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Abstract

The cyanobacterium Arthrospira platensis plays a unique role in the food industry and is a promising and valuable natural source
of bioactive compounds. The culture density of A. platensis should be further increased to improve biomass production and
productivity, resulting in high conversion efficiency and reducing the cost of production. In this work we utilize a series of
methods to increase the biomass yield from 2.26 to 21.57 g L™'. By screening live algae filaments and removing dead algal mass
via filtration before cultivation, the biomass production increased from 2.26 to 2.77 g L™". Using response surface monitoring
methodology to optimize the light intensity and initial culture density further improved biomass production to 5.97 g L™". We
also evaluated the feasibility of fed-batch and turbidostatic cultivation for enhancing biomass production of A. platensis GMPAT.
The results showed that fed-batch cultivation can increase the biomass production to 15.56 g L™". Finally, turbidostatic cultiva-
tion can further improve the biomass production to 21.57 g L™", which is a more than eightfold increase compared to the starting
culture. Therefore, the turbidostatic cultivation strategy can be further exploited for large-scale and long-term cultivation.
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Introduction

Arthrospira platensis is a spiral, unbranched, multicellular
filamentous cyanobacterium widely found in tropical alkaline
lakes (Soni et al. 2017; Ting et al. 2018). It is commercially
important due to several nutritional qualities, such as its high
protein content (60—70% of dry weight is proteins) and low
fat. Furthermore, it contains essential amino acids, unsaturated
fatty acids, vitamins, minerals, and pigments such as
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phycocyanin, (3-carotene, and chlorophyll a (Vonshak 1997,
Zhang et al. 2015).

These compounds in A. platensis contribute to antiviral, an-
ticancer, antioxidant, anti-inflammatory, and other biological
activities (Soheili and Khosravi-Darani 2011; de la Jara et al.
2018). For instance, Remziye Aysun et al. (2013) reported that
A. platensis could protect against hepatotoxicity induced by
CCly. In addition, because its cell wall consists of polysaccha-
rides, it had high digestibility and absorption rate (Hernandez-
Corona et al. 2002). Therefore, A. platensis is widely used as a
nutritional supplement (Azcarate et al. 2018; Lucas et al. 2018;
Muys et al. 2018). A. platensis is also used in cosmetics (Xiu-
Ping et al. 2013), medicines (Gorban et al. 2003), and waste-
water treatment (Zhai et al. 2017; Alvarez and Otero 2020).

Previous studies on cultivation methods of A. platensis
have mainly focused on mass production in open ponds
(Vonshak and Richmond 1988; Belay 1997; Grobbelaar
2012). However, there are many problems with this culture
system which need further optimization. Several studies have
indicated that the growth of A. platensis highly dependent on
the cultivation strategy (Xie et al. 2013; Manirafasha et al.
2018). Chen et al. (2013) used batch cultivation with optimum
light intensity and initial nitrate concentration to reach a bio-
mass of 10.0 g L~ '. Moreover, Manirafasha et al. (2018)
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utilized the fed-batch strategy to increase biomass to 13.37 g
L~'. However, it could cause a reduction of biomass produc-
tivity for long-term cultivation (Xie et al. 2014, 2015).
Therefore, it is necessary to develop a more effective strategy
to overcome the drawbacks of fed-batch cultivation.

In this study, we use A. platensis GMPA7 as a model strain
and optimize its cultivation conditions by using response sur-
face monitoring methodology. Moreover, we show the feasi-
bility of using the turbidostatic strategy to maintain a high
level of biomass productivity. We demonstrate that this strat-
egy is a promising culture method for long-term cultivation,
which improves biomass productivity and eliminates side ef-
fects of irradiance attenuation caused by high cell density.

Methods
Microalgal strain and preculture conditions

The Arthrospira platensis GMPA7 was obtained from the
Institute of Pharmaceutical Biotechnology and Engineering,
Fuzhou University, Fujian, China. The medium (Rajasckaran
et al. 2016) used in culture experiments consisted of (per liter)
16.8 g NaHCOs3, 0.625 g K,HPO,, 2.5 g NaNOs, 1 g K,SO,,
1 g NaCl, 0.1 g MgSQO,, 0.04 g CaCl;2H,0, 0.01 g FeSO4
7H,0, 0.08 g Na,EDTA-2H,0, and 1.0 mL of trace element
solution. The trace element solution consisted of (per liter)
2.86 g H3BO;, 1.81 g MnCl,;4H,0, 0.222 g ZnSO44H,0,
0.0177 g Na,MoOy,, and 0.079 g CuSO45H,0. The
microalgae were inoculated in 500-mL flasks containing
150-mL medium and the initial culture density measured at
680 nm was 0.5. The conditions of the incubator shaker used
as a photobioreactor were set as follows: temperature at 30 °C,
light intensity at 90 pmol photons m 2 s~! (continuous light)
and rotational speed at 150 rpm.

Screening of living algae filament

Arthrospira filaments were separated with 20 mesh, 100
mesh, and 300 mesh screens. The groups were categorized as
follows: (a) unscreened; (b) 20-100 mesh filtered by 20 mesh
screen and collected by 100 mesh screen; and (c) 100-300 mesh
filtered by 100 mesh screen and collected by 300 mesh screen.
The algae collected by 20 mesh screen were dead microalgae
aggregations and therefore discarded. The morphology of
microalgae collected by different treatments was observed using
an optical microscope (Eclipss Ts2R; Nikon Co., Japan).

Cultivation of Arthrospira platensis GMPA7 under
different pH

The algae collected by 100-300 mesh were cultivated in me-
dium with pH of 8.0, 9.0, 10.0, and 11.0 for 10 days,
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respectively. The pH of the culture was adjusted with 1 M
HCI or 1 M NaOH every day. Other culture conditions were
the same as those of preculture. Samples were collected every
24 h to determine the biomass production and productivity.
All experiments were performed in triplicate.

Biomass optimization using response surface
methodology

The Box—Behnken design model was established to increase
biomass production. In consideration of the effect of cell den-
sity and liquid depth on irradiance (Ooms et al. 2016;
Martinez et al. 2018), light intensity (X), initial culture den-
sity (X5), and volume (X3) were selected as variables for re-
sponse surface methodology experiments. All variables were
set at 3 levels (— 1, 0, 1), with X; (90, 135, and 180 pumol
photons m2s ), X, (0.3, 0.5, and 0.7 ODggonm), and X
(100, 150, and 200 mL). The mean values of the triplicate
experiments were fitted by nonlinear quadratic model:

Y = B+ B X1 + BrXy + B3 X5 + BaXi Xy + BsXi X3
+ BeXoXs + B7Xi? + BeXa® + BoXs®

where Y is the response value; X;, X, and Xj; are independent
variables; (3, represents the intercept; 3; to (33, 34 to 3¢, and (3,
to [ are the linear, interaction, and quadratic coefficients,
respectively. Analysis of variance (ANOVA) was performed
to verify the significance of the model with Design Expert
8.0.6 (Stat-Ease, Inc., USA).

Fed-batch cultivation of Arthrospira platensis GMPA7

Based on the optimum culture conditions obtained from re-
sponse surface methodology experiments, the fed-batch strate-
gy was carried out, adding concentrated total nutrient medium
stock (nitrate concentration 50 g L") for feeding culture. The
optimum culture conditions for the maximum biomass were
determined to be light intensity of 169 umol photons m >s ",
initial ODggonm Of 0.52, and volume of 164 mL (500 mL con-
ical flask). When the nitrate content was exhausted, the concen-
trated total nutrient medium stock was added into the flasks to
attain a nitrate concentration of 0.417 g L™" and distilled water
was added to maintain the total volume of 164 mL (the volume
of the culture medium decreased continuously due to evapora-
tion). The feeding time intervals were set at 24 h. Liquid sam-
ples were collected before and after medium feeding to deter-
mine the biomass production and residual nitrate concentration.

Turbidostatic cultivation of Arthrospira platensis
GMPA7

The turbidostatic cultivation was carried out in the optimum
culture conditions. When the biomass concentration exceeded
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Fig. 1 Morphology and biomass
of Arthrospira platensis GMPA7
under different screening
methods. (a) unscreened; (b) 20—
100 mesh; (¢) 100-300 mesh; (d)
biomass level of Arthrospira
platensis GMPAT separated by
different treatments. The results
are expressed as the mean = stan-
dard deviation (SD) from three
independent experiments.
Significant differences were de-
termined by using one-way
ANOVA (* p < 0.05 and ** p <
0.01 compared with unscreened
group biomass production; # p <
0.05 and ## p < 0.01 compared
with unscreened group biomass
productivity)

-100-300 mesh-~

45¢g L, fresh medium was added into the flasks to attain a cell
density of 4.5 g L™". The cell concentration was adjusted every
24 h. Samples were collected before and after dilutions to deter-
mine the biomass production and residual nitrate concentration.

Determination of biomass production and nitrate
concentration

The biomass production was determined by establishing the
calibration between dry cell weight and ODggo (Manirafasha
et al. 2018) as follows:
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The nitrate concentration was measured according to Ho
et al. (2013), and calculated using the following equation:

Nitrate (mg L") = 23.62 - OD0—0.35(R* = 0.99)

Results

Screen living algae filaments in the culture
of Arthrospira platensis GMPA7

In this study, screens of 20, 100, and 300 mesh were applied to
screen living algae filaments. The morphology and biomass
level of A. platensis GMPA7 under different screening condi-
tions are shown in Fig. 1. It can be seen that live algae ap-
peared to be green filaments, while dead algae were yellow-
green aggregations (Fig. 1a). The 100—300 mesh screen meth-
od achieved the separation of live and dead algae (Fig. 1c),
while the 20—00 mesh screen method could not (Fig. 1b). The
biomass production of A. platensis separated by the screen
method of 100-300 mesh was 2.77 g L™ (Fig. 1d), which
was 22% higher than the control. This might be due to the fact
that dead cells caused agglomerations of algal filaments (Fig.
1a), which hindered the absorption of nutrients and inhibited
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Table 1 Box—Behnken design

(BBD) for the independent vari- No. of runs  Light intensity Initial culture density ~ Volume (mL) (X;)  Biomass (g L")

ables and corresponding response (umol photons m?s™) (X7)  (ODggonm) (X2)

values
1 1 (180) 0(0.5) 1 (200) 5.70
2 —1(90) 1(0.7) 0 (150) 4.64
3 0 (135) 0(0.5) 0 (150) 5.75
4 1 (180) —1(0.3) 0 (150) 5.34
5 0(135) —1(0.3) 1 (200) 5.13
6 0 (135) 0(0.5) 0 (150) 5.84
7 1 (180) 1(0.7) 0 (150) 5.61
8 0(135) 1(0.7) 1 (200) 5.22
9 1 (180) 0(0.5) —1(100) 5.36
10 0 (135) —1(0.3) —1(100) 4.86
11 0 (135) 0(0.5) 0 (150) 5.80
12 -1(90) 0(0.5) —1(100) 4.82
13 -1(90) —1(0.3) 0 (150) 4.83
14 0 (135) 0(0.5) 0 (150) 5.86
15 0 (135) 0(0.5) 0 (150) 5.82
16 —1(90) 0(0.5) 1 (200) 4.83
17 0 (135) 1(0.7) —1(100) 475

the growth of A. platensis. As a result, the screening operation
was beneficial to increase the biomass production of
A. platensis GMPAT.

Effect of pH on the cultivation of Arthrospira platensis
GMPA7

As shown in Fig. 2, compared with the control group, the
biomass production increased significantly when the pH was
maintained between 8.0 and 10.0. In addition, biomass pro-
duction and biomass productivity increased gradually with
increasing pH. Further increase in the pH to 11.0 led to a sharp
reduction of biomass production and productivity. Thus, me-
dium pH of 10.0 was the optimum pH for the growth of
A. platensis, with the maximal biomass production of 4.99 g
L' and biomass productivity of 0.50 g L™ d™".

Optimization of the biomass production
for Arthrospira platensis GMPA7 using response
surface methodology

Model fitting and variance analysis

An experiment of 17 runs was carried out based on the Box—
Behnken design. The factors, levels, and results of the runs are
listed in Table 1, and ANOVA results are presented in
Table 2. The response surface 3D graphs are displayed in
Fig. 3. A quadratic polynomial equation was established by
regression fitting to evaluate the relationship between biomass
production of A. platensis GMPA7T and variables as shown
below:

@ Springer

Y =5.8140.36X; + 0.0075X, + 0.14X3 + 0.12X; X,
+ 0.083X; X3

+0.050X,X5-0.26X,2—0.45X,2—0.38X3>

Table 2 Regression

coefficient (), Factor Coefficient ()

coefticient of

determination (R* and Intercept 5.82

Adj. R?) and F test value Linear

of the predicteq second X, 036"

order polynomial models

for biomass Xa 0.0 1?
X 0.14™
Quadratic
X -026"
X° - 045"
X3’ -038"
Cross product
XX, 0.12"
XX 0.084"
XX 0.052
R? 0.9913
Adj. R? 0.9802
F value (model) 88.92""
F value (lack of fit) 391

X, light intensity (umol photonsm 2 s '),
X, initial culture density (ODggonm), X3 vol-
ume (mL), R* coefficient of determination

Level of significance: *p < 0.05, **p <
0.01, ***p < 0.001



J Appl Phycol (2021) 33:755-763

759

55

Biomass (g LY

45

07 — 180
o° \\\\\\\\\w//////,//’1§5
X,: Initial culture density X,: Light intensity
(OD680Nnm) w28 (umol m= s°1)

S =
ﬁiﬁz;‘ﬁﬁ¥3' 7 et AN
SRR IREIRERTR
) ;1lIII"'000:::*0‘0"“‘\“\\\\\

/ N
S

55

Biomass (g L)

180

X;: Volume
(mL)

X,: Light intensity
(umol m=s!)

100 90

(©) —

’ 5.86
Y AR S ‘R‘Q. |4.64
o | N
¢ AN
2 ]

45 "*‘"'

200 0

150

\\\‘:"

X;: Volume o, Xx Initial culture density

(mL) (OD680nm)

Fig. 3 Response surface 3D plots of the interaction effects of variables a
Light intensity and initial culture density; b Light intensity and volume; ¢
Initial culture density and volume

ANOVA revealed that the regression model was significant
(p <0.001), and the lack of fit was non-significant (p > 0.05).
The determination coefficient (R%) was 0.991.

Effect of the variables on the biomass production

According to the regression coefficient (3) (Table 2), X2
presented a major effect, which was followed by X32, X,
X2, Xs, X Xo, and X1.X;. Light intensity and volume showed
a highly significant (p < 0.01) positive effect on biomass,
while quadratic terms of light intensity, initial culture density,
and volume showed highly significant (p < 0.01) negative
effect. Meanwhile, the interaction of light intensity and initial
culture density presented highly significant (p < 0.01) effect
on biomass, while the interaction of light intensity and volume
was significant (p < 0.05). These results showed that the in-
teractions between cell density and light intensity, as well as
between liquid depth and light intensity, both significantly
affected the growth of A. platensis. Higher cell density and
liquid depth led to the irradiance attenuation and resulted in a
decrease of the growth rate of A. platensis (Soni et al. 2017).
However, lower cell density and liquid depth caused
photoinhibition as the light intensity received by A. platensis
exceeding light saturation point (Benedetti et al. 2018).

Model verification

Based on the analysis of the regression equation and response
surface plots, the optimum culture conditions for the maxi-
mum biomass were determined to be light intensity of
169.32 umol photons m 2 s, initial culture density of 0.52
(ODggonm), and volume of 163.65 mL. For reasons of ease of
execution, the optimum parameters were modified to be light
intensity of 169 pmol photons m 2 s™", initial culture density
of 0.52 (ODggonm), and volume of 164 mL. All the experi-
ments under the optimum conditions were carried out in trip-
licate, and the results were 5.97+£0.13 g L', which were close
to the prediction (6.00 g L™"). The biomass production of
A. platensis in the optimum conditions was increased by
20% compared with that before response surface optimization.
In addition, the biomass productivity was increased from
0.50g L " day ' to 1.00 g L' day .

Improvement of the biomass production
of Arthrospira platensis GMPA7 using fed-batch
and turbidostatic cultivation

As shown in Fig. 4, nitrogen depletion led to the reduction of
biomass under batch cultivation. In order to further increase
the biomass, A. platensis needs sufficient nutrients during the
cultivation process. Thus, fed-batch cultivation was per-
formed and the nitrate concentration was used as a monitoring
indicator in the process (Fig. 4b). The results revealed that the
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Fig.4 Growth characteristics of Arthrospira platensis GMPAT7 during the batch, fed-batch and turbidostatic cultivation. a Biomass production; b Nitrate

concentration; ¢ Growth rate; d Culture volume

biomass production was significantly enhanced by the fed-
batch cultivation. The maximum biomass production in this
process was 15.56 g L', which was 161% higher than that in
the batch cultivation (Fig. 4a). Thence, using only nitrate feed-
ing would cause deprivation of other nutrients for the long-
term cultivation, resulting in inhibition of cell growth and
photosynthesis. Based on the results above, fed-batch with
medium feeding is shown to be an effective method to im-
prove biomass production of A. platensis GMPAT.

Although the feasibility of fed-batch operation was dem-
onstrated regarding enhancement of the biomass production,
the growth rate was lower than that of the batch cultivation
with prolonging cultivation time (Fig. 4c). In order to achieve
high biomass production and high biomass productivity at the
same time, turbidostatic cultivation with continuously con-
trolled cell density was performed to maintain high biomass
productivity. As shown in Fig. 4, the biomass concentration in
culture broth was continuously adjusted to 4.5 g L~ with fresh
medium during turbidostatic cultivation. Fig. 4 showed that
the cell growth rate during the turbidostatic cultivation
remained constant and was significantly higher than that dur-
ing the fed-batch cultivation. Moreover, as shown in Table 3,
the biomass production (21.57 g L") and biomass productiv-
ity (1.81 g L™" d™") in turbidostatic cultivation were 39% and
155% higher, respectively, than those in fed-batch cultivation.
These results were significantly better than those obtained

from related studies (Table 3). Thus, the turbidostatic cultiva-
tion is indeed a more effective strategy than the fed-batch
cultivation.

Discussion

Arthrospira platensis contains a variety of nutrients and bio-
logically active compounds, and it is easily digested and
absorbed by the human body. It has broad application prospects
in food (Mozafari et al. 2013), medicine (Gorban et al. 2003),
environmental protection (Nithya et al. 2019), health care (Luo
2003), cosmetics (Xiu-Ping et al. 2013), etc. Therefore, it is
commercially desirable to improve the biomass production
and productivity, which can result in high conversion efficien-
cy and is essential to reduce the cost of production.

Previous studies indicate that dead microalgae generated
during the stationary phase of cultivation can cause inconve-
nience for the collection of living algae filaments (Levert and
Xia 2001; Behl 2013). Therefore, this study used a sieve to
separate living algae cells from dead ones. Living algal cells
with the strongest growth vigor are sorted out through a 100—
300 mesh screen for the subsequent optimization of cultiva-
tion conditions.

Among the factors that affect the cultivation of A. platensis,
pH is one of the most critical ones. Changing the pH of the

Table 3 Comparison of biomass

Biomass (g LY

Biomass productivity (gL' day™')  References

production and biomass Operat.ion

productivity of Arthrospira strategies

platensis obtained from this study

with those reported in the Batch 7.27

literature Batch 10
Fed-batch 6.78
Batch 13.77
Batch 5.97
Fed-batch 15.56
Turbidostatic 21.57

0.40 Zeng et al. (2012)

0.82 Chen et al. (2013)

0.52 Xie et al. (2015)

1.38 Manirafasha et al. (2018)
1.00 This study

0.71 This study

1.81 This study

@ Springer



J Appl Phycol (2021) 33:755-763

761

medium will affect the existence of bicarbonate in the medi-
um, the availability of nutrients, photosynthesis, and biologi-
cal mechanisms of microalgae (Hodaifa et al. 2009; Khalil
et al. 2010; Chen et al. 2016). Therefore, it is essential to
determine the optimum pH for the growth of A. platensis. In
this study, the optimum pH for A. platensis growth is 10.0, the
maximum biomass of A. platensis at this pH is 4.99 g L', and
the maximum productivity is 0.50 g L' d”'. This result is
comparable to that reported by Gupta et al. (2018). A possible
explanation for this is that higher pH can affect the availability
of carbon and damages cell membrane process, both of which
may hinder photosynthesis (Ismaiel et al. 2016). In another
study, Shi etal. 2016 discover that as pH increases, the growth
rate of A. platensis first increases and then decreases, where
pH from 8.0~10.5 is suitable for growth, while 9.5~10.0 is the
optimum pH for growth. Ismaiel et al. (2016) also found that
the suitable pH for A. platensis growth was 8.5~9.5, and the
optimum pH was 9.0. Our results in this study are consistent
with these studies.

In the phototrophic cultivation system cell density and liq-
uid depth can affect the amount of light received by the algae
and thus indirectly affect the cell growth of microalgae (Ooms
et al. 2016; Martinez et al. 2018). Several physicochemical
(Jiménez et al. 2003) (e.g., pH, dissolved oxygen concentra-
tion, temperature, conductivity, and irradiance) and biological
(e.g., biomass concentration and yield) variables were studied.
The prediction model of algal yield was obtained. In this
work, the interactions and the best combination of light inten-
sity, initial culture density, and volume were studied using
response surface methodology. As a result, the best combina-
tion was found to be: light intensity of 169 wmol photons m >
s~!, initial culture density of 0.52 (ODggo nm), and the liquid
volume of 164 mL. Using this optimum combination, the
biomass yield of A. platensis was 5.97 £ 0.13 g L™ and the
productivity was 1.00 g L' day ', which are consistent with
the predicted values. Related researches show that higher cell
density and liquid depth can lead to irradiance attenuation and
result in a decrease of the growth rate of A. platensis (Soni
et al. 2017). However, lower cell density and liquid depth can
cause the light intensity received by A. platensis to exceed
light saturation point and result in photoinhibition
(Benedetti et al. 2018). Therefore, it is necessary to
control the ratios between the light intensity, the initial
culture density, and the liquid volume, and obtain an optimum
combination through the response surface test, and eventually
achieve a higher biomass production.

In order to further increase the biomass of A. platensis, this
study adopted batch culture and constant turbidity culture.
Previous studies suggested fed-batch cultivation could pro-
long cell growth phase and enhance biomass production via
controlling the nutrient content (Xie et al. 2013; Li et al.
2018). In this study, fed-batch culture was used to obtain a
biomass of 15.56 g L' and a productivity of0.71 g L' day .

Xie et al. (2015) also indicated that fed-batch strategy could
increase biomass production by 40%. Several researches have
demonstrated that C, N, P, and S elements were essential
macronutrients necessary for healthy growth of microalgae,
and nutrients depletion would inhibit the growth rate and rate
of photosynthetic CO, fixation (Markou and Georgakakis
2012; Prochazkova et al. 2014; Li et al. 2018). However,
studies also showed that higher cell density would lead to
the irradiance attenuation, which would then inhibit the
growth of microalgae and photosynthesis (Xie et al. 2014;
Soni et al. 2017). Therefore, a new strategy which can effec-
tively increases biomass production while maintaining a high
productivity is needed. In this study, the constant turbidity
culture strategy was used to obtain a biomass of 21.57 g L™
and a productivity of 1.81 g L' d”'. Similarly, Xie et al.
(2014) reported that the biomass productivity obtained from
a repeated fed-batch strategy was increased from 0.88 to
1.04 g L™ day '. Hsiech and Wu (2009) also reported that
using the semi-continuous cultivation could maintain high
biomass productivity. In this work, we found that the fed batch
strategy could increase the biomass production significantly,
but the growth rate decreased during long-term cultivation. In
contrast, the turbidostatic cultivation had the advantage of
increasing biomass production and maintaining higher growth
rate for a long time. Therefore, the turbidostatic cultivation
strategy may be a better candidate for large-scale cultivation
of A. platensis GMPA7.

Conclusion

In this work we show that the biomass production and pro-
ductivity of A. platensis GMPA’ can be increased by screen-
ing living algae filaments and maintaining a pH of 10.0 in
media. Based on the results of response surface methodology
analysis, the optimum culture conditions are determined as
follows: light intensity of 169 pmol photons m 2 s, initial
culture density of 0.52 (ODggonm), and volume of 164 mL.
While the fed-batch cultivation can significantly improve bio-
mass production, the turbidostatic cultivation is demonstrated
to be a more effective strategy to further improve cell growth,
with the highest biomass production and productivity
achieved at 21.57 g L' and 1.81 g L 'day !, respectively.
These results are better compared to most of the previous
reports.
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