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Abstract
Sargassum thunbergii is a brown macroalga endemic to the northwest Pacific. It plays important ecological roles in the 
structure and maintenance of coastal marine ecosystems. The bioactive compounds extracted from S. thunbergii have been 
extensively documented for potential use in anti-obesity, anti-inflammatory activity, anti-tumor, anti-oxidant and aquacultural 
drugs. The species is edible and contains relatively high levels of proteins, minerals and several types of amino acids. The 
present work compiles recently published literature on S. thunbergii, with particular focus on cultivation efforts in China, 
including the breeding of seedlings and cultivation at sea. A concise review of possible applications is given. Distribution, 
range shifts associated with past climate change, population genetic structure and connectivity, life history, reproduction and 
development are all detailed. The review provides important guidelines for future large-scale farming of S. thunbergii. This 
will help aquaculturalists (phyconomists) to meet the expected increases in demand by industrial users. It will also help to 
conserve natural populations which may be declining due to destructive harvesting and rapid ocean changes.

Keywords Aquaculture · Climate change · Conservation · Cultivation · Ecological adaptation · Genetic diversity · 
Phaeophyceae

Introduction

Sargassum thunbergii (Mertens ex Roth) Kuntze (Basionym: 
Fucus thunbergii Mertens ex Roth) is a perennial marine 
brown macroalga of the family Sargassaceae in the order 

Fucales. It was first described by the German botanist Otto 
Kuntze in 1880 (Kuntze 1880). Homotypic synonyms are 
Cystoseira thunbergii (Mertens ex Roth) C. Agardh, Myagropsis 
thunbergii (Mertens ex Roth) Kützing and Turbinaria thunbergii 
(Mertens ex Roth) Yendo and heterotypic synonyms are 
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Fucus swartzii C. Agardh, Rhodomela swartzii (C. Agardh) 
C. Agardh, Myagropsis swartzii (C. Agardh) Kützing and 
Sargassum swartzianum Yendo (Guiry and Guiry 2021).

Sargassum thunbergii is one of the most common habi-
tat-forming macroalgae with important ecological roles in 
coastal marine ecosystems. Sargassum thunbergii can accu-
mulate heavy metals and metalloids (e.g. zinc, cadmium, 
copper and arsenic) in polluted waters (Wu et al. 2010). It 
can also assimilate nitrogen and phosphorus in eutrophic 
coastal waters (Wang et al. 2011). In addition, efficient 
photoprotective responses to high light and the presences 
of unique functional genes responding to environmental 
stresses enable this species to have strong resistance to 
adverse conditions such as thermal, illumination and desic-
cation (Li et al. 2014a, b; Liu et al. 2014).

The bioactive components in S. thunbergii have many 
potential pharmaceutical and nutraceutical applications, 
from functional food ingredients to aquacultural drugs and 
therapeutic agents with anti-tumor activity. For example, an 
ethanolic extract of S. thunbergii inhibits oedema in mice 
without acute toxicity, thus presenting a potential remedy 
for inflammation-related symptoms in humans (Kang et al. 
2008). Potential nutraceutical benefits include the reduction 
of blood sugar and fat, immune system regulation, elimina-
tion of superoxide anion radicals (e.g.  O2ˉ·), prevention of 
thrombus formation and of bacterial infections via functional 
polysaccharides, polyphenols and/or liposoluble compounds 
(Sun et al. 2018). Alginate, mannitol and iodine can be 
extracted and these are important raw materials for chemical 
industry (e.g. in textile production and rubber processing) 
(He et al. 2011; Sun et al. 2018).

Because of its high nutritional value and low alginate 
content, S. thunbergii is widely used in the food indus-
try. It is rich in protein, vitamins, minerals and umami 
amino acids. The nutrient composition is comparable with 
the edible kelp Saccharina japonica (Areschoug) Lane, 
Mayes, Druehl et Saunders in East Asia (Table 1) (Tao 
et al. 2001; Hu et al. 2016). Sargassum thunbergii has long 
culinary history in China, Japan and Korea. It consists of 
different kinds of chemical compounds such as polysac-
charides, anti-oxidant, fucoxanthin and polyunsaturated 
fatty acids and thus has a great potential use for pharma-
ceutical and food industries (Table 2).

In Chinese marine aquaculture, S. thunbergii has been used 
since the early 2000s as a preferred natural food for sea cucum-
ber and abalone (Han and Li 2005). Juvenile sea cucumber (Stichopus 
japonicus) that had been fed fresh, ground S. thunbergii exhibited 
greater growth rate, survival rate and disease resistance than 
when fed with other marine macroalgae (Zhou et al. 2010; Guo 
et al. 2011). The widespread use of S. thunbergii has resulted in 
its over-exploitation in northern China (Liang et al. 2014). This 
has put considerable pressure on natural resources. Marine farm-
ing of S. thunbergii in coastal areas will help to both meet the 
increasing demand of the market and restore declining natural 
populations and the intertidal habitats they support.

Distribution and range shifts driven 
by historical climate change

Sargassum thunbergii is one of the most dominant 
macroalgae endemic to the Northwest Pacific where 
it is found between middle and lower intertidal levels. 

Table 1  Proximate composition of Sargassum thunbergii in northern China, including the comparison with the most well-known edible kelp 
Saccharina japonica in East Asia (after Hu et al. 2016; Cao et al. 2017)

* UAA , umami amino acids; EAA, essential amino acids; HEAA, half-essential amino acids; TAA , total amino acids; SFAs, saturated free fatty 
acids; MUFAs, monounsaturated fatty acids; PUFAs, polyunsaturated fatty acids

Composition Content (mg  g-1 dry weight) Composition Content (mg  g-1 dry weight)

S. thunbergii S. japonica S. thunbergii S. japonica

Protein 142–194 87–162 Asp* 11.3–14.8 19.8
Crude fat 1.700–60 2.000–15.400 Ser* 4.9–6.0 2.78
Carbohydrate 590–656 Glu* 31.1–43.9 28.7
Crude fibre 44 98 Gly* 5.0–7.5 3.14
Vitamin C 0.206 0.110 Ala* 6.5–13.3 4.81
Ca 2.600 2.900 ƩUAA 71.2–74.8 59.19
K 30.600 42.700 EAA 32.7–58.8 15.98
P 1.100 1.900 HEAA 6.4–10.2 4.22
Sr 0.885 0.340 TAA 135.4–145.8 80.01
Zn 0.028 0.013 ƩSFAs (%) 29.91–36.00 43.76
Cu 0.014 0.007 ƩMUFAs (%) 18.33–24.78 25.00
Mn 0.077 0.012 ƩPUFAs (%) 29.42–41.77 20.69
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Its geographical range currently spans approximately 
25° in latitude from Hokkaido, Japan (44°N) to Hainan 
Island, China (20°N) (Tseng 1983; Titlyanov et al. 2015). 
Sargassum thunbergii finds suitable habitat along the 
coasts of the East China Sea, Yellow-Bohai Sea, the 
Korean Peninsula and the Japanese Archipelago (Fig. 1a). 
The range of S. thunbergii in the Northwest Pacific has 
been influenced considerably by historical climate change 
(Hu et  al. 2011, 2017), particularly the Quasi-100 ky 
glacial-interglacial cycles triggered by the carbon-climate 
and other mechanisms, in which climate, carbon cycle and 
ice-sheets interact with each other to produce a feedback 
that can produce the major observed Quaternary climate 
variations (Zeng 2006). The periodic, dramatic fall and 
rise of sea level driven by Paleoclimatic oscillations 

re-structured coastal topology and connectivity to 
surrounding habitats may explain the distribution of other 
coastal marine sessile species in the Northwest Pacific 
(Benzie and Williams 1997). For instance, sea levels in 
the Northwest Pacific dropped by 120–140 m during the 
Last Glacial Maximum (20 kya) (Lambeck et al. 2002), 
leading to the emersion of land mass and the establishment 
of several marginal sea basins in the Northwest Pacific 
(Fig. 1b) (Wang 1999; Voris 2000). The South China Sea 
basin became a semi-enclosed marginal sea and the East 
China Sea basin was reduced to an elongated Okinawa 
Trough (Fig. 1b). Species distribution models suggest 
that lower sea levels during the Last Glacial Maximum 
considerably shifted the distribution of S. thunbergii, with 
the southernmost boundary of suitable habitats extending 

Table 2  List of products/compounds extracted from Sargassum thunbergii used in the pharmaceutical and food industries

Products/Compounds Applications References

Ethanoic extract Anti-obesity and reduce fatty liver Kang et al. (2020)
Indole-6-carboxaldehyde (I6CA) Enhancement of immunomodulatory activity Park et al. (2020)

A therapeutic agent for matrix metalloproteinase-9-related processes, includ-
ing tumor invasion and metastasis

Kim et al. (2019)

Indole-4-carboxaldehyde (I4CA) Anti-inflammatory activity Cha et al. (2019)
Sulphated galactofucan Anti-tumor (lung cancer) Bao et al. (2020)

Protective role against reactive oxygen species (ROS) mediated cell damage 
and inhibit oxidative stress

Kang et al. (2019)

Anti-tumor (lung cancer) and anti-angiogenic activities Jin et al. (2019)
A candidate for curing neurodegenerative disease Jin et al. (2018)

Polysaccharide (fucose, galactose) Anti-oxidant and anti-inflammation Luo et al. (2019)
Heteropolysaccharide (arabinose, glucose, 

xylose, glucuronic acid, etc.)
A functional food aimed at promoting the gut health Fu et al. (2018)
A natural anti-oxidant and hypoglycemic agent Ren et al. (2017)
Anti-oxidant and inhibition against colon cancer Yuan et al. (2015)

Volatile polyenes Essential oils (EOs) useful for flavours in food and fragrances in cosmetics Lv et al. (2018)
Fucoxanthin Improvement of encapsulation efficiency and loading capacity of microcap-

sules
Wang et al. (2017)

Un-determined Fermentation with kimchi-derived bacteria enhance the anti-inflammatory 
effect

Mun et al. (2017)

Sargaquinoic and sargahydroquinoic acid Functional food ingredients to improve treatment of osteoporosis and obesity Kim et al. (2015)
Low molecular weight phlorotannins (LMPs) Food safety control and aquacultural drugs Wei et al. (2015)
Polyunsaturated fatty acids Protective effect on oxidative damage mediated by ROS Kim et al. (2010)

Fig. 1  Ensemble species dis-
tribution maps for Sargassum 
thunbergii for the present (a), 
the Last Glacial Maximum (b) 
and the Mid-Holocene (c). The 
red-coloured areas are where S. 
thunbergii found, and the light-
grey polygons depict seasonal 
sea ice
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approximately to 5°N southward (Fig. 1b). At the same 
time, the northernmost boundary of S. thunbergii retracted 
to around 35°N (Fig. 1b). When the marginal seas reunited, 
due to postglacial sea-level rise, S. thunbergii populations 
expanded northwards driven by coastal currents (Li et al. 
2017a, b). During the Mid-Holocene (6 kya), S. thunbergii 
populations moved eastwards to the coasts of the Chinese 
marginal seas and northwards to the coasts of the Korean 
Peninsula and further to Japan (Fig.  1c). Therefore, 
climate change since the Last Glacial Maximum and 
associated coastal environmental oscillations have played 
a significant role in shaping the present-day geographical 
distribution of S. thunbergii in the Northwest Pacific.

Genetic variation and connectivity 
of populations

Population genetics provides some of the most crucial infor-
mation to guide sustainable exploitation and conservation 
of seaweeds with commercial values. Such information 
includes genetic population structuring and connectiv-
ity, the presence of unique gene pools, the genetic relics 
in pristine habitats and the distribution of genetic diversity 
within populations. At a regional scale around the Shandong 
Peninsula in China, four S. thunbergii populations showed 
high genetic differentiation and a clear relationship between 
genetic and geographical distances (Isolation by Distance 
model) (Zhao et al. 2007). Subsequently, two genetic line-
ages along the coast of China were independently identified 
by two molecular markers (Li et al. 2017a; Liu et al. 2018). 
There was a clear north-to-south breakage corresponding to 
the geographic isolation resulting from the presence of low-
salinity water lenses in the expansion area of the Changjiang 
(Yangtze) diluted water. In Japan, S. thunbergii showed a 
clear genetic differentiation at single nucleotide polymor-
phism (SNP) loci in double digest restriction site-associated 
DNA sequencing (ddRAD-seq) between populations from 
four geographic regions: Kyushu, the Sea of Japan, Hok-
kaido and Tohoku, and along the Pacific coast from Kyushu 
to Kanto. The authors also proposed that S. thunbergii 
populations from Kyushu and the Sea of Japan maintained 
different genetic lineages from those of China and Korea 
(Kobayashi et al. 2018).

Across the entire Northwest Pacific, S. thunbergii popu-
lations separated into multiple microsatellite-based clusters 
(K = 6, Fig. 2a) with a hierarchical genetic structure (Li et al. 
2017b), resembling the phylogeographic structure observed for 
S. fusiforme (Hu et al. 2017). This phylogeographic diversity 
pattern may result from multiple dispersal and vicariance 
events (Hu et al. 2015; Zhong et al. 2020). Sargassum 
thunbergii populations along the Pacific coasts of Japan (Pops 

1–4 in Fig. 2b) show high levels of genetic variation, which 
could be explained by the maintenance of distinct ancestral 
genetic variants (Li et al. 2017b). A deep genetic split was 
further detected between populations in the Yellow-Bohai 
Sea (Pops 14–27) and East China Sea (Pops 28–35) (Fig. 2b). 
Based on the species’ biogeographic history projected by dis-
tribution modelling (Fig. 1b, c), we can infer that genetic popu-
lation variation in the Sea of Japan and along the Korean and 
Chinese coasts may be explained by vicariance and ad-mixture 
of populations that have survived the Last Glacial Maximum 
along the Okinawa Trough and the South China Sea (Fig. 1b; 
Hu et al. 2017).

Population ad-mixture can be driven by ocean currents. 
In the Northwest Pacific, the dominant ocean current system 
comprises the China Coastal Current, the Kuroshio Current and 
its branches, the Yellow Sea Warm Current and the Tsushima 
Warm Current (Fig. 3a). These coastal currents accelerate 
genetic exchange between S. thunbergii populations from 
different marginal seas, leading to an ad-mixture of different 
ancestral populations. Molecular analyses clearly showed that 
gene flow between S. thunbergii populations was almost iden-
tical to the direction of ocean currents in this region (Li et al. 
2017b). In particular, significant gene flow was detected from 
southern China (Pop 28, Pops 29 + 30) to the Sea of Japan 
(Pop 7), via southern Korea (Pops 11 + 12 + 13) (Fig. 3b). 
This suggests that southern Korea acted as a transition zone 
across which S. thunbergii populations migrated from the 
East China Sea to the Sea of Japan. The Tsushima Warm 
Current, originating from the Okinawa Trough, may contrib-
ute to genetic connectivity between populations in southern 
Korea (Pops 11 + 12 + 13) and the Sea of Japan (Fig. 3). The 
dispersal of S. thunbergii along the Korean coast appears to 
be mainly driven by the southward Korean Coastal Current 
and northward Tsushima Warm Current (Fig. 3b). Although 
microsatellites revealed two genetically diverged clusters in S. 
thunbergii along the coast of China, strong asymmetric gene 
flow was detected from Pops 25 + 27 to Pop 28 and from Pop 
28 to Pops 29 + 30, suggesting the China Coastal Current can 
transport floating marine organisms (e.g. algal fragments) from 
the Yellow-Bohai Sea to the East China Sea (Fig. 3b).

Life history and reproductive characteristics

Sargassum thunbergii has a haplobiontic life cycle that lacks 
a gametophyte generation and the dominant diploid phase is 
sporophyte (Critchley et al. 1991) (Fig. 4). The gametes are 
the only haploid phase. The sporophyte of S. thunbergii is 
dioecious and can reproduce both sexually and vegetatively. 
Sexual reproduction in S. thunbergii is oogamous. Vegeta-
tive reproduction is possible through rhizoidal extensions, 
i.e. new thalli germinate around rhizoid (Fig. 4g).
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Sexual reproduction

The age of maturity differs among S. thunbergii popula-
tions from different sea areas. It increases with latitude 
and high temperature along the coast of China. Therefore, 
it seems likely that sea temperature may be a key factor 
affecting the maturation of S. thunbergii (Zhan et al. 2006; 
Wang and Liu 2007; Zhang et al. 2007). When the male 
and female sporophytes become mature, the receptacles 
will grow on the specifically modified laterals (secondary 
lateral branches) (Fig. 4b). The receptacles are oblong or 

cylindrical (cigar-shaped), with a blunt tip. They occur 
singly or in small groups, growing in the leaf (phyllode) 
axils (Wang et al. 2006). There are significant differences 
in shape and size of the receptacles between populations 
from different geographic areas. Male and female concep-
tacles are formed on the male and female receptacles, in 
which the antheridia and oogonia develop, respectively. 
Generally, the female receptacles are relatively thick and 
short, about 3–14 mm in length, whereas the male recep-
tacles are more slender, about 10–23 mm in length (Wang 
et al. 2006; Zhan et al. 2006). However, some female and 
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male receptacles are similar in appearance and it is not 
easy to distinguish between sexes when they are not fully 
mature (Wang et al. 2006). Following fertilization, a dip-
loid zygote is formed by the fusion of an antherozoid 
with an egg, which germinates immediately and grows 
into a new sporophyte (Fig. 4c, d, e). At the same time, 

segmentation of the zygote/germling proceeds rapidly 
(Critchley et al. 1991).

At maturity, the female receptacles are slightly rough 
in texture due to the newly released eggs or fertilized eggs 
(zygotes) attached to the surface (Fig. 5a). This phenome-
non resembles the ‘incubation’ of germlings in Sargassum 
muticum described by Nicholson et al. (1974). The surface 
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Fig. 4  The life history of 
Sargassum thunbergii. a 
Sporophyte; b mature male and 
female receptacle; c eggs on 
the female receptacles; d cell 
division of the zygote; e embryo 
sporophyte with rhizoid; f seed-
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of male receptacles remains smooth (Zhan et al. 2006). 
The male and female conceptacles are located within the 
male and female receptacles, respectively. Self-fertiliza-
tion does not occur in S. thunbergii. The male conceptacles 
are relatively sparse, with about 80–120 conceptacles on 
each receptacle. The diameter of the conceptacle ostiole 
is about 84–150 μm (Wang et al. 2006, 2017; Pan et al. 
2007). The female conceptacles are densely clustered com-
pared to conceptacles on the male, but the total number is 
smaller than that of male, with about 60–90 conceptacles 
on each female receptacle (Wang et al. 2006; Wang and 
Liu 2007). The ostiole of the female conceptacle has a 
larger diameter of about 130–200 µm. The ostiole diameter 
in the upper part of the receptacle is slightly smaller than 
that at the receptacle base, but the conceptacle density in 
the upper part of the receptacle is greater than that at the 
receptacle base. The maturity of conceptacles decreases 
from the base to the top (acropetal maturation) (Wang 
et al. 2006; Wang and Liu 2007).

The conceptacle develops from a single superficial cell in 
the receptacle which is called the conceptacle initial. This 
cell is flask shaped and larger and has a more prominent 

nucleus than the adjacent cells. The initial cell divides more 
slowly than the surrounding cells and thus becomes invagi-
nated. The initial cell divides transversely into two cells, 
known as the lower basal cell and the upper tongue cell. The 
tongue cell divides transversely to create a small filament 
which later disintegrates. The basal cell makes the fertile 
layer of conceptacles by continuous vertical division (see 
Fig. 6 in Sun et al. (2007) for a better understanding by 
photomicrographs).

The cells in the fertile layer of the female conceptacle 
develop into oogonia (Sun et al. 2007). The oogonial initial 
cell on the fertile layer of the female conceptacle divides 
transversely, resulting into a small, lower stalk cell and a 
large, upper oogonial cell. The oogonial cell enlarges and forms 
a spherical oogonium. During oogenesis in S. thunbergii, meiotic 
and subsequent mitotic divisions occur without cytokinesis. 
Therefore, all eight nuclei remain throughout the maturation 
process of egg. After plasmogamy, one of the eight fuses 
with a sperm nucleus and the other seven then degenerate 
gradually during the development of the zygote (Nagasato 
et al. 2001; Zhao et al. 2008). This cell forms a single ovum, 
which will fuse with the nucleus of an antherozoid when 

a b c

d e f g

Fig. 5  The sexual reproduction of Sargassum thunbergii. a Female receptacle with eggs or zygotes; b fertilized egg; c–e cell division of the 
zygote; f–g embryonic sporophyte with rhizoids
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fertilization occurs (see Figs. 2–3 in Pan et al. (2007) for 
better illustration by photomicrographs). The mature oogo-
nia protrude from the conceptacle through the ostiole, but 
they remain attached to the base of the conceptacle by a 
long gelatinous stalk. When the oogonia are entirely released 
from all the conceptacles of a receptacle, the oogonia can 
completely wrap the surface of the receptacle (Wang et al. 
2006; Wang and Liu 2007; Pan et al. 2007). This incubation 
period may confer an advantage for S. thunbergii to succeed 
in germling production (Nicholson et al. 1974). Unfertilized 
eggs showed strong adhesion ability in an indoor nursery 
and can detach from the receptacle within 3 days; fertilized 
eggs showed weak adhesion and can detach within 1–2 days 
(Zhan et al. 2006; Wang and Liu 2007). Increasing water 
temperature can stimulate egg release (Zhan et al. 2006). 
Receptacles of sufficient maturity can be ovulated on the 
same day when placed in a sea water that exceeds the tem-
perature of natural sea water by 3–4 °C. In the field, this 
would take 3–4 days (Zhan et al. 2006, 2007).

The cells on the fertile layer of the male conceptacle 
can divide transversely to form the lower stalk cells and 
the upper antheridial cell (Sun et al. 2007). The stalk cells 
undergo multiple transverse divisions to form more stalk 
cells and antheridial cells. The antheridial cells enlarge and 
round to form spherical antheridia. The diploid nucleus 
of the antheridial initial undergoes meiosis, followed by 
repeated mitotic divisions, forming 32–64 haploid nuclei. 
The nuclei then accumulate cytoplasm and form haploid 
antherozoids. The antherozoids, pear-shaped with two later-
ally inserted flagella, are released into the water column after 
the gelatinization of the outer wall (see Figs. 7–8 in Sun et al. 
(2007) for a better understanding by photomicrographs).

Fertilization and zygote development

In indoor culture of S. thunbergii, the ovulation time of the 
female receptacles is earlier and shorter compared with the 
male receptacles (Wang and Liu 2007). Females can ovulate 
in the absence of males, whereas the males will often not 
discharge any antherozoids without females, implying that 
the antherozoid discharge may be induced by chemical sub-
stances released during the ovulation process (Wang and Liu 
2007). After being discharged from the female conceptacle, 
the eggs adhere to the outer surface of the receptacle until 
fertilization (Fig. 5a). After being released, the antherozoids 
swim to the egg with the help of the flagella and unite with 
it to form a diploid zygote.

About 2–4 h after fertilization (Liu et al. 2006), the zygote 
undergoes the first horizontal division to form upper and 
basal cells, and the basal cell divides again to form a smaller 
cell at the base, which will further differentiate into rhizoids 
(Wang et al. 2006; Pan et al 2007; Zhao et al. 2008). The 

upper cell divides once, approximately every 2–4 h and, after 
multiple vertical and horizontal divisions, a pear-shaped 
embryo sporophyte is formed (Wang et al. 2006; Pan et al 
2007; Zhao et al. 2008) (Fig. 5b–e). When the embryonic 
sporophyte grows and develops about 16 rows of cells, that 
is, about 20–48 h after fertilization, the basal cells form 4–8 
protrusions (Fig. 5f), which are the initials of the rhizoids 
(Wang et al. 2006; Pan et al 2007; Zhao et al. 2008). The 
protuberances grow continuously, and the rhizoid quickly 
exceeds the length of the sporophyte thallus (Pan et al 2007).

The emergence of the rhizoid indicates the formation 
of an intact young sporophyte (Fig. 5g), with the ability to 
attach when falling off from the receptacle. The embryonic 
sporophyte develops from the fertilized egg within 24–72 h 
on the surface of receptacle, after which it detaches from 
the receptacles generally from around midnight to the 
early morning of the next day. Mechanical disturbances, 
such as agitation, are beneficial to detachment (Sun et al. 
2010; Zhang et al. 2007). However, some fertilized eggs, 
embryonic sporophytes, and even the young sporophytes 
with newly produced rhizoid, can remain attached to the 
surface of the receptacle and finally detach together with 
the receptacle from the thallus (Wang and Liu 2007). The 
shed embryonic sporophytes, when attached to a suitable 
substrate with the rhizoid, can further grow into a large 
sporophyte.

Seedling in the nursery

In recent years, wild resources of S. thunbergii have been 
drastically depleted due to global climate change and habi-
tat destruction due to human interference and coastal zone 
development (personal observations) and are, thus, becom-
ing less available for the species’ important economic and 
ecological applications. However, the artificial cultivation 
of S. thunbergii requires large quantities of seedlings. These 
were mainly obtained by manual collection from natural 
populations. As a consequence, the wild resources of S. 
thunbergii in China, particularly in the northern coasts, have 
been continuingly damaged by intensive seedling collection 
of aquaculturists. Creating intertidal habitats and seeding 
with artificially collected germlings are promising and effi-
cient options to restore natural beds of S. thunbergii (Yu 
et al. 2012a), but this technique needs to take into account 
multiple biotic and abiotic factors such as sediment, survival 
and growth in early life stages, and reproductive variability 
between different temporal populations (Yu et al. 2012b; 
Gao et al. 2019). In such a circumstance, an artificial seed-
ling production system has been developed to protect the 
wild resources of S. thunbergii (Fig. 6) (Sun et al. 2007; Li 
et al. 2009; Zhang et al. 2012).
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Facilities and equipment for artificial seedling 
rearing

Seedlings of S. thunbergii are generally bred in rectangu-
lar concrete ponds at ambient temperatures (18–23 °C) and 
under natural light (avoiding direct sunlight) (Sun et al. 
2007; Li et al. 2009). Nurseries for cultured macroalgae, 
e.g. Saccharina spp. and Pyropia spp., can be used (Fig. 6a) 
in addition to special nurseries dedicated to S. thunbergii. 
Glass greenhouse enclosures need good ventilation. Glass or 
transparent fibre-reinforced plastic (FRP) should be installed 
on the roof to ensure good lighting in the nursery. In the 
nursery, ponds can be of variable size but the depth should 
not exceed about 0.5 m for optimal operation. In addition, a 
seawater treatment system is required, including sedimenta-
tion tanks and sand filter facilities.

The attachment substratum for the juvenile seedlings of S. 
thunbergii — called the seedling collector (Fig. 6b) — can be 
of stones, shells, bamboo, wooden boards, cement boards, palm-
fibre rope and various synthetic fibre materials (e.g. polyethylene 
or vinylon) (Liu et al. 2017). On account of the efficiency, ease 
of operation and cost, the most commonly used seedling col-
lector is made by weaving vinylon cloth strips (approximately 
2 cm in width) onto a plastic frame with a length of 1 m and a 
width of 0.5 m. This type of seedling collector provides uniform 
density and firm attachment for seedlings and is convenient to 
use in practice (Sun et al. 2007; Li et al. 2009).

Selection and treatment of parental thalli

Wild or artificially cultivated populations can be used as parental 
thalli for artificial seedling rearing (Fig. 6c) (Sun et al. 2007; Li 

et al. 2009; Zhang et al. 2009). The individuals providing best 
parental thalli are strong and healthy, presenting an abundance 
of lateral branches and mature receptacles. The level of maturity 
directly determines the success of seedling breeding (Sun et al. 
2007; Li et al. 2009). Upon being wrapped by the protruding 
eggs, the surface of the female receptacle begins to secrete a 
large amount of mucus, indicating that the receptacle is ready 
for seedling collection. Temperature has been proven to be a key 
factor affecting the maturation of S. thunbergii. Thus, seasons of 
growth and production of S. thunbergii vary significantly among 
regions due to temperature shifts in the Northwest Pacific (Koh 
et al. 1993; Yatsuya 2008). Therefore, it is necessary to select 
different locations to collect sufficiently mature individuals at 
the appropriate time of the year, for harvesting germlings for 
artificial seedling rearing.

Collection of fertilized eggs

Each square metre of the seedling collector generally needs 
0.5–1 kg of parental thalli to provide sufficient propagules, 
and the weight ratio of female to male parental thalli should 
be about 6–10:1. Before the collection of fertilized eggs, the 
parental thalli are rinsed 3–4 times with filtered seawater. 
Thalli can be dried in the shade for several hours to promote 
the discharge of eggs. If there are already attached eggs on 
the receptacle surface, it is not necessary to dry in the shade 
(Wang et al. 2006; Zhang et al. 2007; Li et al. 2009). There 
are two methods for fertilized egg collection as outlined 
below (Li et al. 2009).

Direct collection of fertilized eggs The seedling collec-
tors are laid in the nursery ponds sterilized by chlorinated 

Fig. 6  Artificial rearing of  
Sargassum thunbergii seed-
lings in nursery. a Ponds in the 
nursery; b seedling collectors; 
c parental thalli laid on the 
seedling collectors; d samples 
of young seedlings at different 
densities attached to the seed-
ling collector
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lime and filled with fresh sand-filtrated seawater to a depth 
of about 30 cm. The parental thalli are laid evenly on the 
seedling collector, so that the fertilized egg or embryonic 
sporophyte will fall off naturally and attach to the seedling 
collector. During the collection, frequent turning the paren-
tal thalli can speed up the shedding of the fertilized eggs 
and facilitates the uniformity of sporophyte attachment. This 
process will take about 1–2 days, and then the parental thalli 
are taken out the pond. The fertilized eggs or embryonic 
sporophytes are not firmly attached at this moment. Thus, 
during water replacement, water flow must remain slow in 
order to prevent the sporophytes from being washed away.

Spraying of fertilized eggs The parental thalli are concen-
trated in a nursery pond until the fertilized eggs are shed. 
The shed eggs and embryonic sporophytes are collected with 
a 300-mesh sieve and sprayed onto the seedling collectors 
according to the planned seedling density (Fig. 6d). Good 
seedling results have been demonstrated when the density 
of fertilized eggs is controlled between 8 and 20 on each 
seedling collector. This can be discerned under a microscope 
with100 × magnification.

Indoor rearing of seedlings

Temperature, light and nutr ients are important 
environmental factors affecting the growth of S. thunbergii 
seedlings. Studies have shown that S. thunbergii seedlings 
grow fastest at 18–23 °C (Liang et al. 2012; Ma et al. 2013; 
Wu et al. 2015). The juvenile sporophytes grow well at 
a range of light 40–160 μmol photons  m−2·s−1 (Ma et al. 
2013; Li et al 2014b). When the seedlings reach a length of 
3–5 mm, the demand for nitrogen increases. At a nitrogen 
concentration of 2–10 mg  L−1, the growth rate maintains 
an upward trend. The optimal phosphorus concentration 
for the growth of seedlings is 0.4 mg  L−1, with the optimal 
ratio of nitrogen-to-phosphorus at 20:1 (Ding et al. 2014). 
Sargassum thunbergii seedlings can survive at a salinity of 
21–40 PSU but grow best at 27–30 PSU (Zhan et al. 2006).

In the nursery, S. thunbergii seedlings are best cultivated 
with seawater that has been allowed to settle for 24 h and 
filtered through sand. The water temperature should be 
18–23 °C, and the sunlight intensity should be kept below 
300 μmol photons  m−2  s−1 by manipulating windows and/or 
roof shades. Two or 3 days after the collection of fertilized 
eggs, seedling collectors should be washed daily under a 
gentle water current. After 7 days, the seedling collectors 
are washed using a pressure water jet with the pressure from 
weak to strong, regulated to avoid the detachment of the 
seedlings from the collectors. The washing operation should 
be carried out once every other day (Zhan et al. 2006; Li 
et al. 2009). The washing of seedling collectors is one of the 
most important tasks for the indoor culture of S. thunbergii 

seedlings. The detachment rate of seedlings can be signifi-
cantly decreased with the delay of starting time of washing 
or the reduction of washing velocity (Liu et al. 2016a). This 
operation can not only remove other competitive organisms 
and sludge on the seedling collectors, but also improve the 
attachment of S. thunbergii seedlings (Zhan et al. 2006; Li 
et al. 2009; Zhang et al. 2012).

Seedling transplant from nursery to the sea

After a period of indoor rearing, the indoor conditions 
can no longer fully meet the growth requirements of S. 
thunbergii seedlings, and it is necessary to transplant the 
seedlings into the sea (Li et al. 2009). Production practice 
has shown that if the seedlings are transplanted into the sea 
too early, the rhizoids of the seedlings remain too weak to 
support attachment, resulting in the loss of seedlings at sea. 
However, if the seedlings are transplanted too late into the 
sea, their growth will be retarded (Li et al. 2009). Rearing 
practices came to the consensus that the optimal duration 
for indoor rearing of S. thunbergii seedlings is 10–20 days 
(Zhang et al. 2007; Li et al. 2009). When the seedlings have 
developed more than 15 rhizoids, and the average thallus 
height is 2 mm or more, they are ready to be deployed at sea. 
The seedling collectors are hung horizontally on a floating 
raft at a water depth of 30 cm (Figs. 7a and 8a, b). After the 
seedlings have been newly transplanted from the nursery, the 
seedling collectors provide empty space for the attachment 
of various competitive seaweeds, sludge and invertebrate 
larvae. If they are not cleaned up in time, the seedlings will 
be covered, hindered in growth and can even detach and die 
(Li et al. 2009; Zhang et al. 2012). Therefore, it is essential 
to wash the collectors from time to time. This is best done 
using high-pressure sea water jets.

Artificial cultivation at sea

Sea areas suitable for the cultivation of S. thunbergii should 
not be influenced by urban sewage, industrial waste or fresh 
water from rivers. The water depth at high tide must exceed 
3 m and is preferably in a sublittoral zone (Liu et al. 2016b), 
the current velocity must exceed 0.6 m  s−1, and the salinity 
must go up 20 PSU (unpublished data). Floating rafts are 
the main facilities for S. thunbergii cultivation (Figs. 7b and 
8c, d), mainly comprising anchors, anchor ropes, floating 
ropes, cultivating ropes and floats (floating balls, floating 
bamboo, etc.).

When the cultivated seedlings of S. thunbergii exceeds 
2 cm in length, they can be removed from the seedling col-
lector and clamped to the cultivating ropes (Fig. 8d). The 
distance between seedlings shall be about 8–10 cm. The 
cultivating ropes are hung off a floating rack for cultivation 
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(Fig. 8d), with a space of about 1 m between two ropes. The 
seedlings then begin to grow rapidly and form disc-shaped 
rhizoids that can firmly attach to the cultivating ropes. At 
the end of autumn, several branches sprout from the rhizoid, 
forming a cluster of thalli. After the fast-growing season in 
autumn, the growth rate of S. thunbergii slows down due to 
the low temperature in winter (Chen et al. 2016). In northern 
China (e.g. Shandong Province), the cultivating ropes need 
to be lowered to 50–100 cm in order to improve the winter 
survival rate of S. thunbergii. In spring, as the temperature 
rises, the growth rate of S. thunbergii increases again. From 

May to June, S. thunbergii gradually matures and is ready to 
be harvested when the thallus reaches a length of about 2 m 
(Chen et al. 2016). The daily management of S. thunbergii 
cultivation mainly includes (i) inspection of the cultivating 
raft structure to ensure its efficiency and safety; (ii) inspec-
tion of the seedlings to determine if they have detached and/
or lost due to waves or other reasons. If this happens, they 
should be replaced by new seedlings; (iii) adjustment of 
the water depth determined by the floats and anchor ropes 
according to the transparency of the sea water.

a b

Fig. 7  Schematic diagram of a floating raft for rearing seedlings (a) 
and for growing cultivars at sea (b). a 1, anchor rope; 2, floating bam-
boo; 3, anchor; 4, floating rope; 5, seedling collector. b 1, floating 

rope; 2, anchor; 3, anchor rope; 4, floater; 5, cultivating rope; 6, thalli 
of S. thunbergii hung on the cultivating rope

Fig. 8  Photographs of the seed-
lings (a, b) and cultivation of 
advanced germlings (c, d)
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Prospects for the cultivation of S. thunbergii

Cultivation on shallow sea rafts can increase the growth 
rate and thus length and fresh weight of S. thunbergii by 
about three times compared with wild individuals growing 
on natural rocks (Zou et al. 2005). Therefore, the increasing 
commercial demand for this species can be best satisfied by 
artificial cultivation. The recovery of declining natural popu-
lations has the highest potential when parental thalli origi-
nate from cultivated instead of wild grown thalli and when 
seedlings are cultivated for 2–3 consecutive years (Yuan 
et al. 2006). If the rhizoids are left behind after harvesting, 
S. thunbergii can regrow from them and be harvested for 1–2 
generations. This ability emphasizes the exceptional poten-
tial that exists for the artificial cultivation of S. thunbergii.
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