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Abstract
The cyanobacterium Synechocystis sp. strain FS 78 was recently isolated from chromium polluted paddy fields in the North 
of Iran. In the present work, the effect of chromium (VI) was studied at extreme alkaline conditions (pH 11) on the growth, 
pigment composition, function of photosystems and phycobilisomes. We monitored the cyanobacterium viability in the 
presence of chromium (VI) from 0.5 to 5 µM every hour up to 6 h inoculation time. An increase in growth, pigment produc-
tion, photosystems and phycobilisomes activities was observed in cells grown at low concentration (0.5 µM) of chromium 
(VI). The toxicity of higher chromium concentrations (3.5 and 5 µM) was observed after 1 h of inoculation. Confocal laser 
microscopy analysis showed the toxic effect of elevated chromium (VI) concentration on viability, probably due to the dam-
age of the photosystem and phycobilisome structures, which on the long-term was able to recover. We concluded that the 
combination of the three factors (extreme alkaline pH, different concentrations of Cr(VI) and time) can affect cyanobacterial 
behaviours individually or in combination.
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Introduction

In recent years, polluted environments with heavy metals have 
increased as a consequence of the industrial development and 
agricultural activities (Sirunyan et al. 2019; Hussein et al. 
2019). Industrial effluents are directly disposed into rivers or 
canals that extensively used to irrigate the paddy fields, by 
which toxic metals enter into the agricultural fields (Tiwari 
et al. 2020). Industrial wastewater—organic compounds and 
toxic metals—such as chromium, cadmium, cobalt, copper, 
iron, lead, magnesium, mercury, nickel and zinc plays 

an important role in the environment and the diversity of 
terrestrial organisms. Nonetheless, when reaching a threshold 
level, they can have devastating effects (Hazarika et al. 2015; 
Ali et al. 2019). Among the industrial waste, chromium, one 
of the most common heavy metals, is known as the fourth 
major toxic metals after lead, cadmium and mercury (Tang 
et al. 2020). Chromium is principally present in several 
oxidations states, but the most stable and common forms are 
Cr(III) and Cr(VI), being Cr(VI) the most toxic (Miranda 
et al. 2012).

Cyanobacteria are widely distributed across terrestrial 
and aquatic environments (Dutta and Bhadury 2020). They 
are photosynthetic organisms and exhibit abundant growth 
and limited growth requirements even under stressed envi-
ronmental conditions. They can play a fundamental role 
in the soil biological cycle by the production of organic 
matter and oxygen release with tremendous applied capa-
bilities (Qu et al. 2015; Munagamage et al. 2020). In paddy 
fields, cyanobacteria exclusively enhance the soil fertil-
ity and productivity and act as bio-fertilizers (Tiwari et al. 
2020). The presence of Cr(VI) can induce diverse altera-
tions on the growth, photosynthesis and biochemical and 
physiological characteristics of cyanobacteria (Rocchetta 
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et al. 2007; Tiwari et al. 2018). Under natural conditions 
in rice fields, cyanobacteria are exposed to the combined 
influence of several factors, such as pH, irradiance, salinity, 
temperature and dissolved inorganic carbon fluctuations, 
which vary both daily and over the crop cycle (Quesada 
and Fernández-Valiente 1996). However, many fluctuating 
environmental parameters can influence growth, molecu-
lar resource allocation and photosynthesis through com-
plex acclamatory strategies (Zabochnicka-Świątek and 
Krzywonos 2014; Cheng et al. 2017). Therefore, the sur-
vival of cyanobacteria in natural environments depends 
upon their ability to acclimate to the variable conditions 
of environmental factors (Shokravi et al. 2014). Among 
them, pH is a key factor that influences the bioavailability 
of cyanobacteria (Pawlik-Skowrońska et al. 1997; Hinners 
et al. 2015; Tang et al. 2020). Most cyanobacteria grow in 
environments that are neutral to alkaline and in laboratory 
cultures, the optimal pH ranges from 7.5 to 10 (Kaushik 
1994; Shokravi and Soltani 2011). Up to now, only a very 
limited effort has been devoted to study extreme alkalinity 
conditions (Ihnken et al. 2014; Touloupakis et al. 2016; 
Pathak et al. 2018; Krausfeldt et al. 2019) but never in 
combination with chromium. Another important factor in 
the efficiency of growth and photosynthesis is the longevity 
(age of culture) of the organism which is exposed to culture 
containing chromium or other elements. Our knowledge 
about the effect of time in chaotic environments like paddy-
fields is negligible. The initial hours of salinity and alka-
linity stress may create a significant effect in physiologi-
cal and morphological activities on the subsequent hours 
(especially the first 24 h) (Amirlatifi et al. 2018; Abbasi 
et al. 2019). Regarding the role of environmental factors 
and time, few studies have been carried out on the effect 
of chromium to cyanobacteria. Moreover, most studies 
focused on the effect of chromium on cyanobacteria under 
non-extreme alkaline conditions for long periods of time 
(at daily or weekly basis) (Hörcsik 2006; Sirunyan et al. 
2019; Roestorff and Chirwa 2019). Sen et al. 2017 and 
2018 predicted that the growth of biomass with time are 
based on the one-factor-at-a-time (OFAT) methodology. 
They suggested that operating variables such as initial con-
centration of Cr(VI), initial solution pH, inoculum size and 
culture time affect the performance of the cyanobacterial 
consortium in removal of Cr(VI). Therefore, the study of 
environmental fluctuations in short-time regime on cyano-
bacteria is essential to serve the sustainable development 
economy in near future.

In the present study, we have selected the unicellular 
cyanobacteria Synechocystis sp. for its fast growth rate, 
environmental stability and tolerance to heavy metal 
pollution (Pan et al. 2009; Li et al. 2019). Synechocystis 
sp. FS 78 was isolated from chromium-rich polluted paddy 
fields located in the Golestan province in North-East of 

Iran, by the authors in 2019 (unpublished results). Based on 
a preliminary survey, this strain showed the high tendency 
in extremely alkaline conditions (pH > 10). Therefore, we 
consider it a suitable model for studying cyanobacteria 
interactions at extremely high alkalinity and chromium 
concentrations. Up to now, no work has yet attempted 
to assess directly the ecophysiology of native terrestrial 
cyanobacteria (croplands and paddy-fields) under different 
Cr(VI) concentrations at pH 11. The objective of the 
present study was to investigate the combined effect of 
Cr(VI) concentration and pH 11 on the survival, growth, 
photosystem and phycobilisome responses of Synechocystis 
sp. FS 78 under controlled laboratory conditions.

Methods and materials

Isolation of strain

The edaphic cyanobacterium Synechocystis sp. FS 78 
was isolated from chromium polluted paddy fields in the 
Golestan province (36°50´ N, 54° 27´ E) near the Caspian 
Sea (North of Iran) by the authors in 2019. The soil samples 
were cultured, and after colonization sample was diluted 
(repeatedly subculture) with agar plate in BG-11 medium to 
achieve unialgal cultures of the stain (Kaushik 1987). The 
pH was adjusted in 7.8 by NaOH and was placed in a culture 
chamber at 30 °C under fluorescent white light (60 μmol 
photons  m−2  s−1). The culture was refreshed and repeated 
every week by picking single colonies in a new medium 
until a single pure colony and axenic cultures had been 
obtained, which was checked by light and phase-contrast 
microscopy. The sample was identified morphologically 
in terms of aggregation forms, cell shape (and dimension) 
and morphological variation using light, fluorescence and 
phase-contrast microscopy. Identification and determination 
were made according to Desikachary (1959), Anagnostidis 
and Komárek (1990) and John et al. (2002). Strain after 
identification as Synechocystis sp. strain FS 78 was coded 
and preserved (long time preservation) in the algae museum 
of the institute of applied sciences of Shahid Beheshti Uni-
versity, Tehran, Iran. The cyanobacterium culture was main-
tained in liquid BG-11 medium (Li et al. 2019) at 30 °C 
under constant fluorescent white light (60 μmol photons 
 m−2  s−1) (Poza-Carrión et al. 2001; Pan et al. 2009).

Incubation condition and Cr(VI) treatment

The cells were harvested at an exponential growth phase 
and then transferred to culture media with different Cr(VI) 
concentrations at pH 11. Cr(VI) solution was prepared by 
dissolving  K2Cr2O7 in deionized water (Miranda et al. 2012). 
The samples were treated with Cr(VI) at final concentrations 
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of 0.5, 2, 3.5 and 5 μM. A negative control was prepared 
of culture medium without addition of chromium. Culture 
media were buffered with 10-mM Bis–Tris Propane (BTP) 
and titrated to the desired pH (pH 11) with KOH (Poza-
Carrión et al. 2001; Summerfield et al. 2013). Measurements 
were performed every hour from immediately after 
inoculation (time zero) to 6 h.

Growth curves and analysis

Growth measurements were analysed under the different 
Cr(VI) concentrations at alkaline condition according to 
Abbasi et al. 2019. The in vivo absorbance spectra were 
measured from 380 to 800 nm using a Hitachi-557 double-
beam spectrophotometer. The absorbance spectra were nor-
malized to biomass (OD 750) according to Tang and Vin-
cent 1999. Growth curves were followed by optical density 
(750 nm) for 6 h after inoculation according to Leganés et al. 
(1987) and Śliwińska-Wilczewska et al. (2019). Growth 
rate (µ) and doubling times (G) were calculated both by cell 
count and absorbance according to Kaushik 1987.

Spectroscopy

The operation of photosystems and phycobilisome charac-
teristics were measured and analysed spectrofluorimetrically 
(including confocal spectra) according to Inoue-Kashino 
et al. (2005), Vermaas et al. (2008) and Zorz et al. (2015). 
Room temperature fluorescence emission spectra of the 
cells were recorded by Synergy HTX (Multi-Mode Micro-
plate Reader, USA) following Tiwari and Mchanty (1996) 
and Fraser et al. (2013). Emission and excitation spectra 
were recorded at λex: 440–550 nm and λem 630–760 nm, 
respectively. The fluorescence intensity of single cell was 
measured using λscan of confocal laser microscope system 
(Leica TCS-SP5 CLSM -Leica Microsystems Heidelberg 
GmbH, Mannheim, Germany). CLSM enables us to obtain 
high-resolution images and study different physiologi-
cal processes including intensity of fluorescence emitted 
(as spectral unmixing) from single in vivo cyanobacteria 
cells (Grigoryeva and Chistyakova 2019). Photosynthetic 
pigments excitation was carried out with an argon laser at 
405 nm. The fluorescence emission spectrum was collected 
by detection channels of wavelengths between 420 and 730. 
Analysis of the lambda scan data was carried out using the 
Leica Confocal Software.

Survivability

The fluorescence intensity of living and dead cells was 
determined by CSLM dual laser (CLSM-DL) according to 
Millach et al. 2017. CLSM-DL allows the capturing of dif-
ferent and specific wavelengths within the spectrum at the 

same time. In order to better differentiate between living 
and dead cells, high-resolution images were obtained by 
single and overlapping inspection. Confocal fluorescence 
images (514 × 514 pixels) were recorded using an oil immer-
sion objective (× 63). The spectra were normalized to their 
maximum, and mean values and standard deviations were 
calculated (Ramírez et al. 2011; Sugiura and Itoh 2012).

Statistical analysis

Statistical analysis was performed using one-way analy-
sis of variance (ANOVA) by SPSS-24 software. ANOVA 
test shows a significant difference between treatments with 
p < 0.05. All the experiments were carried out in six repli-
cates and data presented as mean values of six independent 
replicates. The Polar plot was used to investigate the relation 
in the data by MATLAB software.

Results

Growth

Comparison of the growth curve and growth rate of 
Synechocystis sp. FS 78 showed that extreme alkaline 
conditions (pH 11) were more favourable to growth and 
had a significant effect on biomass production compared 
with pH 7 and 9 (results not shown). Moreover, we showed 
in Fig. 1 that PSII (Fig. 1a) and phycobilisome activity 
(Fig. 1b) were higher at pH 11. From the time-course study 
results, the effect of low concentrations Cr(VI) (0.5 µM) 
showed a significant effect (p < 0.05) on growth and biomass 
production of Synechocystis sp. FS 78 from the first hour 
after inoculation (Fig. 2). The better condition for growth 
and matter production under pH 11 causes relatively short 
lag phase and high exponential phase under control (without 
adding chromium) and 0.5  µM Cr(VI) concentration 
(Fig. 2). During lag phase the cells acclimatize themselves 
in a new environment by synthesizing new enzymes and 
orienting the metabolite pathway in a certain manner 
suitable for adaptation to new environment (Sen et  al. 
2017). Therefore, cells are able to adapt and grow—during 
lag phase—under these conditions. The growth rate and 
biomass production decreased with increasing Cr(VI) 
concentrations (3.5 and 5 µM) for the duration of 0–4 h 
after inoculation. Concentrations of 3.5 and 5 µM Cr(VI) 
caused negative growth from the first hour, which results 
from the toxic shock applied to the strain. No changes upon 
time were observed at the relatively high concentration of 
Cr(VI) (3.5 and 5 µM). On its side, the concentration of 
2 µM Cr(VI) caused a relatively mild effect (no toxic shock 
or high exponential growth is registered).
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Absorption spectra

The results of the absorption spectra (Fig. 3) confirmed 
the growth curves (Fig. 2). The main visible peaks of 
absorption were observed at 440 nm (chlorophyll blue), 
680 nm—PSII (chlorophyll red) and 630 nm—PBS (phy-
cocyanin) in all the treatments (Fig. 3). Also, a shoulder 
has appeared at 480 nm which was related to carotenoids, 
and it was detectable especially at 0.5 µM Cr(VI). Com-
parison of overlay in vivo absorption spectra revealed the 
dynamism of PS II, phycobilisomes and light-harvesting 
complexes depending on the Cr(VI) concentrations and 
time. Low Cr(VI) concentration (0.5 µM) led to a signifi-
cant increase in all parts of the photosynthesis apparatus 

compared with the other conditions especially at 2 h after 
inoculation (Fig. 3b). The absorption peaks of different 
parts of the photosynthetic apparatus decreased at concen-
trations higher than 0.5 µM Cr(VI), while this reduction 
was time independent. The absence of the shift and stabil-
ity of red chlorophyll (680 nm) peak region was noticeable 
in all treatments. In the presence of 3.5 and 5 μM Cr(VI) 
concentration, this stability has been maintained although 
the peak size significantly decreased (after 2 h). Phyco-
cyanin maintained its structure up to 3.5 µM Cr(VI) con-
centration. However, in the presence of 5 µM Cr(VI), the 
structure was disrupted after 2 h. It can be concluded that 
after the light-harvesting complex, phycobilisomes were 
more sensitive to high Cr(VI) concentrations. The Polar 
plot presented the relationships between the relative inten-
sities of carotenoid, PBS and PSII under different Cr(VI) 
concentrations and time (Fig. 4). A significant correla-
tion was observed in low Cr(VI) concentrations (0.5 μM), 
where PBS activity, biosynthesis of carotenoids and PSII 
increased from 2 to 6 h after inoculation. The highest PBS 
activity and biosynthesis of carotenoids seemed compat-
ible by the pattern of growth under 0.5 μM Cr(VI) concen-
trations (Fig. 2), whereas high Cr(VI) concentrations (3.5 
and 5 μM) led to a significant decline.

Spectrofluorimetry

To understand the impact of Cr(VI) on cyanobacteria 
growth, photosynthesis activity was measured by fluo-
rescence emission upon excitation at 550 nm. The results 

0

50

100

150

200

250

300

350

400

450

630 650 670 690 710

Fl
uo

re
sc

en
ce

 in
te

ns
ity

Wavelength (nm)

apH 7
pH 9
pH 11

0

20

40

60

80

100

120

140

160

600 620 640 660 680 700

Fl
uo

re
sc

en
ce

 in
te

ns
ity

Wavelength (nm)

b

Fig. 1  Fluorescence spectra of cyanobacterial strain Synechocystis 
sp. FS 78 obtained under different pHs (without adding chromium) 
over 18  h after inoculation at two excitation wavelengths (a) 
λexc = 440 nm, (b) λexc = 550 nm
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obtained from PBS function (Fig. 5) confirmed the results 
of growth curves and in vivo absorption spectra (Figs. 2 and 
3). Fluorescence emission significantly increased when cells 
grew at 0.5 μM Cr(VI) concentration (in particular after 2 h). 
PBS activity decreased under control condition immedi-
ately after inoculation compared with 0.5 μM Cr(VI), while 

higher Cr(VI) concentration (5 µM) led to lower PBS activ-
ity from the first hour after inoculation, which was found not 
dependent on time. This result confirmed the toxic shock in 
the growth curves at the initial time (Fig. 2). Fluorescence 
emission intensities for PSI and PSII activity under different 
Cr(VI) concentrations were scanned by CLSM (Fig. 6). The 

Fig. 3  In-vivo absorption 
spectra of cyanobacterial 
strain Synechocystis sp. FS 
78 obtained under different 
chromium concentration and 
time at pH11 which normalized 
to optical density (OD 750). (a) 
Immediately after inoculation, 
(b) 2 h after inoculation, (c) 4 h 
after inoculation, (d) 6 h after 
inoculation
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Fig. 4  The Polar plot presented the relation between the relative 
intensities of carotenoid, PBS activity and PSIIunder different Cr(VI) 
concentrations, (control (C), 0.5, 2, 3.5, 5 µmand time (h, hour; 0 h, 
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pattern of PSI and PSII operation followed the PBS activ-
ity. We observed the maximum and minimum activities of 
photosystems at 0.5 and 5 μM Cr(VI) concentrations, respec-
tively. PSII activity significantly increased at 0.5 µM Cr(VI) 
concentration and was time-independent, while PSI activ-
ity was less affected by Cr(VI) concentrations. Increasing 
Cr(VI) concentration (≥ 2 μM) caused no significant change 
in the activity of photosystems (results not shown).

Survivability

We assessed the viability of Synechocystis sp. FS 78 under 
different Cr(VI) concentrations for 6 h by registering the 
autofluorescence from chlorophyll α to differentiate viable 
and non-viable cells, as previously described by Millach 
et  al. (2017). In Fig.  7, we identified the injured cells 
(green, Fig. 7a), viable cells (red, Fig. 7c) and the overlap 
of both autofluorescence (Fig. 7e). The fluorescence spectra 
taken from viable cells (Fig. 7d) showed the activity of 
photosynthetic cells compared with non-viable cells 
(Fig. 7b). The studied strain seems relatively resistant to 
the toxicity of high Cr(VI) at the initial time of inoculation 
(< 2 h) while increasing time led to more inactive cells. 
We observed high number of dead cells at 5 µM Cr(VI) 
concentration after 4 h of incubation (Figs. 7a, b). The 
toxic effect of high Cr(VI) concentration on growing 
cells was probably due to the damage of photosystem 

and phycobilisome structures, whereas dead cells can 
partially preserve their cellular structures and the ability 
to autofluorescence (Fig. 7b). Thus, it may be possible that 
photosynthetic pigments maintained their structure in the 
inactive cells, and by passing time, cells abled to recover 
their phycobilisome and photosystems structures.

Discussion

Comparison of growth curves, specific growth rate and 
generation time shows that Synechocystis sp. FS 78 can 
significantly acclimatize to survive and grow at extreme 
alkaline conditions (pH 11) in laboratory conditions. 
Our experimental results of growth indicate that this is 
the first native paddy-fields strain can be considered as 
an extremely alkaliphilic cyanobacteria. Previous work-
ers, Soltani et  al. (2006), Safaie Katoli et  al. (2015), 
Amirlatifi et al. (2018) and Abbasi et al 2019, reported 
pH 9 as the optimum pH for the growth of some of Sti-
gonematalean and Nostocalean cyanobacteria. Increasing 
pH—generally—activates some cellular functions, such 
as growth rate and biosorption of heavy metals. Sen et al. 
(2017) reported that a consortium of cyanobacterium 
and diatom—Limnococcus limneticus and Leptolyngbya 
subtilis—isolated from East Kolkata Wetland (India) has 
high growth, lipid content and fractional removal at pH 

Fig. 6  Fluorescence spectra of 
individual cell (Lambda scan) 
of Synechocystis sp. FS at dif-
ferent Cr(VI) concentration and 
time (pH 11). λexc = 415 nm. 
(a) Immediately after inocula-
tion, (b) 1 h after inoculation, 
(c) 2 h after inoculation, (d) 4 h 
after inoculation
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9 compared with pH 11. Tang et al. (2020) indicated that 
pH was an important factor affecting Cr(VI) adsorption. 
El-Din (2017) demonstrated that the biosorption of algal 
biomass was dependent on heavy metal concentrations and 
pH. He observed that the increase in the uptake of Cu 2+ 
and Pb 2+ was associated with the increasing of pH value 
of the medium. The maximum uptake of lead was at pH 11 
and copper at pH 10.5. Moreover, Krausfeldt et al. 2019 
revealed a strong and positively correlated relationship 
between cyanobacterial abundance and pH, where the pH 
increased in parallel with cyanobacterial abundance. How-
ever, a few specialized groups of microbes may consider 
such an environment as optimal for growth and survival. 
The ability to adapt to extreme environmental conditions 
relies on the high genetic plasticity of most microorgan-
isms (Boussiba et al. 2000).

Growth results reveal that lower Cr(VI) concentrations 
(0.5 µM) are desired for the nutrition of Synechocystis sp. FS 
78 and lead to a significant increase in biomass production 
and function of different parts of photosynthesis machinery, 
the effect not being time-dependent. In contrast, elevated 
Cr(VI) concentrations (3.5 and 5 µM) show a greater inhibi-
tory effect on growth that its time dependent. Decrease of 
chlorophyll fluorescence, as observed in elevated Cr(VI) 
concentration, may be due to the inhibition of physiological 
processes in the cells, which may reveal the toxicity effect 
at the initial time (Munagamage et al. 2020). The present 
results are in agreement with those obtained by El-Sheekh 
et al. (2003), who reported that growth and pigment content 

of unicellular green alga and the diatom slightly increased 
at low concentrations and inhibited by high  Co2+ concentra-
tions. Sen et al. 2018 showed that enhanced biomass recov-
ery and lipid content by living cyanobacteria Limnococcus 
sp. was higher at Cr(VI)-contaminated culture media com-
pared with pure culture media. In addition, El-Naggar et al. 
1999 found that low  Co2+ concentration increased both  O2 
evolution and dark respiration in two cyanobacterial species, 
Calothrix fusca and Nostoc muscorum, whereas higher con-
centrations were inhibitory. Corradi et al. (1995), Hörcsik 
(2006), Shanab and Essa (2007), Arunakumara and Zhang 
(2009) and El-Din (2017) showed that low concentrations 
of heavy metals stimulate growth of the cyanobacterium 
through enhancing growth rate and biomass, whereas the 
higher doses inhibited growth and whereas Li et al. (2019) 
found that the growth of Synechocystis sp. PCC 7806 was 
inhibited by Cr (III) pollution (under 3000 lx illumination) 
during day 0 to day 10, and the suppression phenomenon 
becomes more obvious with the increase of chromium 
concentration.

In alkaliphilic cyanobacteria, under severe deficiency of 
carbon dioxide, while most of the carbon source is in the 
form of bicarbonate ions (Boyd 2015), carbon dioxide con-
centration mechanism (CCM) is the key process that ena-
bles them to adapt to alkaline conditions (Klanchui et al. 
2017) and requires a strong operation of photosynthesis—
along with other needs—and naturally high efficiency of 
PSI, PSII and phycobilisomes (Mangan and Brenner 2014). 
Time-course studying of the effect of 0.5 μM Cr(VI) shows 

Fig. 7  Confocal laser scanning 
photomicrographs of  
Synechocystis sp. FS 78 under 
5 µM Cr(VI) concentration after 
four hours of inoculation. (a) 
injured cells, (b) fluorescence 
spectra of injured cell, (c) viable 
cell, (d) fluorescence spectra of 
viable cells, (e) an overlap of 
injured and viable autofluores-
cences. The fluorescence spec-
tra of individual cells depicted 
by circles and numbers is shown 
in Fig. b & d. scale bars: 10 μm
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that the stimulation effect decreases with increasing time on 
photosystems and phycobilisomes (regular pattern). Further-
more, this low concentration leads to increased activity of 
PSII, PSI and PBS and also coordination in the production 
and transfer of energy in photosynthesis machinery, which 
is not disturbed by time. In contrast, in other chromium con-
centrations cause irregular and unpredictable behaviours in 
coordination between energy production and transfer sectors 
under the influence of time. For example, concentration of 
2 μM Cr(VI) causes high activity of PSII and PBS after 1 h 
but, in contrast, has a significant decreasing effect on PSI 
activity. Similarly, concentrations of 3.5–5 μM Cr(VI) acti-
vate one part of the photosynthetic apparatus and in contrast 
reduces the activity of the other part (parts) depending on 
the exposure time. Chromium stress can result in alterations 
of photosynthetic pigments such as chlorophyll (Pereira et al. 
2013). Tiwari and Mchanty (1996) suggested that 10 mM 
 CoCl2 to the normal growth medium of Synechocystis PCC 
6803 caused multiple changes involving a small increase in 
PSII to PSI ratio. Further, El-sheekh et al. (2003) found that 
a low concentration of  Co2+ stimulates electron transport 
at the donor side of PSII of Monoraphidium minutum and 
Nitzschia perminuta.

We observed the dynamism of the photosystems and 
phycobilisomes (as the main parts of energy and matter 
production) (Watanabe et  al. 2014) depending on the 
Cr(VI) concentrations and time. The 0.5  µM Cr(VI) 
concentrations led to a noticeable increase in all parts of 
phycobilisome, chlorophyll and protein production and 
PSII activity from time zero to six—which caused a more 
stable structure and better coupling energy by PBS. In other 
words, low concentration Cr(VI) within 6 h increased the 
strength and flexibility of phycobilisomes at the extreme 
alkaline condition. In the presence of 3.5 and 5 μM Cr(VI) 
concentration, PBS activity gradually decrease by destroying 
the structure of the rode part of PBS after 2 h. These results 
are agreement with Wong and Chang (1991) that the 
chromate reduced growth, photosynthesis and chlorophyll 
synthesis in Chlorella pyrenoidosa. A significant correlation 
was observed in low Cr(VI) concentrations (0.5 μM), where 
PBS activity, biosynthesis of carotenoids and PSII increase 
from 2 to 6  h after inoculation, whereas high Cr(VI) 
concentrations (3.5 and 5 μM) lead to a significant decline. 
Tiwari et al. 2018 observed that Nostoc muscorum treated 
with Cr(VI) (100 and 150 μM) respect to control significantly 
reduced the photosynthetic process and PSII photochemistry 
after 96 h. Prasad et al. (1991) suggested that Cr(VI) declined 
the performance of PS II by interrupting electron flow at its 
oxidizing and reducing sides as well as by causing damage to 
energy transfer process within the phycobilisomes, the major 
light harvesting antenna pigments of PS II.

The viability and number of live cells are determined 
by factors within the tolerance range of the cyanobacteria 

which is still ambiguous (Reavie et al. 2010). Survivability 
of cyanobacteria under conditions of the stress and continu-
ous environmental pollution are an important strategy to 
acclimate to unstable environmental conditions (Fogg 2001; 
Ramakrishnan et al. 2010; Shahid et al. 2020). Cell viabil-
ity information is critical to identify the resistant strains in 
high stress conditions. To our knowledge, there are no previ-
ous reports on the short-time effect of chromium stress on 
survivability of cyanobacteria. To validate the fluorescence 
from the viable and dead cell, results were compared with 
OD 750 and absorption spectra (Schulze et al. 2011; Zhu 
and Xu 2013), which is a reliable parameter for monitor-
ing viability in conditions even when biomass content is 
minimal (Johnson et al. 2016) and for evaluating toxicity 
tolerance and other environmental stresses (Singh et al. 
2010). Our results indicated that cell survival was signifi-
cantly influenced by low Cr(VI) concentration (0.5 µM), 
which remarkably increased the growth and photosynthetic 
pigment fluorescence in the first to 6 h after inoculation. 
In contrast, we observed a toxicity effect on Synechocystis 
sp. FS 78 in elevated Cr(VI) concentrations (3.5 and 5 µM) 
at the initial period (up to 4 h), while dead cells still have 
had the ability to growth and autofluorescence. Cyanobacte-
rium may resist to elevated Cr concentration by reorienting 
its metabolite pathway for adaption to harsh condition. We 
observed the cells recover their structures and retain their 
ability to grow after 4 h. The detailed mechanism of metal 
toxicity to cyanobacteria is not yet known but is estimated 
to have an unfavourable effect on respiration, photosynthesis 
and other processes in sensitive cyanobacterial strains (Kiran 
et al. 2016). Millach et al. (2015) found that the live cells 
of Scenedesmus sp. DE2009 slightly decreased at 500 µM 
Cr (III) concentration after 9 days of inoculation. They con-
firmed that high level of viability of the strain have main-
tained at the highest concentration of chromium.

Conclusion

From the above study, we concluded that the combination of 
the three factors (extreme alkaline pH, different concentra-
tions of Cr(VI) and times) can affect cyanobacterial behav-
iours individually or in combination. We observed that under 
different environmental factors, 0.5 µM Cr(VI)—not as toxic 
effect—can increase the operation of photosystems and phy-
cobilisomes, survival and growth on Synechocystis sp. FS 
78. Conversely, the behaviours of elevated Cr(VI) concen-
trations was time dependent and had toxic effect at initial 
time of exposed. Hence, it is clearly evident from the study 
that this strain (native) by growth at low concentrations of 
chromium, maintenance of survival at high concentrations of 
chromium and flexibility of the photosynthetic apparatus can 
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be used as a determining factor for inoculation into paddy 
fields and agricultural lands as biofertilizer and the other 
biotechnological purposes.
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