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Abstract
Growing algae in darkness for biodiesel production eliminates the challenges of evaporation and light penetration reported for
open ponds and the costs and fouling that plague photobioreactors. The current study demonstrated that Chlorella kessleri str.
UTEX 263 could grow heterotrophically in the dark on pure sugars or lignocellulosic hydrolysates of plant biomass.
Hydrolysates of a prairie grass native to Kansas, Big Bluestem (Andropogon gerardii), supported the growth of C. kessleri in
the dark. Nitrogen limitation stimulated the accumulation of biodiesel lipids by 10-fold in heterotrophic cultures grown on pure
sugars or Big Bluestem hydrolysate. Limiting P in the growth medium also was shown to increase cellular lipid accumulation in
C. kessleri. Iron limitation was not sufficient to increase cellular lipid content. Crude biomass extracts may have levels of N that
cannot be easily removed, which are high enough to relieve N limitations in growthmedia. This initial study suggests that Pmight
be more easily removed from biomass extracts than N for increasing cellular lipid production by nutrient limitation and further
that native prairie grasses are potentially suitable as sources of lignocellulosic sugars.
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Introduction

Biofuels are renewable clean energy alternatives that might
reduce CO2 emissions and mitigate global warming (Lincoln
2005; Demirbas 2009; Naik et al. 2010). Liquid fuels for
transportation, manufacturing, and domestic heating represent
nearly 70% of total global energy usage (Gouveia and
Oliveira 2009). Food crops are commonly exploited as feed-
stocks to support production of biofuels by fungi or bacteria,
which has raised sustainability concerns (Milne et al. 1990;
Hill et al. 2006; Moore 2008; Brennan and Owende 2010;
Havlík et al. 2011). Alternatively, manufacturers can utilize
non-food lignocellulose feedstocks such as agricultural bio-
mass, food processing wastes, forest residues, and grassy
crops, as sources of sugars that can be liberated through enzy-
matic or acid hydrolysis. Biofuels produced by algae using the
energy of sunlight offer an attractive alternative to biofuels

supported by land-based agriculture (Abou-shanab et al.
2006; Dragone et al. 2010; Smith et al. 2010; Verma et al.
2010; Lee and Lavoie 2013). Algae have been used to produce
biofuels such as methane from anaerobic digestion of bio-
mass, biodiesel from cellular lipids, and bio-hydrogen in
photobioreactors (Belarbi et al. 2000). In general, the physical
and fuel properties (density, acidity, and heating value) of
biodiesel from algae are comparable to those of conventional
diesel (Miao and Wu 2004, 2006).

It is technically feasible, but difficult at large scales, to
reach high algal biomass densities autotrophically, due to lim-
itations imposed by poor light penetration (Chen and Johns
1991, 1996; Liang et al. 2009). Shallow production ponds
with large surface areas are needed in warm sunny locations,
and these rapidly lose water by evaporation, greatly decreas-
ing the economic feasibility of algal biodiesel production.
While closed photobioreactors are an alternative to open
ponds, these invariably have high start-up and maintenance
costs, are easily fouled by algae growing on the clear surfaces,
and often become contaminated with fungi or bacteria that are
difficult to eliminate (Chisti 2007; Carvalho et al. 2008; Xu
et al. 2009; Richardson et al. 2012; Louw et al. 2016; Kern
et al. 2017). An appropriate alternative is to grow algae het-
erotrophically in dark bioreactors supplemented with sugars,
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preferably from waste biomass hydrolysates (Perez-Garcia
et al. 2011; Nagarajan et al. 2018). Heterotrophic algal growth
obviates the problems imposed by light penetration and water
loss, while producing biodiesel lipids of high quality.

Knowledge of heterotrophic growth of algae dates to the
first description of Chlorella by Beijerinck (Beyerinck 1890),
with a variety of organic substrates shown to support growth
in the dark (Roach 1926, 1927; Skinner and Gardner 1930;
Barker 1935). Algal growth has been observed in dark natural
habitats such as covered Antarctic lakes and deep soil layers
and in dark manmade environments such as water mains and
cooling towers (Rodhe 1953; Parker et al. 1961; Seilheimer
and Jackson 1963). For many algal species, heterotrophic
growth outpaces photoautotrophic growth (Miao and Wu
2004, 2006; Xu et al. 2006; Li et al. 2007). Culture densities
of > 100 g dry wt L−1 have been reported for Chlorella,
Crypthecodinium, and Galdieria (De Swaaf et al. 2003;
Graverholt and Eriksen 2007; Rosenberg et al. 2008;
Heredia-Arroyo et al. 2010).

Our initial study with Chlorella kessleri str. UTEX 263
examines its growth and lipid production on a variety of sugar
substrates under different lighting regimes. This Chlorella
strain is noted for its high lipid content, particularly under
conditions of N limitation (Piorreck et al. 1984; Kay and
Barton 1991). Chlorella species can grow heterotrophically
and mixotrophically with acetate, glucose, glycerol, and other
organic compounds (Schneegurt et al. 1997; Heredia-Arroyo
et al. 2010; Wan et al. 2011; Pagnanelli et al. 2014). Previous
reports demonstrated that Chlorella could produce biodiesel
under heterotrophic conditions using a variety of carbon sub-
strates (Miao and Wu 2006; Xu et al. 2006; Li et al. 2007;
Liang et al. 2009). In addition, C. kessleri UTEX 263 grows
well at elevated salinities and in simplified media with lower
costs (Wagley and Schneegurt 2012a, 2012b). We propose a
scheme for biodiesel production that uses dark bioreactors to
grow algae heterotrophically on the same feedstocks com-
monly used for bioethanol production. Here, we explore the
effects of N or P starvation on growth and lipid production in
algae grown on pure sugars or on a lignocellulosic hydrolysate
of Big Bluestem (Andropogon gerardii), a prairie grass that is
native to Kansas.

Materials and methods

Organism and media

Chlorella kessleri, str. UTEX 263, was grown as shake-flasks
(150-rpm) in proteose medium (in g L−1: proteose peptone,
5.0; NaNO3, 0.25; KH2PO4, 0.175; K2HPO4, 0.075; MgSO4·
7H2O, 0.075; NaCl, 0.025; CaCl2·2H2O, 0.025) under artifi-
cial cool white fluorescent light (50 μmol photons m−2 s−1) or
in darkness. Growth media were prepared with different levels

of N (0.0, 0.3, 3.0, and 30.0 mM as KNO3). Similarly, media
were prepared with different levels of P (0.0, 0.05, 0.5, and
5.0 mM as KH2PO4) and Fe (0.0, 1.0, 2.0, and 20.0 μM as
FeCl2). Once autoclaved and cooled, the media were supple-
mented with 0.01% w/v carbendazim (from a 10% ethanolic
stock) and 0.25 mg L−1 ampicillin (from a 0.25 mg mL−1

stock) to inhibit the growth of fungi and bacteria, respectively.

Preparation of sugar substrates from biomass

Big Bluestemwas collected from theWichita State University
Biological Field Station (37°32′03.1″N 97°40′23.1″W), air-
dried and pulverized for 2 days using a ball mill (3 lb.;
United Nuclear) with steel balls. Pretreatment of biomass
(4 g) was with 40 mL of NaOH (1%) at 50 °C for 12 h. The
slurry was brought to pH 4.8 with 0.1 M Na citrate solution
and supplemented with 100 μL of a 20 g L−1 Na azide solu-
tion. The mixture was heated to 50 °C after the addition of
5 mL water and then 100 μL of Accelerase 1500 enzyme was
added and allowed to react for 48 h on a rotary shaker
(150 rpm) at 50 °C. The hydrolysate was clarified by vacuum
filtration (Whatman no. 4 filter paper). Corn and sorghum
extracts were kindly provided by Donghai Wang (Kansas
State University). Glucose contents of hydrolysates were mea-
sured using anthrone reagent as previously described (Seifter
et al. 1950; Scott and Melvin 1953).

Growth curves

Growth curves were generated from shake-flask cultures
(150 rpm) at 25 °C in continuous light (50 μmol photons
m−2 s−1) or darkness. Subcultures were made with a 5% inoc-
ulum. BSM medium (Dille et al. 2016) was supplemented
with 1% sugar as pure compounds or as biomass hydrolysates.
A Neubauer hemocytometer was used for direct microscopic
cell counts of 10-μL samples with dilution as necessary. Algal
cell counts were taken each day until stationary phase was
reached. Arnon’s whole-cell protocol and equations (Arnon
1949) were used to determine chlorophyll content with a
Genesys 10S UV-VIS spectrophotometer (Thermo Fisher)
using fresh media blanks.

Lipid analyses

Nile Red staining can estimate the neutral lipid content of
algal cells (Cooksey et al. 1987). Culture samples from 7 days
after inoculation were diluted 1:10 in DMSO, heated to near
boiling, and then cooled. An equal volume of Nile Red solu-
tion (1 μg mL−1 in 50% DMSO) was added and the mixture
incubated for 10 min in darkness. Spectrofluorometric mea-
surements were taken with excitation at 490 nm and emission
at 580 nm using a SynergyMx instrument (Biotek). Vegetable
oil was used to generate a standard curve for quantification.
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Since dry weight measurements were not made, lipid content
is expressed on a per-cell or culture-volume basis. A modified
Bligh and Dyer (1959) protocol was used for lipid extraction
prior to FAME analysis (Sturm et al. 2011). Cells from
100 mL of algal culture were harvested by centrifugation at
10,000×g for 10 min, and the pellet was resuspended in
10 mL water, before the addition of 20 mL of 2:1 chloro-
form/methanol. The mixture was vortexed well and centri-
fuged again at 10,000×g for 10 min, with the lower liquid
phase collected in a fresh tube. The solvent was evaporated
under a stream of dry nitrogen gas. Non-polar lipids were
extracted with 5 mL ice-cold acetone before drying and dis-
solution in 1 mL chloroform. A transesterification reaction
(with 0.2 M KOH in 1:1 methanol/toluene at 37 °C) was used
to create fatty acid methyl esters that were extracted thrice
with chloroform and evaporated to dryness. Lipid species
were identified and quantified by GC/MS (Agilent 6890 GC
with 5793 MS) using an Innowax 15-m polyethylene column
(HP; 0.25 mm ID; He carrier gas) with a ramped temperature
regime from 120 to 240 °C and an MS quadrupole tempera-
ture of 150 °C. Methyl ester identities were verified using a
mixture of lipid standards (FAMEMix C8-C24, Supelco,
USA), and lipid concentrations were determined based on
the response factor and the peak area of the internal standards.

Results

Algal growth on various sugar substrates during N
starvation

Growth was monitored in heterotrophic cultures of C. kessleri
grown in darkness with sucrose as sole carbon and energy
source and several levels of fixed N (Fig. 1). Direct micro-
scopic cell counts demonstrated that maximum growth was
reduced, when limiting fixed N to 0.3 mM, 1% of the full-
strength medium (Fig. 1a). Growth in medium at 10% of the
standard N content (3.0 mM) did not show very much inhibi-
tion based on cell counts, but when measured by chlorophyll
content, 3 days after inoculation accumulation slowed (Fig.
1b). With no added N, cell number decreased (Fig. 1a).
Chlorophyll measurements showed clearer trends in part be-
cause algal cells tend to bleach with nutrient starvation, so the
differences between nutrient levels are amplified (Pal et al.
2011; Gigova and Ivanova 2015). Initial culture densities var-
ied between experiments; however, the inocula were light
overall, less than 10% of the final density of mature cultures,
and therefore should not considerably affect the response of
cultures to starvation.

Similar heterotrophic growth experiments were performed
with glucose and fructose. While substantial growth was ob-
served with N limitation, growth was reduced on glucose at
3.0 and 0.3 mM N, relative to the 30.0 mM control (Fig. 2).

Control cultures fed fructose and provided 30.0 mMN started
at a somewhat lower density but grew rapidly enough to sur-
pass the N-limited cultures (Fig. 3). Little growth was ob-
served on fructose at 0.3 mM N. The glucose-fed cultures
had maximum chlorophyll concentrations about twice those
of the sucrose or fructose cultures, which also was reflected in
direct microscopic counts. Cultures of C. kessleri grown

Fig. 1 Growth of C. kessleri cultures supplied with different levels of N
in the medium and maintained heterotrophically in the dark on sucrose.
Means of triplicates ± SD. diamonds, 0.0 mM N; triangles, 0.3 mM N;
squares, 3.0 mMN; circles, 30.0 mMN. a By direct microscopic count; b
By chlorophyll content
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autotrophically in continuous light also were dependent on
added fixed N.When exogenously added fixed Nwas reduced
10- or 100-fold, growth was slowed and maximum culture
density was reduced (Fig. 4). For laboratory growth experi-
ments, it was convenient to reduce microbial contamination
by adding antibiotics, thereby giving more consistent results.
A successful industrial process would likely have to use a
cleaner and less expensive alternative to reach an acceptable
level of contamination or use multi-species cultures.

Hydrolysates of lignocellulosic materials from Big
Bluestem were used as sole carbon and energy sources for
C. kessleri grown heterotrophically in the dark. Growth was
reduced, especially when ≤ 0.3 mMNwas added (Fig. 5). It is
interesting to note that toward the end of the incubation peri-
od, the culture with 0.3 mM N began to increase in cell

number, although no corresponding increase in chlorophyll
was observed. Cultures reached approximately the same den-
sity as those fed pure sugars. While the available N content of
Big Bluestem hydrolysate was not measured, it must be rela-
tively small since growth was effectively inhibited by N star-
vation at even 3.0 mM (10% of full-strength medium).

Algal growth on various sugar substrates during P
or Fe limitation

Cultures of C. kessleri were grown heterotrophically on su-
crose in the dark in media supplemented to various P levels.
Very clear growth inhibition was observed as P levels were
decreased 10- or 100-fold (Fig. 6). Cultures with no added P
grew weakly, indicating residual P was either added with the
inoculum or was a contaminant of the media components.

Fig. 2 Growth of C. kessleri cultures supplied with different levels of N
in the medium and maintained heterotrophically in the dark on glucose.
Means of triplicates ± SD. diamonds, 0.0 mM N; triangles, 0.3 mM N;
squares, 3.0 mMN; circles, 30.0 mMN. a By direct microscopic count; b
By chlorophyll content

Fig. 3 Growth of C. kessleri cultures supplied with different levels of N
in the medium and maintained heterotrophically in the dark on fructose.
Means of triplicates ± SD. diamonds, 0.0 mM N; triangles, 0.3 mM N;
squares, 3.0 mMN; circles, 30.0 mMN. a By direct microscopic count. b
By chlorophyll content
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Heterotrophic growth in the dark on Big Bluestem hydro-
lysates was measured at various P levels (Fig. 7). Growth
inhibition with P limitation was not as apparent in these ex-
periments. However, it seems that the Big Bluestem extract
may bind free P, since typical growth was not observed at
0.5 mM, the P level of full-strength media. Growth was en-
hanced at 5 mM P, although growth inhibition by P limitation
was still not as clear as when cultures were fed sucrose.

Reducing the iron concentration of media did not result in a
substantial inhibition of heterotrophic growth in the dark on
sucrose, as measured by chlorophyll content or direct micro-
scopic counts (Fig. 8). Iron levels were reduced from 2 to
0.2 μM with no clear effects on growth. Robust growth in
cultures with no added iron suggests that more stringent

methods (such as acid-washing glassware) would be needed
to reduce iron levels below the trace levels required for
growth.

Lipid content under nutrient limitation

Nutrient limitation leads to an increase in the content of lipids
in cells of C. kessleri. Reducing the concentration of exoge-
nously added N to 10% (3.0 mM) of the full-strength medium
concentration led to a nearly 3-fold increase in the cellular
lipid content of cells fed sucrose (Fig. 9a). Cellular lipid con-
tent continued to increase with greater N limitation, such that
in cultures with no added N, cellular lipid content was nearly
8-fold greater than in cells grown in standard medium. The
increase in cellular lipid content was more abrupt for
C. kessleri grown on Big Bluestem hydrolysates (Fig. 9b).
There was a doubling of cellular lipid content when N was

Fig. 4 Growth of C. kessleri cultures supplied with different levels of N
in the medium and maintained autotrophically in the light. Means of
triplicates ± SD. diamonds, 0.0 mM N; triangles, 0.3 mM N; squares,
3.0 mM N; circles, 30.0 mM N. a By direct microscopic count. b By
chlorophyll content

Fig. 5 Heterotrophic growth of C. kessleri cultures in the dark on
hydrolysate of Big Bluestem supplied with different levels of N in the
medium. Means of triplicates ± SD. diamonds, 0.0 mM N; triangles,
0.3 mM N; squares, 3.0 mM N; circles, 30.0 mM N. a By direct
microscopic count. b By chlorophyll content
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reduced to 3.0 mM. However, at ≤ 1.5 mM N, cellular lipids
were ~ 10-fold higher than in cells grown in full-strength
medium.

There was not a substantial increase in cellular lipid
content until P levels were decreased 10-fold (0.05 mM)
from the concentration of full-strength medium (0.5 mM),
stimulating a 3-fold increase in lipid content (Fig. 9c).
With no exogenously added P, cellular lipid contents were
5-fold greater than for cells in full-strength medium.
Cellular lipids increased about 2-fold with P starvation
when big Bluestem hydrolysate was used (Fig. 9d).
Depleting iron in the medium did not increase cellular
lipid content in cells grown on sucrose (Fig. 9e). From a
practical perspective, the total lipid concentration of algal
cultures reflects both cellular lipid content and culture
density. While starving cultures may increase cellular lip-
id production, the growth inhibition caused by starvation
might lower total yields of lipids.

Lipid profiles in C. kessleri grown on biomass
hydrolysates

A key task of the current work was to demonstrate that lipids
suitable for biodiesel could be produced by C. kessleri grown
on hydrolysates of Big Bluestem, a native prairie plant. For
comparison, growth experiments were performed with hydro-
lysates of corn mash, sorghum juice, and sorghum mash
(Fig. 10). The initial inoculum was small for this experiment,
but it is clear that all of the sugar sources supported the growth
of C. kessleri in the dark. Lipid profiles of algal extracts were
determined as fatty acid methyl esters. The values are
expressed for each lipid as the fraction of total lipids in ex-
tracts of cultures grown on hydrolysates of Big Bluestem, corn
mash, and sorghum mash (Table 1), which were 20, 20, and
6% sugar, respectively. The most abundant lipids recovered

Fig. 7 Heterotrophic growth of C. kessleri cultures in the dark on Big
Bluestem hydrolysate supplied with different levels of P in the medium.
Means of triplicates ± SD. diamonds, 0.0 mM P; triangles, 0.05 mM P;
squares, 0.5 mM P; circles, 5.0 mM P. a By direct microscopic count. b
By chlorophyll content

Fig. 6 Heterotrophic growth of C. kessleri cultures in the dark on sucrose
supplied with different levels of P in the medium. Means of triplicates ±
SD. diamonds, 0.0 mM P; triangles, 0.05 mM P; squares, 0.5 mM P;
circles, 5.0 mM P. a By direct microscopic count. b By chlorophyll
content

2800 J Appl Phycol (2020) 32:2795–2805



were 18:1 and 18:2 fatty acids, regardless of biomass source.
Cultures grown on Big Bluestem hydrolysate were higher in
18:1 and lower in 18:2 fatty acids than cultures grown on corn
or sorghum mash. Other lipids were detected at less than 1%
of the total lipids extracted, including 14:0, 16:1, 16:2, 16:3,
20:0, 22:0, 22:1, 24:0 fatty acids.

Discussion

It is well known that photosynthetic algae can robustly grow
heterotrophically in the dark or mixotrophically in the light,

with carbon substrates that include acetate, carboxylic acids,
glucose, and glycerol (Schneegurt et al. 1997; Heredia-Arroyo
et al. 2010; Wan et al. 2011; Pagnanelli et al. 2014). Chlorella
spp. have been shown to produce copious biodiesel lipids in
the dark when grown on glycerol or glucose (Endo et al. 1977;
Wu et al. 1994; Liang et al. 2009). However, high lipid pro-
duction is not always observed with Chlorella under these
conditions (Neilson and Lewin 1974; O’Grady and Morgan
2011).

Nitrogen limitation is often used to increase lipid yields
from algal cultures (Richardson et al. 1969; Converti et al.
2009; Mandal and Mallick 2009; Mutlu et al. 2011; Liang
et al. 2013; Ruangsomboon et al. 2013; Fan et al. 2014;
Procházková et al. 2014; Singh et al. 2016). A study of 30
species of Chlorophyceae and diatoms found that N limi-
tation led to greater storage of fatty acids (Shifrin and
Chisholm 1981). A 75% reduction in the amount of N
added to cultures of Nannochloropsis oculata or
C. vulgaris led to a doubling of cellular lipid contents
(Converti et al. 2009). It has been suggested that under N
limitation, cells partition N into functional proteins and use
fixed C for making carbohydrates and lipids (Richardson
et al. 1969). However, N limitation also can lower maxi-
mum culture density and decrease chlorophyll a content,
yellowing cultures (Pal et al. 2011; Gigova and Ivanova
2015). The current report demonstrates similar outcomes
with N limitation, a decrease in final culture density and an
increase in cellular lipid content. Growth inhibition was
often modest, with < 2-fold differences between replete
and starved cultures, while cellular lipid content was seen
to increase 10-fold or more with starvation. Further, we
have shown that algal cultures grown on Big Bluestem
biomass hydrolysate show similar effects with N limitation
as cultures grown on pure sugars.

It might be difficult to control the level of N when feed-
ing cultures biomass hydrolysates. Depleting hydrolysates
of N seems challenging given the many forms of fixed N
found in cells. Phosphorus however, while also variable in
biomass hydrolysates, seems more easily removed from
solution. Functionalized beads or precipitation of insoluble
P compounds are potential methods for reducing P levels
in hydrolysates. We have demonstrated that phosphorus
limitation can increase the accumulation of biodiesel lipids
by C. kessleri cells grown heterotrophically in the dark,
whether pure sugars or biomass hydrolysates were sup-
plied as the carbon source. The hydrolysates used in the
current study did not have N or P levels high enough to
relieve the nutrient limitations.

Limitation or starvation for P has been shown to increase
cellular lipid content in Chlorella and other microalgae, often
to the same degree as N starvation (Khozin-Goldberg and
Cohen 2006; Mutlu et al. 2011; Přibyl et al. 2012; Liang
et al. 2013; Ruangsomboon et al. 2013; Adenan et al. 2016;

Fig. 8 Heterotrophic growth of C. kessleri cultures in the dark on sucrose
supplied with different levels of iron in the medium. Means of triplicates
± SD. triangles, 0.0 μMFe; circles, 2.0 μMFe; diamonds, 20.0 μMFe. a
By direct microscopic count. b By chlorophyll content
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Fig. 9 Cellular lipid content of
C. kessleri grown
heterotrophically in the dark for
7 days with nutrient limitation.
Means of triplicates ± SD. a
Sucrose with N limitation. b Big
Bluestem with N limitation. c
Sucrose with P limitation. d Big
Bluestem with P limitation. e
Sucrose with iron limitation

Table 1 Profiles of the major lipids extracted fromC. kessleri grown on
biomass hydrolysates

Lipid Lipid content (% of total)

Sorghum Corn Big
Bluestem

Hexadecanoic acid, methyl ester 16:0 14 12 10

Octadecanoic acid, methyl ester 18:0 9 4 4

9-Octadecenoic acid (Z)-, methyl
ester

18:1 18 23 40

9,12-Octadecadienoic acid,
methyl ester

18:2 46 52 29

9,12,15-Octadecatrienoic acid,
methyl ester

18:3 8 5 17

Total 95 96 100

Fig. 10 Heterotrophic growth of C. kessleri cultures in the dark on
biomass hydrolysates by direct microscopic count. Means of triplicates
± SD. circles, Big Bluestem; squares, corn mash; triangles, sorghum
mash; diamonds, sorghum juice
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Su et al. 2016), although responses vary (Reitan et al. 1994;
Deng et al. 2011). However, lower maximum culture densities
with P limitation may keep total lipids yields near the values
obtained with P-replete media. It appears that P limitation
leads to the same sequestration of N into proteins and con-
comitant increase in lipid production as N limitation (Rhee
1978). Furthermore, it has been suggested that algae under P
limitation remodel cellular membranes to recycle P from
phospholipids while increasing P uptake and mobilization
(Mühlroth et al. 2017).

The current study did not achieve sufficient iron lim-
itation to alter cellular lipid content. Microalgae previ-
ously have been demonstrated to increase lipid produc-
tion with release from iron limitation (Liu et al. 2008;
Ruangsomboon et al. 2013). Other studies have reported
small increases in cellular lipid content with iron limita-
tion (Deng et al. 2011; Fan et al. 2014).

Biodiesel production often competes for biomass from
food crops such as corn and sorghum. Lignocellulosic
sources of sugars might alleviate this drain on food crops,
since hydrolysates of the non-edible portions of plants or
non-food plants are commonly used. Beyond its impact on
food agriculture, supporting algal cultures on pure sugars
and small acids and alcohols represents a principal cost
hurdle to biodiesel production (García Sánchez et al.
2003; Louw et al. 2016; Kern et al. 2017). It is common
to see suggestions that biodiesel production should rely on
plants such as switchgrass, which are non-native, potential-
ly invasive species. Using plants native to a given region
seems more sustainable. The current preliminary study
demonstrated that hydrolysates of a common native grass
in Kansas, Big Bluestem, may potentially be used as a
source of sugars for algal biodiesel production in the dark.
In a similar fashion, Big Bluestem and other native prairie
grasses represent sustainable sources of biomass for ligno-
cellulosic bioethanol production.

Behrens (2005) compared the costs of photoautotrophic
and heterotrophic algal production schemes using glucose as
the carbon source. While energy costs were higher for dark
bioreactors than photobioreactors, the total cost to produce a
kg of biomass was 20% lower, since productivity was much
higher in the dark bioreactors. In addition, construction costs
were lower and sca le -up was eas i e r than wi th
photobioreactors. Technologies are available to make either
type of system feasible for biodiesel production (Davis et al.
2011; Richardson et al. 2012). Producing algal biodiesel in the
dark avoids the problems of light penetration, water loss by
evaporation, and fouling common to photobioreactors.
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