reported being greatest in red 
algae and with the most MAAs kinds and numbers (Sun 
et al. 2021). MAAs in macroalgae have been found in the 
arctic to tropical species. MAAs levels have been observed 
to be decreasing in species that grow at greater depths and 
in species that live at higher latitudes. The distribution of 
MAAs in macroalgae is mainly based on three patterns: Ini-
tially high MAAs content with no further growth in their 
amount after light treatment, increased MAAs content with 

Table 3  Common MAAs occur in algal species

MAAs Algal species Reference

Palythinol Porphyra endiviifolium, Hydropuntia corhea (Hoyer et al. 2002; Álvarez‐Gómez et al. 2019)
Mycosporine-glycine, Palythenic acid, Por-

phyra-334
Gyrodinium aureolum, Gyrodinium gala-

theanum, Gyrodinium venificum
(Llewellyn and Airs 2010)

Two hexose-bound palythine-threonine deriva-
tives

Nostoc commune (Nazifi et al. 2013, 2015)

Shinorine Scytonema cf. crispum (D'Agostino et al. 2016)
Mycosporine-Glycine Aphanothece halophytica (Ngoennet et al. 2018)
7-O-(β-arabinopyranosyl)-porphyra-334, 

Hexose-bound porphyra-334
Nostoc commune (Li and Guo 2018)

Asteria-330 Gracilariopsis longissina (Álvarez‐Gómez et al. 2019)
Asterina-330, Shinorine Lyngbya sp. (Fuentes-Tristan et al. 2019)
Porphyra-334, Shinorine, Mycosporine-Gly-

cine, Palythine, Asterina-330
Nostoc commune, Alexandrium excavatum, 

Mmicrocystis aeruginosa, Aphanothece 
halophytica

(Kageyama and Waditee-Sirisattha 2019; 
Geraldes et al. 2020)

Gadusol, Shinorine, Palythine, Porphyra-334, 
Palythenic acid

Bangia fusco-purpurea, Gelidium amansii, 
Gracilaria confervoides, Gracilaria sp.

(Sun et al. 2021)
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increasing light treatment but no initial MAAs or generation 
after light treatment (Sinha et al. 2001).

Antioxidant production Increased UV radiation favoured a 
rise in Chl-a in case of D. salina at first, although carotenoid 
content did not appear to alter. Many green microalgae, such 
as Chlamydomonas nivalis (Bidigare et al. 1993), Chlorella 
sp. (Sayed and Hegazy 1992), Chlamydomonas nivalis 
(Remias et al. 2010), can accumulate secondary carotenoids 
under stress. Some Arctic and Antarctic strains of Zygnema 
also exhibit higher quantities of secondary carotenoids, but 
no secondary carotenoids or MAAs have been found in Zyg-
nematophyceae (Remias et al. 2012).

Haematococcus pluvialis accumulates astaxanthin in 
cytoplasmic globules. β-carotene synthesised in the chloro-
plast is first transported to the cytoplasm for oxygenation, 
where the keto group is added to C4 and C4', as well as 
hydroxyl groups to C3 and C3'. This is done using the prod-
ucts of crto/bkt, and crt R-b, which are nuclear genes that 
encode phytoene desaturase. Nuclear factor X regulates the 
expression of these genes. Three distinct bkt genes have been 
identified, each of which is up-regulated at different amounts 
in response to stress. The presence of numerous bkt genes 
has been shown to be critical for H. pluvialis' production of 
significant quantities of astaxanthin under stressful condi-
tions (Huang et al. 2006). When green algae, such as H. plu-
vialis, are stressed, they produce secondary ketocarotenoids 
such as canthaxanthin and astaxanthin. Astaxanthin storage 
is a cost-effective way to store energy and carbon in less 
demanding environments. Furthermore, the high quantity 
of astaxanthin prevents oxidative stress generated by various 
stressors, including UV-B radiation, making it a multifunc-
tional stress response (Lemoine and Schoefs 2010).

Production of phenolics The production of phenolics in sev-
eral arctic and Antarctic Zygnema species represents a stress 
adaptation. Because phenolics are stored in electron-dense 
particles and vacuoles at the cell's perimeter, they operate 
like UVR screens, safeguarding its internal organelles. After 
UV exposure, Antarctic strains exhibit the largest quantities 
of phenolics and have high variable fluorescence by maxi-
mum fluorescence  (FV/FM) ratio, indicating that phenolics 
preserve photosynthetic machinery. Zygnemopis decussata 
with high phenolic content has a high  FV/FM ratio and the 
best photosynthetic rates (Figueroa et al. 2009). Phenolics, 
as phlorotannins, are widely found in brown algae (Abdala-
Díaz et al. 2006), can serve as cell wall components (Schoe-
nwaelder 2002), deter herbivores (Targett and Arnold 1998), 
and protect from UVR (Pavia et al. 1997). Several studies 
have found that the release of phlorotannin in response to 
UV exposure varies depending on the species, season, and 
stage of thalli formation. After two weeks of UV-B treat-
ment, the concentration of phlorotannin in Ascophyllum 

nodosum (Pavia et al. 1997) increased by 30%. However, no 
similar effect of UV-B on the concentration of phlorotan-
nin was found in another investigation of Fucus gardneri 
juveniles and embryos (Henry and Van Alstyne 2004). Lack 
of phlorotannin accumulation in Fucus vesiculosus under 
UV-B exposure is linked to lack of overexpression of genes 
Pks-III and other genes involved in phlorotannin modifica-
tions such as ast6 and vbpo, implying that this metabolism 
is not activated and only constitutive accumulation of phlo-
rotannins occurs during the development of F. vesiculosus 
rather than inducible processes (Creis et al. 2015). Several 
Chlorophyceae and Rhodophyceae have been shown to have 
phlorotannins, which operate as UVR absorbers.

MicroRNA regulation Because most of the UV adaptation 
in algae has focused on physiological control and linked 
protein-coding genes, there have been few publications on 
connected protein non-coding genes. Heat stress caused 
Cre-miRNA to be downregulated, responsible for heat shock 
adaptation. Using qPCR and bioinformatics computing, the 
function of Cre-miR914 and its target gene was determined 
under UV stress. Cre-miR914 was downregulated, result-
ing in increased expression of its target gene, ribosomal 
protein L18 (RPL18), promoting UV-B adaptation in Chla-
mydomonas (Fig. 3). So, overexpression of Cre-miR914 
lowered UV-B tolerance in algae, but overexpression of 
RLP18 increased UV-B tolerance and lowered ROS and 
MDA levels (Wang et al. 2019a).

Mechanical stress

Macroalgae experience considerable mechanical stress in 
the form of hydrodynamic movements (acceleration, drag, 
and lift). Studies as early as 1932 (Delf 1932; Koehl 1982, 
1986) have shown that although the seaweeds are dependent 
upon ambient seawater flow for the transport of nutrients and 
are generally adapted to hydrodynamic stress, occasional 
wave actions could be powerful enough to shear the thal-
lus (“pruning”), especially in wave-swept rocky shores. In 
general, benthic macroalgae are more susceptible to hydro-
dynamic stresses than planktonic species. Among diatoms, 
studies have shown that nonfilamentous species have higher 
resistance than filamentous ones against mechanical stress 
(Biggs and Thomsen 1995).

Various adaptations against mechanical stress have 
been documented in marine algae, including the cell wall 
composition of long-chain polysaccharides (Janot and 
Martone 2016) and the ability to secrete viscous mucilage. 
Recently discovered porous helical microstructure of 
mineralized coralline alga Jania sp. might also play roles in 
mechanical stress resistance as an adaptation (Bianco‐Stein 
et al. 2020). A morphological convergence in the form of 

1853Journal of Applied Phycology (2022) 34:1843–1869



1 3

cellulosic secondary cell-wall in coralline algae at wave-
swept habitats has also been described recently (Martone 
et al. 2019). Phylogenetic analysis of character evolution 
of uncalcified joints (genicula) in coralline red algae 
indicated three independent origins as a bending strategy to 
cope with the hydrostatic force (Janot and Martone 2018). 
Benthic seaweeds at turbulent coasts like Chondracanthus 
exasperates tend to have softer, extensible and flexible tissues 
that act as a shock absorber and stipes that can be twisted 
and bent (Koehl 2000). The red seaweed Mastocarpus 
papillatus has been shown that its stipe had similar thickness 
throughout (to avoid a single point prone for shear), and its 
thallus had a streamlined shape to flow along with waves 
(Carrington 1990). Mechanical forces were also reported 
to constrain the size of intertidal seaweeds in wave-swept 
habitats (Gaylord et al. 1994). Such physiological adaptations 
are expected to have ramifications in the form of trade-offs 
with other physiological processes, including photosynthesis, 
in the so-called ‘form-function hypothesis’ (Dudgeon et al. 
1995). Morphological switch from one thallus morphology 

to another in response to stress is a well-known adaptation 
in marine algae. For example, the brown seaweed Ecklonia 
radiata have shown that the species had wide, thin thallus at 
sheltered habitats while narrow, thick thallus with thick stipes 
at exposed habitats (Fowler-Walker et al. 2006). Reciprocal 
transplantation of algae from one habitat to another also 
confirmed this morphological plasticity in response to 
environmental constraints. Similar morphological plasticity 
in response to exposure gradients has also been reported for 
Laminaria longicruris (Gerard and Mann 1979) Durvillaea 
potatorum (Cheshire and Hallam 1989), F. vesiculosus 
(Bäck 1993) and Egregia menziesii (Blanchette et al. 2002). 
A recent study approached physiological adaptation to the 
wind-swept habitat in a more integrative fashion, combining 
biomechanics with seasonality and herbivory in kelp E. 
menziesii (Burnett and Koehl 2019). They suggest correlated 
physiological strategies with season and herbivory, such as 
higher growth rate (leading to more softer tissues) during 
summer months when the wave action is comparatively 
weaker, while lower growth rate (leading to hardened tissue) 
during winter when wave action is stronger.

Self-pruning of algal thalli has been suggested as a pos-
sible adaptation for helping the alga to reduce the size and 
reducing the risk of dislodgement from substratum (Black 
1976; Demes et al. 2013). However, a recent study sug-
gested this conjecture is flawed because on a long run, 
unpruned individuals of kelp E. menziesii survived better 
than the pruned individuals (Burnett and Koehl 2020). Yet 
another recent study revealed that the attachment strength 
of isomorphic red alga Chondrus verrucosus differs with 
its life-history stages. The tetrasporophyte stage of this alga 
tends to have weaker stipe-holdfast junctions rendering them 
more susceptible to thallus dislodgement compared with the 
gametophyte stage (Bellgrove and Aoki 2020).

There have been a few experimental studies to assess the 
hydrodynamic effects on microalgae. The green microalga 
Dunaliella sp. has been shown to be sensitive to increasing 
specific bubble rates in tubular airlift photobioreactor, that 
can be minimized by the addition of carboxymethylcellulose 
and agar (Silva et al. 1987). Photosynthetic rate, growth 
rate and cellular morphology of green cyanobacterium 
A. platensis also has been shown to be affected with the 
hydrodynamic flow rate (Mitsuhashi et al. 1994). Higher 
rates of mechanical agitation also have been shown to induce 
cell damage in the chrysophyte Ochromonas malhamensis 
(Yang and Wang 1992) and the red microalga Porphyridium 
cruentum (Camacho et al. 2000).

On the other hand, studies conducted on several fresh-
water red algae have shown that no preferential advan-
tage was apparent for one morphological form over the 
other for the hydrodynamic stress resistance, perhaps 
indicative of the adaptations that these various species 
have been going through for a very long period (Sheath 

Fig. 3  Schematic diagram showing miRNA regulation under UV 
stress in Chlamydomonas 
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and Handbook 1988). Such algae of various morpho-
logical forms, including tufts, mucilaginous filament, 
nonmucilaginous erect filament and so on, might have 
evolved through independent mechanisms for hydrody-
namic resistance. Studies of the red seaweeds Chondrus 
crispus and Mastocarpus stellatus also concluded that no 
clear relationships exist between algal morphology and 
its responses to environmental variation (Dudgeon et al. 
1995). However, algal thallus morphology should not be 
assessed for its adaptations from hydrodynamic stress in 
isolation, as most of the algal communities exist in nature 
as large canopies consisting of multi-species communi-
ties. Studies of the red alga C. crispus have shown that 
although bushy morphology in isolated thalli increases 
the drag- seemingly a counter-intuitive to resist the wave-
action, this morphology significantly reduce the drag when 
in canopy (Johnson 2001). A recent study contextualized 
the adaptation strategies of windswept kelps within the 
broader evolutionary framework of avoidance-tolerance 
spectra. The study concluded that kelps are either strong 
and tenacious (tolerance-dominant) or streamlined (avoid-
ance-dominant), but not both concurrently, thus indicat-
ing a trade-off between these two strategies (Starko and 
Martone 2016).

Algal hormones involved in response 
to stress

A well-coordinated and timely response to various abiotic 
stresses in plants involves signal perception and transduc-
tion mainly via plant hormones, that is, phytohormones. 
Phytohormones comprise a wide array of signaling com-
pounds present in minute quantities in cells, playing crucial 
roles in minimizing environmental stresses by facilitating 
growth, developmental processes and coordinating vari-
ous signal transduction pathways during stress responses. 
The main classes of phytohormones include (1) classical 
phytohormones such as auxin (AUX), abscisic acid (ABA), 
brassinosteroids (BRs), ethylene (ET), gibberellins (GAs), 
and cytokinin (CK); (2) molecular phytohormones, for 
example, jasmonic acid (JA), salicylic acid (SA), and nitric 
oxide (NO); and (3) newly discovered karrikins (KARs), 
and strigolactones (SLs) (Smith and Li 2014; Pandey et al. 
2016). In different phylogenetic groups of algae, all known 
plant hormones are found. Generally, phytohormones of 
various algal groups are poorly understood because of the 
extreme diversity of this group and difficulties in working 
methodologies due to their small size. So here in this review, 
we tried to summarize the published data elucidating the 
role of phytohormones in algae in combating various abiotic 
stress conditions.

Nitrogen stress Certain hormones such as  GA3, triacontanol 
(TRIA), kinetin (K), and zeatin (Z) promote cell elonga-
tion, cell division, growth and photosynthesis under nitro-
gen deficiency (Park et al. 2013; Babu et al. 2017; Renuka 
et al. 2017). Indole-3-acetic acid (IAA), GA, K, 1- TRIA 
improved biomass in nitrogen-deficient C. reinhardtii (Park 
et al. 2013). This treatment with several coupled hormones 
increased the  FV/FM and relative electron transport rate 
(rETR) of certain algae under nitrogen limitation condi-
tions. Thus, the combination of several phytohormones 
may enhance algal growth and lipid production under abi-
otic stress more efficiently than one phytohormone alone 
by regulating oxidative stress and photosynthetic rate. By 
keeping in view, zeatin and kinetin enhanced algal growth 
and lipid production in A. obliquus (Renuka et al. 2017) 
under nitrogen stress. Babu et al. (2017) reported that under 
nitrogen limitation, the low doses of IAA and diethyl ami-
noethyl hexanoate (DAH) treatments in C. sorokiniana 
showed the highest enhancement in biomass productivity 
over the control. Yu et al. (2018) reported that the combi-
nation of the phytohormones such as naphthylacetic acid 
(NAA) and indolebutyric acid (IBA) has positive effects on 
growth and lipid production in Scenedesmus sp. SDEC-8 and 
C. sorokiniana SDEC-18 under nitrogen starvation. Salama 
et al. (2014) demonstrated that the biomass was increased 
by 1.9- and 2.5-fold, and the PUFA content was enhanced 
by up to 56% and 59% at 10 − 5 M by the application of 
IAA and DAH, respectively. The treatment with these cou-
pled hormones induced antioxidant enzyme activities, which 
protect cells from damage caused by abiotic stresses, and 
significantly upregulated the levels of RuBisCO and ACCase 
under N limitation.

ROS Fulvic Acid (FA) appeared to promote microalgal 
lipid biosynthesis significantly by regulating cellular ROS 
levels. The application of FA, melatonin (MT), butylated 
hydroxyanisole (BHA), and butylated hydroxytoluene 
(BHT) reduced high light intensity and nutrient deficiency 
stress resulting in increased biomass and enhancement of 
various pigments such as astaxanthin, β- carotene and lipids 
in H. pluvialis (Ding et al. 2018a; b; 2019; Zhao et al. 2018b; 
2019a; b). These studies indicated that the application of 
phytohormones could sustain or induce cell growth and 
metabolite accumulation in microalgae under abiotic stress 
conditions, mainly by regulating oxidative stress.

HM stress In response to HM stress in microalgae, the 
application of several hormones such as Z, K, IBA, GA, 
JA, IAA, NAA and phenylacetic acid (PAA) are involved in 
the induction of cellular growth and division and augmenta-
tion of photosynthetic activity (Bajguz 2011; Piotrowska-
Niczyporuk et al. 2012) and can alleviate stress symptoms 
by preventing HM biosorption. Cr stress is alleviated by 
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K in Nostoc muscorum. Here K application significantly 
improved the dry weight and carotenoid production of the 
cyanobacterium N. muscorum (Tiwari et al. 2018). The pos-
sible reason for this change is that K triggers photosynthesis 
and antioxidant enzyme activities while depressing respira-
tion and oxidative stress in algae. The endogenous levels 
of auxins (IAA) and CKs (transzeatin, tZ) were reduced in 
the green alga, C. vulgaris (Bajguz 2011) and A. obliquus 
(Piotrowska-Niczyporuk et al. 2017) when subjected to the 
higher concentration (100 μM) of Pb. In this case, the endog-
enous application of auxin and CKs mitigated toxicity, pro-
moted growth and development, and regulated HM sorption 
in C. vulgaris (Piotrowska-Niczyporuk et al. 2012) and A. 
obliquus (Piotrowska-Niczyporuk et al. 2018a). Exogenous 
CKs were found to protect proteins and scavenge various 
components of photosynthetic apparatus (Chls, carotenoids, 
xanthophylls) and significantly reduce damaging effects of 
HMs on green algae, C. vulgaris (Piotrowska-Niczyporuk 
et al. 2012), and A. obliquus (Piotrowska-Niczyporuk et al. 
2018b). CKs alleviated HM toxicity by inhibiting ROS for-
mation in C. vulgaris when challenged by Cd, Cu, or Pb 
(Piotrowska-Niczyporuk et al. 2012).

Not many reports are available regarding the biological 
functions of GAs in algae; however, their presence has 
been confirmed in multiple microalgae strains (Stirk et al. 
2013).  GA3 showed the positive effect on growth, protein 
contents, Chl-a and b, carotenoids, and monosaccharides 
in C. vulgaris exposed to HMs (Falkowska et  al. 2011; 
Piotrowska-Niczyporuk et al. 2012). Here in this study,  GA3 
activated defence responses and decreased oxidative damages 
by promoting the production of thiol compounds which 
could bind to HM ions (Bajguz 2002) in cells of C. vulgaris 
(Falkowska et al. 2011; Piotrowska-Niczyporuk et al. 2012). 
These results indicate that  GA3 can help algae to withstand 
the toxic concentrations of Cd and Pb based upon the 
efficiency of cellular division in C. vulgaris (Falkowska et al. 
2011). Exogenous presence of JA exacerbated Cd, Cu, or Pb 
toxicity accompanied by an increase in metal biosorption, 
lipid peroxidation and  H2O2 level in C. vulgaris. In response 
to JA treatment under HM exposure, several indicators of cell 
health and their ability to deal with HM, like cell number, 
Chl levels, carotenoids, monosaccharides, soluble proteins, 
ascorbate and GSH content, and antioxidant enzyme activity, 
were considerably reduced (Piotrowska-Niczyporuk et al. 
2012). These findings concluded that high amounts of JA 
accelerated the senescence program and algal cell death 
(Czerpak et al. 2006).

Heat stress BRs enhanced the level of ABA in C. vulgaris in 
response to short term (3 h) heat stress (30–40 °C) (Bajguz 
2009). Exogenous BL partially overcomes the inhibitory 
effect of HMs on C. vulgaris, reducing the accumulation 
of HMs in the cells and increasing ABA, IAA and zeatin 

content (Bajguz 2011). Endogenous level of BRs increases 
in response to salt and low temperature (15 °C) stress in 
several species of algae such as Chlorococcum ellipsoideum, 
Gyoerf fyana humicola, Nautococcus mamillatus, 
Acutodesmus acuminatus, Protococcus viridis and C. 
vulgaris. The response of algal cultures was observed within 
30 min of the salt shock.

In macroalgae, studies regarding the role of phytohor-
mones are limited. Application of ACC (the ethylene pre-
cursor 1-aminocylopropane1-carboxylic acid) repressed 
gametophytes and enhanced tolerance to oxidative stress in 
Pyropia yezoensis (Uji et al. 2016). Gene expression pro-
files of small heat shock proteins in P. yezoensis showed that 
exogenous application of ACC could significantly increase 
the expression levels of small heat shock proteins (Uji et al. 
2019) against heat stress. Wang et al. (2019b) showed that 
SA and jasmonic acid (JA) could promote the growth of 
algae and enhance the resistance of P. haitanensis against 
temperature stress. Transcriptome data showed that the phy-
tohormones GA and ABA played essential roles in respond-
ing to temperature stress in P. yezoensis (Sun et al. 2014; 
Wang et al. 2017).

Plant hormones are also associated with signal trans-
duction pathways, including pathways that use NO,  Ca2+, 
mitogen-activated protein kinase (MAPK) and specifically 
stress hormones (ABA, SA and GA), which form a com-
plex signalling network connected to growth, metabolic, and 
stress tolerance in higher plants (Peleg and Blumwald 2011; 
Lu et al. 2014; de Zelicourt et al. 2016; Wani et al. 2016; 
Raja et al. 2017). These stress hormones may promote cell 
growth by improving photosynthetic activity by increasing 
Chl content (Lu and Xu 2015). NO, and  Ca2+ are cellular 
second messengers that mediate oxidative stress and metabo-
lite synthesis in algae under abiotic stress conditions (Zhang 
et al. 2017; Kováčik and Dresler 2018). Figure 4 shows the 
signal transduction pathway of phytohormones that includes 
the NO and  Ca2+ as second messengers during abiotic stress 
conditions.

Abiotic stress to stimulate lipid production

Algae are widely studied due to their ability to accumulate 
high content of lipids and bioactive compounds under vari-
ous abiotic stress conditions such as temperature, nutrient 
deprivation, UV-radiation, salinity, pH, phytohormones 
and HMs (Paliwal et al. 2017; Dong et al. 2019). Micro-
algae have attracted particular interest due to their high-
value applications in nutraceuticals, pharmaceuticals, 
biofuel production, and capacity to accumulate a large 
amount of lipids, high growth rate, economical and envi-
ronmentally friendly (mitigating fossil  CO2 pollution) (Yu 
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et al. 2012; Barati et al. 2019). During abiotic stresses, 
algae modulate their metabolites in their physiology and 
biochemistry to survive through adaptation (Roleda et al. 
2013; Bermejo et al. 2018). Upon exposure to numerous 
abiotic stresses, algae influenced their intracellular con-
centration of lipids, antioxidant enzymes, carotenes, and 
other metabolites (Rothschild and Mancinelli 2001; Forján 
et al. 2015). However, under prolonged stress conditions, 
the algal growth ceases and leads to programmed cell 

death (PCD) or apoptosis (Zuppini et al. 2010; Markou and 
Nerantzis 2013; Bermejo et al. 2018; Barati et al. 2019).

Microalgae are a potential biofuel producing source 
as they are not dependent on fertile land, can begrown in 
wastewater, and offer higher productivities. However, large-
scale production of lipids is facing a cost-related bottleneck 
because of low biomass production, high water footprint, 
high nutrient input, low cell density, and harvesting issues. 
Currently, several strategies have been explored to overcome 

Fig. 4  Role of phytohormones in abiotic stress conditions
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the challenges and achieve maximum growth and large-scale 
production of lipids (Kim et al. 2016; Wang et al. 2016; 
Babu et al. 2017). Recently, advanced strategies have been 
employed to overcome this kind of problem, which are a 
combination of two different stresses; two-stage cultivation; 
co-culturing with other organisms; and the addition of phy-
tohormones (ABA, IAA, CKs, GAs, and ET), salts, and flue 
gases  (CO2,  NO×,  SO×) (Lu and Xu 2015; Li et al. 2017; 
Salama et al. 2018). The two-stage cultivation strategy has 
been extensively used, in which cells are firstly grown in 
nutrient-sufficient conditions (for higher biomass), and then 
stress conditions are induced, which stimulates the accumu-
lations of higher amounts of proteins, carbohydrates, lipids, 
fatty acids and other bioactive compounds (Fig. 5) (Chen 
et al. 2011; Aziz et al. 2020).

Microalgal lipids are categorized into structural lipids 
such as PUFAs, and storage lipids like non-polar saturated 
fatty acids (SFAs) and MUFAs. Storage lipids (PUFAs), 
primarily stored in the form of TAGs, are transesterified to 
produce biofuel (Thompson Jr 1996). Moreover, eicosap-
entaenoic acid (EPA) and docosahexaenoic acid (DHA) are 
the most valuable fatty acids in the microalgae, which make 
them suitable for high biofuel production (Gimpel et al. 

2015). Nutrient starvation (primarily nitrogen and phos-
phate) and salinity have been well documented to stimulate 
TAG accumulation in microalgae (Li et al. 2008; Yeesang 
and Cheirsilp 2011; Paliwal et al. 2017; Shi et al. 2017; 
Wase et al. 2017). The algal lipid production under varying 
abiotic stress factors is summarised below (Table 4).

Transgenic approaches for stress resistance 
in algae

Significant breakthroughs in genetic modification of green 
microalgae have been made over the years (Mayfield and 
Golden 2015), as evidenced by the synthesis of omega-3 
fatty acids, carotenoids, biofuels, and better photosynthetic 
growth (Gimpel et al. 2015). Following the development 
of advanced automated sequencing technology over the last 
two decades, genomics has become a potent tool. Bioinfor-
matics is used to assemble DNA sequences and evaluate 
gene structure and expression. In the case of microalgae, 
whole-genome sequencing of strains with commercial poten-
tial will allow scientists to apply other omics technologies 
to gain a better knowledge of high-value cell components, 

Fig. 5  Two-stage cultivation of 
algae to enhance pigment and 
lipid production
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Table 4  The effect of varying abiotic stress factors on algal lipid production

Algal species Abiotic stress factors Operation strategy Lipid production References

Acutodesmus dimorphus N deficiency N starvation (2 days) 29.92% (Chokshi et al. 2017)
A. dimorphus Temperature-induced oxi-

dative stress
Temperature 38 °C than at 

25 °C
22.7% (Chokshi et al. 2015)

Acutodesmus obliquus N limitation + phytohor-
mone

Z (0.5 mg  L−1), IAA 
(1.0 mg  L−1), and GA 
(5.0 mg  L−1) + -(N)

77.20% (Renuka et al. 2018)

Chlamydomonas reinhardtii N deficiency + melatonin 5 μM melatonin + no N 66.7% (Meng et al. 2020)
C. reinhardtii Salinity stress 100 mM NaCl/100 mM 

 CaCl2
73.4% (Mori et al. 2020)

Chlorella minutissima N limitation 0.3 g  L−1 of N 579.86 mg  L−1 (Chandra and Ghosh 2019)
Chlorella sorokiniana N deficiency + IAA + Die-

thyl aminoethyl hexanoate 
(DA-6)

IAA  (10−5 M) or DA-6 
 (10−9 M) + 

N limitation

69 mg  L−1  day−1  
(49% increase)

(Babu et al. 2017)

C. sorokiniana Salinity 30 g  L−1 NaCl 0.36 g  L−1 (Kim et al. 2016)
C. sorokiniana Low temperature + glycine 

betaine (GB)
18 °C + GB at 500 mg  L−1 376.2 mg  L−1 (Wang et al. 2016)

C. sorokiniana SDEC-18 N deficiency + phytohor-
mone

20 mg  L−1 NAA and IBA 55.76% (Yu et al. 2017)

Chlorella sp. HS2 Heat Shock 12 h heat-shock at (50 °C) 2.64 g  l−1  day−1 (Kim et al. 2020)
Chlorella vulgaris High Temperature + (BRs) 2, 4- epibrassinolide 

(EBL) + 25 °C
50% (Liu et al. 2018)

C. vulgaris N modulation 250 mg  L−1 of total  
nitrogen (TN)

70 mg/L−1 (Cho et al. 2019)

Coccomyxa melkonianii pH pH 4.0 and 8.0 24 and 22% (Soru et al. 2019)
Coccomyxa onubensis Salinity 100 mM NaCl 416.16 mg  g−1 dw (Bermejo et al. 2018)
C. onubensis PAR + UVA Continue PAR + UVA 

8.7 W  m−2)
487.26 mg  g−1 dw (Bermejo et al. 2018)

Haematococcus pluvialis High-light and N defi-
ciency + BHT

120 μmol photons  m−2  s−1, 
2 mg  L−1 BHT

46% (Zhao et al. 2018b)

H. pluvialis High-light and nitrogen-
deficiency + BHA

50 μmol photons  m−2  s−1,  
2 mg  L−1 BHA

42.84%, (Ding et al. 2019)

H. pluvialis Low light + glycerol Low light + 1 mL  L−1 
glycerol

36.8% (Zhang et al. 2020)

Monoraphidium sp. QLY-1 N deficiency + melatonin N deficiency + 1 μM 
melatonin

51.38% (Zhao et al. 2018a)

Monoraphidium sp. QLY-1 Melatonin + Photoinduction 1 μM melatonin 49.6% (Li et al. 2017)
Monoraphidium sp. QLY-1 Salinity + FA 20 g  L−1 NaCl + 1.20 g 

 L−1 FA
59.53% (Li et al. 2019)

Monoraphidium sp. QLY-1 N deficiency + JA + strigol-
actone (SL)

1 μM SL + 25 μM JA 312.35 mg  L−1  day−1 (Song et al. 2020)

Monoraphidium sp. QLY-1 HM Cd 80 μM and 40 μM Cd 96.75 mg  L−1  day−1 (Zhao et al. 2019a, b)
Monoraphidium sp. QLY-1 HM Cd + GABA 2.5 mM GABA + Cd 55.37% (Zhao et al. 2020b)
Nannochloropsis oceanica low‐temperature + Bicar-

bonate
Bicarbonate (1.0 g  L−1) +  

low‐temperature (16 °C)
57% (Yuan et al. 2019)

Nannochloropsis oculata High light + N deficiency 250 μmol photons  m−2 
 s−1 (high light + (-) N

402 mg  g−1 DW (Ma et al. 2016)

N. oculata UV radiation + quizalofop 120 min for 1 ×  105 cells 
m  L−1

58.38 mg  g−1 DW (Moha-León et al. 2019)

N. oculata Magnetic fields (MF) and 
nitrate

MF (20 mT) and N 
(150 mg  L−1)

38 mg  L−1  day−1 (Chu et al. 2020)

Scenedesmus sp. HM Pb 1 mg/L Pb 31% (Pham et al. 2020)
Scenedesmus sp. CCNM 

1077
Salinity 400 mM NaCl 33.13% (Pancha et al. 2015)
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lipid metabolism, and overall cell activity under stress and 
non-stress conditions. The genomes of Botryococcus brau-
nii Showa, Botryococcus braunii UTEX 572, C. reinhardtii, 
Chlorella sp. NC64A, Coccomyxa sp. C-169, D. salina, Mic-
romonas pusilla, N. oceanica and Ostreococcus tauri were 
recently sequenced.

The understanding of mechanisms for the adaptation of 
microalgae to extreme environments has been contributed by 
comparative genome analysis. Microalgae genomes can be 
altered in the nuclear, chloroplast, or mitochondrial genomes 
(Specht et al. 2010). The majority of enzymes involved in 
secondary metabolism are encoded in the nuclear genome, 
although others are directed to the chloroplast to accomplish 
their function (Heydarizadeh et al. 2013). In these circum-
stances, the nuclear or plastid genomes might be modified to 
confer a particular metabolic function (Johanningmeier and 
Fischer 2010). The major ways for delivering DNA to micro-
algae include electroporation, shaking with glass beads, and 
particle gun bombardment (biolistic), with the letter proving 
to be the only effective way for chloroplast transformation 
thus far (Purton et al. 2013).

The pursuit of stress-tolerant lines has led to an unprec-
edented rise in algae genetic modification for peptides, 
enhanced photosynthesis, and key metabolic routes, includ-
ing the production of lucrative dietary supplements, pharma-
ceuticals, and hydrocarbons (Gangl et al. 2015). Moreover, 
genetic sequence omics have assisted in efficient algal mod-
ification. Despite enormous accomplishments, only a few 
algae species continue to display strong and stable expres-
sions of foreign proteins. There are several microalgal gene 
silencing methods, including oppressive histone H3 lysine 
alteration, DNA cytosine modification, RNA interference, 
and miRNA gene regulatory systems to eliminate highly 
unstable external transcription proteins. Chlamydomonas 
has been shown to have effective but simple nuclear gene tar-
geting mechanisms (Zorin et al. 2009). Various promoters, 
and 5`UTR modifications, such as the 16S rRNA promoters 
and the atpA 5`UTR, were shown to allow sufficient het-
erogeneous genome editing and efficient transgenic protein 
production within the C. reinhardtii plastid (Tissot-Lecuelle 
et al. 2014). Codon enhanced gene regulation hemH and lba 
throughout the plastid of C. reinhardtii for optimum bio-
hydrogen production is evidence of genetic manipulation 
in microalgae (Wu et al. 2010). Furthermore, chemically 
synthesized promoters were created to induce high levels of 
nuclear gene expression in Chlamydomonas (Scranton et al. 
2016). Moreover, increased targeted genomic alteration in 

C. reinhardtii has been described using zinc finger nuclease 
enzymes, activator effectors, and the recently discovered 
clustered, regularly interspersed short palindromic repeat 
(CRISPR) pathway (Jiang et al. 2014).

Although most genetic engineering strategies are aimed 
at enhancing the production of high-value metabolites (such 
as antioxidant pigments and PUFAs) and biofuel molecules 
(such as hydrogen and TAG), a few attempts have been 
made toward developing resilient strains for applications 
such as HM mitigation and  CO2 sequestration. A moth len-
til d1-pyrroline-5-carboxylate synthetase (P5CS) allele, for 
instance, was already found to be primarily expressed in 
Chlamydomonas transformants used to have 80 times better 
free-Pro levels, exponential growth at detrimental Cd con-
centration levels, and remarkable binding at four-fold higher 
Cd densities than wild-type cell types. The findings suggest 
that free-Proasan antioxidant plays a function in Cd-stressed 
cells, with greater GSH levels promoting more excellent 
phytochelatin production and Cd sequestration. Speedy 
genomic manipulation of such algae was being utilized 
to increase HM susceptibility and binding selectivity for 
contaminated water bodies and sediments. Changing both 
the large and small subunits of Rubisco (rbcS and rbcL) as 
possibilities for enhancing net  CO2 uptake (photosynthesis) 
and sequestration through growth promotion received a lot 
of interest (Whitney et al. 2011). Chlamydomonas is a sig-
nificant host genetic manipulator in this regard since it can 
cause alterations in both the rbcS and rbcL genes. Hybrid 
Rubiscos, for instance, have indeed been created by combin-
ing plant’s small (rbcS) subunits with algae large (rbcL) sub-
units by transforming a C. reinhardtii mutant deficient in the 
rbcS gene. Despite an increase in  CO2/O2 binding of 3–11 
per cent, the transgenic enzyme retains high Vmax ratios 
and enzymatically efficient Rubisco. Genetically modified 
strains, on either hand, are deficient in plastid pyrenoids and 
also have restricted photosynthesis. Continued research to 
build and evaluate better Rubiscos, according to (Whitney 
et al. 2011), would mainly rely on algae in vitro experiments, 
especially Chlamydomonas.

Conclusion

Algae are considered a source of many bioactive com-
pounds with attractive properties, including pigments, car-
bohydrates, lipids, proteins, and vitamins. They are stud-
ied as encouraging feedstocks to satisfy future sustainable 

Table 4  (continued)

Algal species Abiotic stress factors Operation strategy Lipid production References

Scenedesmus sp. SDEC-8 N deficiency + Phytohor-
mone

20 mg  L−1 NAA and IBA 56.17% (Yu et al. 2017)
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energy demands as they have a high ability to absorb 
 CO2, no need for arable land, and year-round cultivation 
that make them attractive for commercial exploitation. 
However, the growth and development of algae may be 
inhibited by adverse stresses such as high salinity, nutri-
ent deficiency, HMs, low or excessive water, temperature 
fluctuations, and UVRs. These stressful conditions cause 
a variety of metabolic, physiological, biochemical and 
molecular alterations, subsequently causing oxidative 
damage and ultimately declining cell growth and biomass. 
It has been reported that the algal species respond to these 
stressful conditions by modifying their metabolites. Nitro-
gen and phosphorus deficiency, for example, causes lipid 
metabolism to switch from membrane lipid synthesis to 
neutral lipid storage. Salinity stress causes the accumula-
tion of various osmoregulatory solutes (like glycerol, pro-
line, trehalose), antioxidants, and lipids. The increase in 
temperature is considered the most tuning factor for poly-
unsaturated fatty acid production, whereas a decrease in 
temperature increases the composition of unsaturated and 
short-chain fatty acids. In recent years, phytohormones 
emerged as a topic of intense focus in microalgae research. 
They could sustain the growth of microalgae under abiotic 
stress conditions. Moreover, it is widely studied that the 
abiotic stress conditions (such as a two-stage cultivation 
strategy) can be used to produce lipids and high-value by-
products in microalgae.

Recent advancement in our understanding of the 
molecular mechanisms underlying the responses of algae 
to abiotic stresses emphasizes their multilevel nature that 
involves multiple processes such as sensing, signaling, 
transcription, transcript processing, translation and post-
translational protein alterations. However, there is con-
siderable uncovered ground in understanding how algae 
signal each other to start the cascade of pathways that will 
improve survival. Moreover, comparative genome analy-
sis has contributed to understanding mechanisms for the 
adaptation of microalgae to extreme environments. Fur-
ther, studies integrated with next-generation sequencing 
strategies and directed experimental evolution approaches 
will continue to raise and deepen our knowledge of how 
algae respond and adapt to stressful conditions.
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