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Abstract
The genusDictyota (Dictyotales, Phaeophyceae) comprises parenchymatous algae occurring predominantly in tropical to warm-
temperate waters and has gathered attention due to its diverse secondary metabolites with antibiofouling and pharmaceutical
potential, its oil content, and its potential as animal feed. This has resulted in an increase in economic potential during the last
decade. In this review, we summarise the recent knowledge on the genus and concentrate on the applications and the economic
potential of Dictyota. In addition, the review summarises the taxonomy, anatomy, cytology, genetic data, life history, chemical
composition, nutritional value and ecological and economic importance of Dictyota species. Currently, around 100 species are
recognised together with the morphologically similar and closely related genera Dilophus, Canistrocarpus and Rugulopteryx
(tribus Dictyoteae). The thallus is characterised by one ormore lens-shaped apical cells that divide into cortical andmedullary cell
layers. Species typically grow in rocky intertidal pools and subtidal areas. Dictyota is consumed locally in the Caribbean,
Malayan-Indonesian and Hawaiian regions. Extracts of Dictyota which contain active compounds, such as diterpenes and
phlorotannins, have been attributed antimicrobial, health and wellness promoting effects which render them promising candi-
dates for the design of functional foods, phytomedicinal products, and cosmetics. The high fraction of lipids and fatty acids has
propelled emerging applications in the biofuel industry and as a feedstock species.
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Identity

Nomenclature and taxonomy

Valid scientific name

Jean Vincent Félix Lamouroux (1809) described the genus
Dictyota but only much later, Dictyota dichotoma (Hudson)
Lamouroux was selected as the lectotype of the genus. The
name Dictyota is derived from the Greek word ‘Διχτυον’
meaning ‘net’ or ‘network’, which refers to the aspect of me-
dulla and cortical cells when observed under a microscope.

Nomenclatural synonyms

Heterotypic synonyms: Dichophyllium Kützing 1843;
Dilophus J. Agardh, 1882; Glossophora J. Agardh, 1882;

Pachydictyon J. Agardh, 1894; Bicrista Kuntze 1898 ;
GlossophorellaM. Nizamuddin & A.C.Campbell, 1995.

Vernacular names

Although vernacular names do exist, e.g. Divided Net Weed,
Brown Fan Weed, Brown Forkweed (Bunker et al. 2010),
these are not commonly used. Most authors refer to
‘Dictyota’, using the latin name of the taxon.

Taxonomy

Dictyota is one of the 19 genera of the order Dictyotales.
Together with the Sphacelariales, Syringodermatales and
Onslowiales, the Dictyotales are member of the SSDO-clade,
which diverged early from the rest of the Phaeophyceae
(Bittner et al. 2008, Phillips et al. 2008). The Dictyotaceae,
the only family in the Dictyotales, is subdivided in two tribes,
Dictyoteae and Zonarieae. The Dictyoteae are characterised
by the presence of a single lens-shaped apical cell and thereby
stand out from the Zonarieae which have a row or cluster of
apical cells. The definition of the Dictyoteae and its genera has
evolved considerably over time.
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In the nineteenth century, the concept of Dictyota was
gradually narrowed down from a broadly defined genus that
initially included all known representatives of the Dictyotales,
Cutleriales and the odd red alga, to a very narrowly defined
genus differentiated by related genera on the number of
medulla and cortex layers. J. Agardh (1882, 1894) was largely
responsible for a very narrow concept of Dictyota. He segre-
gated Dilophus, Glossophora and Pachydictyon from
Dictyota restricting the latter to include species with a
single-layered medulla and cortex, while Dilophus and
Pachydictyon are characterised by a multilayered medulla or
cortex, respectively. Last, Glossophora was chiefly
characterised by the presence of multiple surface prolifera-
tions. Late in the twentieth century Glossophorella was de-
scribed (Nizamuddin and Campbell, 1995) to accommodate a
species from the Arabian Sea similarly characterised by sur-
face proliferations but a variable number of cortex and medul-
la layers. The distinction among these genera has been the
subject of considerable debate, as some species are particular-
ly hard to assign to one or another genus (Setchell and
Gardner 1925, Taylor 1945, Dawson 1950). Following obser-
vations that the number of cell layers can be manipulated in
culture in several Dictyota or Dilophus species, Hörnig et al.
(1992a, b) merged Dilophus in Dictyota, abandoning the nar-
row genus concept proposed by J.Agardh. Using DNA se-
quence data, De Clerck et al. (2006) demonstrated that also
Glossophora, Glossophorella and Pachydictyon are embed-
ded in Dictyota, resulting in synonymisation of these genera
with Dictyota. The phylogenetic analyses also led to the ex-
clusion of certain species fromDictyota and the description of
Canistrocarpus andRugulopteryx. The latter are distinguished
by a combination of characters related to male reproductive
structures (e.g. paraphyses, sterile cells surrounding the an-
theridia) and meiospores (e.g. the number of stalk cells
supporting the sporangium). The phylogenetic analyses by
De Clerck et al. (2006) were inconclusive regarding the status
of Dilophus, since the generitype (Dil. gunnianus) was miss-
ing from the dataset. More recently, however, Küpper et al.
(2019) presented a phylogeny of Dictyota and related genera
that included Dilophus gunnianus as well as Dilophus
fastigiatus. Both species were resolved as a clade separate
from Dictyota proper. These results argue in favor of a genus
Dilophus, distinct from Dictyota which most likely includes
the Australian species characterised by a multilayered medulla
and sporangia borne on 2 stalk cells.

Morphology/anatomy

External morphology

Dictyota is a parenchymatous alga, with flat, ribbon-like
axes, which grow from well-defined apical meristems that
differentiate into an outer cortical layer and an inner

medullary layer. Thalli branch via dichotomous primary
branching by longitudinal cell divisions of the apical mer-
istem cells (Gaillard et al., 1986) (Fig. 1a) or by adventi-
tious branching after re-differentiation of cortical cells
(Gaillard and L’Hardy-Halos, 1990) or other cortical dif-
ferentiations such as male paraphyses and dedifferentiated
reproductive cells (Hwang et al., 2005). Dichotomous
branching may range from isotomous (equal branches) to
anisotomous (unequal branches) (Fig. 1b, c), a process that
is controlled by light, nutrients and apparently also the
base of the thallus (Gaillard and L’Hardy-Halos, 1977,
1979, 1980, 1984). Branches may curve back forming ‘re-
curved’ branches (Canistrocarpus cervicornis Kützing f.
pseudohamata (Cribb) De Clerck & Coppejans). Unequal
branches may differentiate as falcate branchlets (Dictyota
hamifera Setchell), which likely serve as additional attach-
ment structures in exposed habitats (De Clerck, 2003) (Fig.
1d). Cervicorn branching results from anisotomous dichot-
omous branching combined with spirally twisted axes
(Castinocarpus cervicornis Kützing) (Fig. 1d). The shape
of the apical meristems can be truncate, rounded or acute
(Fig. 1d). Branching patterns and apical morphologies may
show in some species a large degree of morphological
plasticity, most notably in Dictyota dichotoma (Hudson)
Lamouroux (Schnetter and Hörnig 1987; Tronholm et al.,
2010). Adventitious branching is typically induced by
grazing or loss of the apical meristem activity where they
take over the function of the main axis (Tanaka et al.
2016), but may also be a common phenomenon in some
species. Cortical cells from the margins may dedifferenti-
ate into meristematic cells and grow small teeth (Dictyota
ciliolata Sonder ex Kützing) or cortex from the center of
the thalli may develop adventitious branches or ‘ligulae’
(for example Dictyota kunthii (C.Agardh) Greville). Apart
from the occurrence of above mentioned outgrowths and
fertile structures (discussed below), thalli develop tufts of
hair 20–50 μm in diameter. Hair formation is under control
of ecological factors such as blue light (Müller and Clauss,
1976).

Attachment of the thallus is accomplished by means of
multicellular, uniseriate, branching, hyaline rhizoids that
may be differentiated terminally into fixing disks that firmly
adhere the algae to the substratum (Gaillard et al., 1986).
Depending on the species they may have a single point of
attachment or have several points of attachment, resulting in
a large variety of growth forms ranging from fully erect to
creeping thalli firmly attached to the substrate (De Clerck,
2003). A few species attach to the substrate via terete stolon-
iferous holdfasts (e.g.D. spiralis,D. stolonifera). Living thalli
range from straw colour to dark brown or sometimes greenish,
depending on the species (Fig. 2). In situ, many species show
a yellowish to deep blue-green iridescence, which is lost upon
removal from the water (for example D. friabilis, Fig. 2b).
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Anatomy and cytology

Plants are parenchymatous with apical meristems dividing
into a three-dimensional multicellular structure (Gaillard and
L’Hardy-Halos, 1984; Katsaros and Galatis, 1985). The apical
meristem contains a lens-shaped apical cell dividing trans-
versely with a discoid subapical cell as result (Fig. 1a). This
subapical cell will divide twice parallel to the thallus surface,
resulting in a primary medullary cell and two surrounding
primary cortical cells. While the cortical cell layers undergo

further cell divisions perpendicular to the surface that keep
track of cell expansion of the segments, the medullary cell
layer divides less frequently and almost exclusively longitu-
dinally. The large medullary cells are hyaline and highly vac-
uolated with a central nucleus often surrounded by a cluster of
lipid vesicles or physodes and sparse chloroplasts. The small
cortical cells contain many physodes and chloroplasts without
pyrenoids. In both cases, the nuclei are positioned centrally.
The size differences of cortical and medullary cells have prov-
en to be a useful taxonomic character (Weber-Peukert, 1985).

Fig. 1 Morphology and anatomy of Dictyota. a Apical meristem with a
transverse lens-shaped apical cell which has recently divided longitudi-
nally resulting in two lens-shaped apical cells and consequently a dichot-
omous branching. b Isotomous vs anisotomous dichotomous branching. c

Cross section of thalli of different species showing variations in cortex
and medullary layer. d Shape of apical segments (upper) and specialised
branching patterns. b, c and d are modified from De Clerck (2003)

Fig. 2 Illustrations of two Dictyota species. a Dictyota dichotoma. Photo: Heroen Verbruggen (Roscoff, Bretagne, France). b Dictyota friabilis. Photo:
Olivier De Clerck (South Africa)
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In some species, the medulla may be multilayered in the entire
thallus or only at the base or margins (Fig. 1c). A multilayered
cortex is also present is some species. Cell walls are
characterised by large pitfields containing many plasmodes-
mata ensuring symplastic continuity (Terauchi et al., 2012).

Genetic data

Chromosomes and nuclear content

In Dictyota, haploid chromosome numbers generally range
from 9 to 32 (Lewis, 1996; Hörnig et al., 1992a). Both Cole
(1967) and Lewis (1996) indicated the basic chromosome
number of the Dictyotales to be 8 or 12, while Hörnig et al.
(1992a) suggested a basic chromosome number of 4. In sev-
eral cases multiple chromosome numbers have been reported
for the same species. For example, both haploid chromosome
numbers of n = 16 (Mottier, 1900;Williams, 1904a, b; Giraud,
1956) and n = 32 (Yabu, 1958; Kumagae and Inoh, 1960)
have been described forDictyota dichotoma, tempting authors
to conclude the occurrence of polyploidy (Lewis, 1996).
However, these observations can most likely be attributed to
misidentifications, given the current knowledge on the distri-
bution of D. dichotoma (Tronholm et al., 2008; Tronholm
et al., 2010).

Next to chromosome numbers, several studies have deter-
mined the DNA content of algal nuclei by means of DAPI
microspectrophotometry. Kapraun (2005) indicated a haploid
genome size of 1.1 pg for Dictyota dichotoma, while Ribera
Siguan et al. (2011) reported nuclear DNA contents ranging
from 0.7–0.9 pg for 5 Dictyota species, with a nuclear content
of 0.9 pg in the narrow growth form of Dictyota dichotoma
(var. intricata). By comparing these values to nuclear DNA
contents obtained for other taxa within the Dictyotales, the
authors concluded thatDictyota species displayed a more nar-
row range of haploid nuclear genome sizes. This narrower
range may represent a synapomorphy, although the authors
acknowledge that more species should be examined to make
more conclusive statements.

Molecular data

Given the high morphological plasticity of Dictyota, molecu-
lar techniques are indispensable for species identification. For
example, Tronholm et al. (2010) adopted a multigene ap-
proach, using up to 6 markers derived from chloroplast, mito-
chondrial, and nuclear DNA, to resolve the taxonomic posi-
tions of members of the genus Dictyota in Europe. The most
common molecular markers used include psbA, rbcL and
cox1.

At the moment no complete Dictyota genome is available,
although a whole genome sequence of D. dichotoma is ex-
pected as an outcome of ongoing research initiatives.

Transcriptomic data (Bogaert et al. 2017a) and a complete
mitochondrial genome (length 31,617 bp) are available for
D. dichotoma (Oudot-Le Secq et al., 2006).

Distribution, ecology and metabolism

Distribution

At the genus level, Dictyota is characterised by a near cosmo-
politan distribution, only lacking representatives in polar seas.
Dictyota is essentially a tropical to warm-temperate genus,
with only a handful of species adapted to colder waters (e.g.
D. decumbens from Macquarie Island; Ricker 1987 and
D. falklandica from the Falkland Islands and Tierra del
Fuego; Küpper et al. 2019) (Fig. 3). D. dichotoma grows up
to southern Norway, where it is a summer species and its
biomass disappears in winter. Distribution ranges are inade-
quately characterised for many species still, but from detailed
studies in Europe and the Atlantic Ocean, a pattern emerges of
species with predominantly regional distributions confined to
realms or provinces (sensu Spalding et al. 2007), but some
species definitely have large ranges spanning more than one
ocean basin (Tronholm et al. 2010, 2012, 2012). At least one
species,D. cyanoloma has been shown to be introduced, prob-
ably from southern Australia to the Mediterranean Sea (Steen
et al. 2017).

Ecology

Growing in upper subtidal areas and intertidal rock pools,
Dictyota species occupy a broad range of ecological niches
worldwide (Tronholm et al., 2010). While the genus is distrib-
uted widely, abundance data are mainly available for the
northern Atlantic region, with particular focus on coral reef
communities in the northwest Atlantic and island communi-
ties in the northeast Atlantic archipelagos (Table 1). These
abundances have repeatedly been shown to vary seasonally
and are influenced by a combination of both abiotic and biotic
factors (Lirman, 2001; Thacker et al., 2001; Diaz-Pulido and
Garzón-Ferreira, 2002; Tronholm et al., 2008; Gauna et al.,
2013).Dictyota species may reach considerable abundances at
their seasonal peak (Table 1) and have been reported to bloom
in the Florida Keys (Beach and Walters 2000) and as an inva-
sive in the Strait of Gibraltar (Rugulopteryx okamurae, for-
merly known as D. okamurae) where it dominates subtidal
vegetations (> 90% coverage) at 10–20-m depth since 2016,
causing large supralittoral wrack deposits (García-Gómez
et al. 2020).
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Seasonality

Seasonality in abundance and reproduction has been observed
for several Dictyota species in temperate regions. In the case
of D. dichotoma, these seasonal patterns seem to be largely
regulated by temperature and therefore vary along the latitu-
dinal range of the species. Specifically, southern populations
of this warm temperate species tend to be present throughout
most of the year but virtually disappear during the warmest
months, surviving this period as microscopic stages
(Tronholm et al., 2008; Steen et al., 2019). In contrast, north-
ern populations show high abundance and fertility during
summer but are absent in winter, when sea surface tempera-
tures are lowest (Steen et al., 2019). Next to temperature, both
daylength and solar radiation have also been shown to play an
important role in the seasonality of Dictyota species (Ferrari
et al., 2012; Gauna et al., 2013). Several studies examined the
seasonal dynamics of algal assemblages, including Dictyota,
indicating the existence of seasonal trends in occurrence,
abundance, size, and fertility within the genus Dictyota
(Diaz-Pulido and Garzón-Ferreira, 2002; Quan-Young et al.,
2004; Peña and Bárbara, 2010). Besides phenological charac-
ters, the chemical compositions of the biomass is also influ-
enced as seasonal variation in protein and fatty acid content
has been reported (see the “Protein and amino acids” and
“Biodiesel” sections).

Abiotic interactions

Important environmental factors affecting Dictyota species
include light, temperature, nutrient availability, pH and water
motion (Cronin and Hay 1996; Renken et al., 2010; Dailer
et al., 2012; Ho and Carpenter, 2017). Among these, the

effects of nutrient availability and light conditions have re-
ceived considerable attention and will therefore be discussed
here in more detail.

Light Several studies examined the effects of the quality and
quantity of irradiance on members of the genus Dictyota.
Regarding light quality, Kuhlenkamp et al. (2001) demon-
strated a strong reduction in growth rate when germlings of
D. dichotomawere exposed to UV radiation (UVR). In accor-
dance with these findings, Dictyota ciliolata showed reduced
growth and survival, as well as a decrease in the production of
secondary metabolites after prolonged exposure to surface
levels of UVR (Cronin and Hay 1996). However, Flores-
Moya et al. (1999) found that the recovery of photosynthesis
after high solar radiation was impaired in the absence of UV-B
in D. dichotoma, suggesting that this type of radiation may
have beneficial effects on photoprotective processes.

Next to these studies, which focus mainly on the effects of
UV radiation, extensive efforts have been made in elucidating
the response of Dictyota species to different irradiance levels.
In general, species of the genus Dictyota tolerate a wide range
of light intensities, being able to maintain high photosynthetic
rates even at low irradiances (Dawes and Kovach, 1992;
Peckol and Ramus, 1992). This allows them to obtain high
abundances in certain deep-water habitats, such as the deep-
water seaweed assemblages of Bermuda, where they consti-
tute one of the most dominant groups (Searles and Schneider,
1987). A wide bathymetric distribution has also been ob-
served for temperate species, such as D. dichotoma, which
may be linked to changes in photosynthetic pigment concen-
tration with depth (Perez-Bermudez et al., 1981). In addition
to low-light tolerance, Dictyota species possess several mech-
anisms aimed at protecting the photosynthetic apparatus from

Fig. 3 Distributionmap of the genusDictyota. The light blue area denotes the range delimited by the most northernly and southernly reported occurrence
(blue dotted lines).
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damage induced by excessive irradiance levels, allowing them
to withstand strong light exposure. Mostly studied in the spe-
cies D. dichotoma, examples of these mechanisms include
dynamic photoinhibition (Nultsch et al., 1987), the reversible
conversion of violaxanthin to antheraxanthin and eventually
zeaxanthin in the xanthophyll cycle (Uhrmacher et al., 1995),
and chromatophore displacement (Hanelt and Nultsch, 1991).

Nutrients The effects of nutrients on Dictyota species have
mainly been studied in tropical ecosystems, where they were

predominantly evaluated in the context of community studies.
In general, species of Dictyota are considered opportunistic
macroalgae, owing to their ability to rapidly take up nutrients
upon supply (i.e. surge uptake) (Aisha et al., 1995; Raikar and
Wafar, 2006; Clausing and Fong, 2016, den Haan et al.,
2016). Extra nutrients, in turn, may provide several fitness-
enhancing effects, such as increases in growth rate, photosyn-
thetic capacity and saturation irradiance (Dailer et al., 2012).
Moreover, the capability for rapid uptake after episodic nutri-
ent inputs can be largely maintained in the dark, which may

Table 1 Abundance of Dictyota species at different locations. Values indicate maximum values, unless stated otherwise. Species names should be
treated carefully given the large degree of morphological plasticity displayed by Dictyota species. Abbreviations: FW, fresh weight; DW, dry weight

Species Location Depth Abundance Reference

Dictyota bartayresiana Cape Verde 5–25 m 0.22% cover a Sangil et al. (2018)

Chengue Bay, Colombia 9–12 m 30.0% cover Diaz-Pulido and Garzón-Ferreira (2002)

Dictyota crenulata Canary Islands 5–25 m 0.01% cover a Sangil et al. (2018)

Dictyota cymatophila Punta del Hidalgo, Tenerife d Eulittoral zone 32 individuals m−2 Tronholm et al. (2010)

Dictyota dichotoma Azores 5–25 m 16.95% cover a Sangil et al. (2018)

Canary Islands 5–25 m 0.39% cover a Sangil et al. (2018)

Cape Verde 5–25 m 17.09% cover a Sangil et al. (2018)

Punta del Hidalgo, Tenerife d Sublittoral zone 6.2 individuals m−2 Tronholm et al. (2008)

Dictyota fasciola Canary Islands 5–25 m 0.006% cover a Sangil et al. (2018)

Dictyota hamifera Chengue Bay, Colombia 9–12 m 0.4% cover Diaz-Pulido and Garzón-Ferreira (2002)

Dictyota implexa Cape Verde 5–25 m 0.33% cover a Sangil et al. (2018)

Dictyota jamaicensis Cape Verde 5–25 m 0.05% cover a Sangil et al. (2018)

Dictyota linearis Canary Islands 5–25 m 0.005% cover a Sangil et al. (2018)

Dictyota menstrualis Cape Verde 5–25 m 0.01% cover a Sangil et al. (2018)

Dictyota pfaffii Canary Islands 5–25 m 0.23% cover a Sangil et al. (2018)

Cape Verde 5–25 m 0.04% cover a Sangil et al. (2018)

Chengue Bay, Colombia 9–12 m 7.2% cover Diaz-Pulido and Garzón-Ferreira (2002)

Dictyota pinnatifida Chengue Bay, Colombia 9–12 m 3.2% cover Diaz-Pulido and Garzón-Ferreira (2002)

Dictyota pulchella Canary Islands 5–25 m 0.006% cover a Sangil et al. (2018)

Chengue Bay, Colombia 9–12 m 0.1% cover Diaz-Pulido and Garzón-Ferreira (2002)

Glovers Reef, Belize (exposed) 8 m 32.3% cover Renken et al. (2010)

Glovers Reef, Belize (sheltered) 8 m 5.4% cover Renken et al. (2010)

Dictyota spp. Bajo pepito, Mexico NA 6.1% cover a Quan-Young et al. (2004)

Conch Reef, Florida Keys b 7 m 29.6 g FW m−2 a Beach et al. (2003)

Conch Reef, Florida Keys b 21 m 30.1 g FW m−2 a Beach et al. (2003)

Bache Shoals,
Florida Keys c

3–5 m 12.2 g DW m−2 Lirman and Biber (2000)

Elkhorn Reef, Florida Keys c 3–5 m 8.2 g DW m−2 Lirman and Biber (2000)

Pacific Reef, Florida Keys c 3–5 m 20.4 g DW m−2 Lirman and Biber (2000)

Triumph Reef, Florida Keys c 3–5 m 19.7 g DW m−2 Lirman and Biber (2000)

a Values indicate mean values
b Species reported as ‘Dictyota menstrualis’ and ‘Dictyota pulchella’
c Species reported as ‘Dictyota bartayresiana’, ‘Dictyota pulchella' and ‘Dictyota cervicornis’ (now Canistrocarpus cervicornis)
d Species have been identified based on DNA sequence data
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represent an ecological advantage in nutrient-poor waters
(Raikar and Wafar, 2006). However, the effects of nutrient
enrichment have been shown to interact with other variables
including herbivory (Sotka and Hay, 2009), environmental
context (Clausing and Fong, 2016), and dissolved inorganic
carbon (DIC) concentration (Martins et al., 2016),
emphasising the need to consider multiple factors in order to
draw realistic inferences.

Biotic interactions

Owing to their significant abundance in various intertidal and
shallow subtidal habitats (Table 1),Dictyota species constitute
a food source for a wide range of marine organisms, including
sea turtles, sea urchins, amphipods and certain fish species
(Azzurro et al., 2007; Carrión-Cortez et al. 2010; McCarty
and Sotka, 2013; Moreno-Sánches et al. 2014; Cabanillas-
Terán et al. 2016). In the specific case of the amphipod
Ampithoe longimana, several studies indicated local adapta-
tion of feeding preferences, with populations that are naturally
coexisting with Dictyota showing higher feeding preference
for and greater fitness when feeding onDictyota, compared to
populations that are not (Sotka and Hay, 2002; Sotka et al.,
2003; McCarty and Sotka, 2013). These differences in fitness
are shown to be heritable and persist even after rearing multi-
ple generations in the laboratory (Sotka and Hay, 2002; Sotka
et al., 2003). Overall, these findings indicate that Dictyota
may play an important role in the genetic differentiation of
its associated marine herbivores.

Next to its role as a food source, Dictyota provides sub-
strate and shelter to numerous marine organisms. A study
conducted in the Abrolhos Bank, Brazil, identified 9 higher
taxa of marine invertebrates associated with the genus
Dictyota, with further analyses of the most abundant taxa
resulting in 64 families and 120 species (Cunha et al., 2013).
The most abundant families belonged to the polychaetes, iso-
pods, gastropods, and amphipods. For certain amphipod spe-
cies, including A. longimana, Dictyota’s value as a protective
refuge also plays a role in its prevalence as a food source,
indicating these interactions to be driven by a combination
of the need for qualitative food and effective shelter (Duffy
and Hay 1991; Lasley-Rasher et al., 2011). Next to its associ-
ation with macrofaunal communities, Dictyota species have
been shown to harbour a wide diversity of dinoflagellate spe-
cies as well as diatoms (Irola-Sansores et al., 2018; Park et al.,
2018; Boisnoir et al., 2019). Finally, they can also play a role
as shelter for larger species. For example, decorator crabs
selectively use Dictyota menstrualis as camouflage on their
backs in order to reduce their susceptibility to predation, while
juvenile parrotfishes have been shown to useDictyota patches
as an effective recruitment microhabitat when there is a lack of
coral cover (Stachowicz and Hay, 1999; Paddack and
Sponaugle, 2008).

While beneficial interactions betweenDictyota species and
their associated biota are plentiful, this genus is also known to
exert negative effects on various marine organisms. One of the
most studied examples of such effects includes the competi-
tive interactions between Dictyota and corals. Over the past
decades, numerous reefs in the Atlantic and Pacific have un-
dergone a marked phase-shift from coral-dominated commu-
nities to communities dominated by macroalgae (Done, 1992;
Hughes, 1994; Edmunds, 2002). Especially in the Caribbean
region, Florida and Fiji, the genus Dictyota constitutes an
important component of the reef flora (Shulman and
Robertson, 1996; Lapointe et al. 1997; Lirman and Biber,
2000; Ferrari et al., 2012; Bonaldo and Hay, 2014). Dictyota
species have repeatedly been shown to reduce survival and
recruitment of coral larvae, and to cause bleaching, reduced
photosynthetic efficiency, and death when in direct contact
with adult coral tissue (Kuffner et al., 2006; Rasher and
Hay, 2010; Paul et al., 2011; Shearer et al., 2012; Olsen
et al., 2015). These effects can, at least partly, be linked to
the production of allelopathic secondary metabolites that are
deployed at the seaweed surface (Longo and Hay, 2017). In
addition, algae of the genus Dictyota have been linked to
changes in coral-associated bacterial communities, expanding
their impact to the holobiont level (Barott et al., 2012; Morrow
et al. 2011).

Life history

Life cycle

The life cycle of Dictyota was one of the first cases where the
alternation of generations was demonstrated to be accompa-
nied by a change in ploidy (Svedelius, 1927; Haig,
1984). This discovery supported the theory of Strasburger
(1894) which linked alternation of generations with ploidy
change. Dictyota is characterised by an isomorphic life cycle
(Fig. 4a), in which the gametophyte phase and the sporophyte
phase are morphologically similar (Williams, 1897, 1904a,
1904b; Hoyt, 1910). This morphological similarity is also
reflected in nutritional quality and chemical defense against
predators in both sporophytes and gametophytes (Cronin and
Hay 2009). Gametophytes produce motile gametes that, upon
fertilisation, produce a diploid sporophyte that will bear
sporangia undergoing a reduction division with each
sporangium producing a tetrad of 4 haploid spores
(Williams, 1904a; Hoyt, 1910) (Fig. 4b). Spores grow into
both male and female gametophytes in about equal amounts
(Hoyt, 1910).

The life cycle is relatively simple. Unlike Fucus—which
shows both dioecious and monoecious species—all studied
species of Dictyota are dioecious (Phillips et al., 1990;
Phillips, 1992; De Clerck, 2003). While for example the life
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cycle of Ectocarpus—a model system for life cycle research
in brown algae—shows a very complex life cycle and possible
deviations from the classic alternations of ploidy (Müller,
1972; Bothwell et al., 2010), no deviations from this alterna-
tion of haploid gametophytes to diploid sporophytes have
been described for Dictyota. Unfertilised eggs invariably die
after 2–3 (aberrant) cell divisions (Williams, 1904b).

Reproduction

Reproduction in Dictyota has been relatively well-studied
compared to other seaweed genera. Male gametophytes devel-
op antheridia that are organised in ellipse or puzzle-shaped
white sori (Williams, 1904b; Phillips et al., 1990; Phillips,
1992; Phillips and Clayton, 1993). The antheridia are
surrounded by sterile elongated cells, ‘paraphyses’, which per-
sist after release of the gametes. Paraphyses are unicellular,
contrary to Canistrocarpus where paraphyses are multicellu-
lar. Gametogenesis is constant for all species and occurs by
the swelling of a group of cortical cells which undergo a mi-
totic cell division parallel to the surface to form an antheridial
stalk cell and an antheridial initial. The antheridial initial di-
vides frequently to produce 16–26 tiers consisting each of 16
loculi, containing a single spermatozoid each. Atypical for
heterokont algae, Dictyota spermatozoids bear only the ante-
rior flagellum, the posterior flagellum has been completely
reduced.

Female gametophytes develop oogonia that are similarly
organised in ellipsoid sori, except for a single species
(D. robusta) where the oogonia are not organised in groups.
Like the male sori, they develop after outward expansion of
the cortex, followed by a cell division parallel to the surface,
producing a stalk cell and an oogonium (Williams, 1904b;
Foster et al., 1972). Central oogonia are generally larger than
the peripheral ones. Each oogonium only produces a single
egg cell.

Spores are formed by diploid sporophytes in unilocular
sporangia. A cortical cell expands outwardly after which a
mitotic division form the tetraspore mother cell and a stalk
cell (Williams, 1904a; Phillips, 1992). The tetraspore mother
cell finally undergoes a meiotic cell division shortly prior to
release resulting in four cruciately arranged meiospores. In
most species, sporangia can be easily discerned from oogonia
by their scattered arrangement throughout the thallus, but
some species possess sporangia that are organised in sori as
well, potentially confounding discrimination of female game-
tophytes and sporophytes (Foster et al., 1972). Gametangia
and sporangia may differentiate all over the thallus with a
minimal distance of a couple of centimeters from actively
growing meristems.

Gametes are released with both a diurnal and lunar period-
icity (Williams, 1905). Gametes are typically released about
20–30min in the early morning after first light (Kumke, 1973;
Phillips et al., 1990). The male gametes show chemotaxis and
are attracted by the release of the oxylipin n-butyl-cyclohepta-

Fig. 4 Life cycle and reproduction in Dictyota. a Life cycle of Dictyota.
Bold black arrows denote haploid stages, white arrows denote diploid
stage. Both sporophytes and gametophytes may reproduce asexually
(see text for details). Modified from Bogaert et al. (2013). b Schematic

drawing of cross section of sexual reproductive organs of sporophyte
(left), male gametophyte (middle) and female gametophyte (right).
Modified from De Clerck (2003)
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2,5-diene (dictyotene) (Muller et al., 1981; Phillips et al.,
1990). In the presence of male gametes, oogonia become
fertilised after which they elongate in about 90 s (Bogaert
et al., 2017a). The elongation results into a ‘rugby’ ball-
shaped cell with two poles of which one eventually will de-
velop into the rhizoid tip and the other into the apical cell
(Bogaert et al., 2017a). The shape change is accompanied by
the immediate production of an adhesive layer in which a
dense halo of male superfluous gametes may be embedded
(Bogaert et al., 2017b). After attachment to the substrate, the
cell will undergo an asymmetric cell division with a thallus
and a rhizoid cell as a result (Bogaert et al., 2017a). Similar to
Fucus zygotes, Dictyota uses the light direction to determine
which one of the poles will develop into the rhizoid side, a
process which involves the phytohormone auxin (Bogaert
et al., 2019).

Besides a diurnal periodicity, gametophytes of Dictyota
are the best studied brown algae with a clear lunar period-
icity (Tessmar-Raible et al., 2011). D. dichotoma releases
its gametes with two peaks a month (bilunar) (Williams,
1905; Hoyt, 1907, 1927; Müller, 1962). Under controlled
conditions, the periodicity can be induced and controlled
by illuminating the algae during one night every 28 days,
mimicking the full moon (Müller, 1962). The release peri-
odicity of most other reported species is lunar instead of
bilunar: D. menstrualis, D. diemensis and D. gunniana
gametes are released only once a month (Hoyt, 1927;
Phillips et al., 1990; Phillips, 1992), while species like
D. fastigiata Sonder or D. binghamiae apparently do not
show a lunar periodicity (Foster et al., 1972; Phillips,
1992).

Apart from sexual reproduction, Dictyota is able to propa-
gate asexually (Fig. 4a). This mode of reproduction may con-
tribute to the large biomasses often observed in warmer re-
gions (Herren et al., 2006). Many adventitious branches or
ligulae in species such as D. kunthii are likely adaptations
for vegetative propagation. In Dictyota, the loss of the apical
meristem, typically induces a fast proliferation of new adven-
titious branching (Tanaka et al., 2016). Adventitious branches
have a tendency to break off easily, which may explain how
Dictyota can withstand high predation pressures. Similarly, in
a Korean Dictyota species, some populations tend to propa-
gate by the formation of in situ germlings. These germlings
form by the apomictic development of the spore mother cell
into a multicellular propagule (Hwang et al., 2005).

Chemical composition

The water content ofDictyota species fluctuates around 86.4–
99.0% (McDermid and Stuercke, 2003; Taylor et al., 2003;
Mcdermid et al., 2007; Tabarsa et al., 2012) (Table 2). It is not
known whether the chemical content is species-specific

because considerable variation has been observed between
samples from the same species taken at different localities
and during different seasons (Taylor et al., 2003; Gosch
et al., 2015).

Inorganic elements

Like most seaweeds, Dictyota is rich in minerals and has an
ash content of around 17.2–30.1% of dry weight (DW)
(Table 2). Species may therefore be useful as mineral supple-
ments. Dictyota species appear significantly enriched in iron
compared to other screened species from the same locality
with concentrations higher than 29,774 μg g−1 DW (Tabarsa
et al., 2012; Billah et al., 2017), but values 2 to 3 orders of
magnitude lower have also been reported (McDermid and
Stuercke, 2003; Deyab et al., 2017). Varying amounts of
heavy metals have been observed in Dictyota (Table 2).
Especially copper and chromium might be relevant
(Chakraborty et al., 2014). While Dictyota was reported to
be enriched in iodine (EL-Naggar, 2009), relatively moderate
quantities are reported in other studies (Grimm, 1952;
Solimabi and Das 1977).

Carbohydrates

The reported total carbohydrate fraction varies between 10.8
and 54.2% of DW (Table 2). Total soluble carbohydrates
(fucans, laminarans and monosaccharides) are reported to
range from 5.9 to 26.7% in the field (McDermid and
Stuercke, 2003; Martins et al., 2018). These can be artificially
increased to ~ 50% of DW by addition of nitrogen and CO2 in
a bioreactor setup inD. menstrualis (Martins et al., 2016). The
crude fraction of fibers ranges between 10.2 and 14.1% of
DW (Tabarsa et al., 2012; Mwalugha et al., 2015). The cellu-
lose microfibrils in the cell wall of brown algae are embedded
in a matrix of polysaccharides comprising alginates and
fucans (Abdel-Fattah et al., 1978), which are estimated to
comprise respectively 7.4–22.9% and 22.2% of DW (Garc
a-Rios et al., 2012; Deyab et al., 2017). Storage polysaccha-
rides are laminarans and mannitol (0.4–7.8% of DW)
(Table 2). The fucoidan fractions have been particularly
well-studied due to their antiviral, ROS scavenging and anti-
coagulant properties (García-Ríos et al., 2012; Rabanal et al.
2014). Despite the lower content in fucans and alginates com-
pared to, for example, Fucales, polysaccharides of Dictyotales
are of particular interest due to the presence of some O-acetyl
groups (García-Ríos et al., 2012). More than 60 subfractions
of sulfated heteropolysaccharides can be obtained, all differ-
ing in their relative proportions of residues of D-arabinose, D-
fucose, D-galactose, D-glucose, D-mannose, D-rhamnose, D-
uronic acid and xylose (Hussein et al., 1979; Rabanal et al.,
2014).
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Table 2 Chemical composition in different species of Dictyota.
Abbreviations: DW, dry weight; EAAs, essential amino acids; MUFAs,
monounsaturated fatty acids; nonEAAs, non-essential amino acids;

PUFAs, polyunsaturated fatty acids; SFAs, saturated fatty acids; TFAs,
total fatty acids

Unit Min Max Species References

Water % of fresh
weight

86.4 90.0 D. dichotoma, Dictyota sp., D. acutiloba,
D. sandvicensis

(Munda and Gubensek, 1986; McDermid and
Stuercke, 2003; Tabarsa et al., 2012)

Ash % of DW 17.2 30.1 Dictyota sp., D. bartayresiana, D.
acutiloba, D. sandvicensis

(Burkholder et al., 1971; Montgomery and Gerking,
1980; Munda and Gubensek, 1986; McDermid and
Stuercke, 2003; Pillans et al., 2004; Tabarsa et al.,
2012; Machado et al., 2014)

Carbohydrates % of DW 10.8 54.2 Dictyota sp., D. ceylanica (Montgomery and Gerking, 1980; Chakraborty et al.,
2008; Deyab et al., 2017)

Soluble
carbohy-
drates

% of DW 5.9 26.7 D. acutiloba, D. sandvicensis,
D. menstrualis

(McDermid and Stuercke, 2003; Martins et al., 2018)

Crude fiber % of DW 10.2 14.1 Dictyota sp., D. bartayresiana,
C. cervicornis

(Burkholder et al., 1971; Tabarsa et al., 2012;
Mwalugha et al., 2015)

Fucoidan % of DW 22.2 22.2 D. caribaea (García-Ríos et al., 2012)

Alginates % of DW 7.4 22.9 D. caribaea, Dictyota sp. (García-Ríos et al., 2012; Deyab et al., 2017)

Mannitol % of DW 0.4 7.8 D. caribaea, D. dichotoma (Munda and Gubensek, 1986; García-Ríos et al.,
2012)

Energy cal/g 2424 3500 D. acutiloba, D. sandvicensis,
D. dichotoma, Dictyota sp.

(Montgomery and Gerking, 1980; McDermid and
Stuercke, 2003; Pillans et al., 2004)

Total N % of DW 1.0 4.4 Dictyota sp.,D. acutiloba, D. sandvicensis,
D. dichotoma, D. bartayresiana

(Nasr et al., 1968; Munda and Gubensek, 1986;
McDermid and Stuercke, 2003; Pillans et al., 2004;
Machado et al., 2014; Deyab et al., 2017)

Total protein
%

% of DW 1.7 27.6 Dictyota sp., D. bartayresiana,
D. ceylanica, D. acutiloba, D.
sandvicensis, D. dichotoma,
D. menstrualis, D. ceylanica

(Nasr et al., 1968; Burkholder et al., 1971;
Montgomery and Gerking, 1980; Munda and
Gubensek, 1986; McDermid and Stuercke, 2003;
Chakraborty et al., 2008; Tabarsa et al., 2012;
Mwalugha et al., 2015; Deyab et al., 2017; Martins
et al., 2018)

Total/crude
lipid %

% of DW 0.5 20.2 D. bartayresiana, Dictyota sp., D.
ceylanica, D. acutilobia, D.
sandvicensis, D. menstrualis

(Montgomery and Gerking, 1980; McDermid and
Stuercke, 2003; Chakraborty and Santra, 2008;
Gosch et al., 2012; Tabarsa et al., 2012; Mwalugha
et al., 2015; Deyab et al., 2017; Martins et al.,
2018)

TFAs mg g−1 DW 14.0 54.2 Dictyota sp., D. bartayresiana,
D. menstrualis

(Gosch et al., 2012; Gosch et al., 2015; Martins et al.,
2018)

Phenolics % of DW 0.01 1.34 D. dichotoma, Dictyota sp., D. divaricata,
D. barteyresiana

(Targett et al., 1992; Targett et al., 1995;
Chkhikvishvili and Ramazanov, 2000)

Elements

C μg g−1 DW 297,000 332,800 D. bartayresiana, D. dichotoma (Pillans et al., 2004; Machado et al., 2014)

N μg g−1 DW 9800 28,700 D. bartayresiana, D. dichotoma,
D. acutiloba, D. sanviciensis, Dictyota
sp.

(McDermid and Stuercke, 2003; Pillans et al., 2004;
Machado et al., 2014; Deyab et al., 2017)

Na μg g−1 DW 5300 23,598 Dictyota sp., D. bartayresisana (Tabarsa et al., 2012; Machado et al., 2014; Deyab
et al., 2017)

P μg g−1 DW 1300 1953 Dictyota sp., D. bartayresisana (McDermid and Stuercke, 2003; Deyab et al., 2017)

K μg g−1 DW 27,000 72,600 D. bartayresiana, D. acutiloba,
D. sandviciencis, Dictyota sp.

(McDermid and Stuercke, 2003; Tabarsa et al., 2012;
Machado et al., 2014; Deyab et al., 2017)

Mg μg g−1 DW 51 13,600 D. bartayresiana, D. acutiloba,
D. sandviciencis, Dictyota sp.

(McDermid and Stuercke, 2003; Deyab et al., 2017)

Ca μg g−1 DW 10,300 35,200 D. bartayresiana, D. acutiloba,
D. sandviciencis, Dictyota sp.

(McDermid and Stuercke, 2003; Tabarsa et al., 2012;
Machado et al., 2014; Deyab et al., 2017)
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Table 2 (continued)

Unit Min Max Species References

S μg g−1 DW 12,000 22,100 D. bartayresiana, D. acutiloba,
D. sandvicensis

(McDermid and Stuercke, 2003; Machado et al.,
2014)

B μg g−1 DW 95 172 D. bartayresiana, D. acutiloba,
D. sandvicensis

(McDermid and Stuercke, 2003; Machado et al.,
2014)

Zn μg g−1 DW 5 407 D. dichotoma, D. bartayresiana, Dictyota
sp., D. acutiloba, D. sandvicensis,
D. ceylanica

(McDermid and Stuercke, 2003; Chakraborty and
Santra, 2008; Laib and Leghouchi, 2012; Billah
et al., 2017)

Mn μg g−1 DW 6 2480 D. dichotoma, D. bartayresiana, Dictyota
sp., D. acutiloba, D. sandvicensis,
D. ceylanica

(McDermid and Stuercke, 2003; Chakraborty and
Santra, 2008; Tabarsa et al., 2012; Billah et al.,
2017; Deyab et al., 2017)

Fe μg g−1 DW 19 29,774 D. dichotoma, D. bartayresiana, Dictyota
sp., D. acutiloba, D. sandvicensis,
D. ceylanica

(McDermid and Stuercke, 2003; Chakraborty and
Santra, 2008; Tabarsa et al., 2012; Billah et al.,
2017; Deyab et al., 2017)

Cu μg g−1 DW 3 153 Dictyota sp., D. bartayreiiana,
D. acutiloba, D. sandvicensis,
D. ceylanica

(McDermid and Stuercke, 2003; Chakraborty and
Santra, 2008; Laib and Leghouchi, 2012; Tabarsa
et al., 2012; Billah et al., 2017; Deyab et al., 2017)

Ni μg g−1 DW 0.6 23.6 D. bartayresiana, Dictyota sp.,
D. ceylanica

(Chakraborty and Santra, 2008; Tabarsa et al., 2012;
Deyab et al., 2017)

Co μg g−1 DW 4.5 8.1 Dictyota sp. (Tabarsa et al., 2012; Deyab et al., 2017)

Pb μg g−1 DW 0.9 1.5 D. barayresiana, D. dichotoma,
D. ceylanica

(Chakraborty and Santra, 2008; Laib and Leghouchi,
2012)

I μg g−1 DW 544 2030 D. divaricata, D. bartayresiana (Solimabi and Das 1977; EL-Naggar, 2009)

Sr μg g−1 DW 1.2 1.2 D. bartayresiana (Machado et al., 2014)

Cr μg g−1 DW 0.8 6.2 D. bartayresiana, D. dichotoma, Dictyota
sp.

(Chakraborty and Santra, 2008; Laib and Leghouchi,
2012; Deyab et al., 2017)

Cd μg g−1 DW 0.1 2.2 D. barayresisana, D. dichotoma (Chakraborty and Santra, 2008; Laib and Leghouchi,
2012)

Amino acids

Nonessential
amino
acids
Asp mg g−1 DW 10.3 13.4 D. dichotoma, Dictyota sp. (Munda and Gubensek, 1986; Tabarsa et al., 2012)

Glu mg g−1 DW 15.0 22.7 D. dichotoma, Dictyota sp. (Munda and Gubensek, 1986; Tabarsa et al., 2012)

Ser mg g−1 DW 4.6 6.4 D. dichotoma, Dictyota sp. (Munda and Gubensek, 1986; Tabarsa et al., 2012)

Gly mg g−1 DW 6.0 7.6 D. dichotoma, Dictyota sp. (Munda and Gubensek, 1986; Tabarsa et al., 2012)

Arg mg g−1 DW 5.6 7.0 D. dichotoma, Dictyota sp. (Munda and Gubensek, 1986; Tabarsa et al., 2012)

Ala mg g−1 DW 3.2 8.9 D. dichotoma, Dictyota sp. (Munda and Gubensek, 1986; Tabarsa et al., 2012)

Pro mg g−1 DW 3.0 5.8 D. dichotoma, Dictyota sp. (Munda and Gubensek, 1986; Tabarsa et al., 2012)

Tyr mg g−1 DW 4.0 4.0 D. dichotoma, Dictyota sp. (Munda and Gubensek, 1986; Tabarsa et al., 2012)

Cys mg g−1 DW 0.4 0.4 D. dichotoma (Munda and Gubensek, 1986)

Essential
amino
acids
His mg g−1 DW 1.9 5.9 Dictyota dichotoma, Dictyota sp. (Munda and Gubensek, 1986; Tabarsa et al., 2012)

Thr mg g−1 DW 4.9 6.3 D. dichotoma, Dictyota sp. (Munda and Gubensek, 1986; Tabarsa et al., 2012)

Val mg g−1 DW 5.8 6.9 D. dichotoma, Dictyota sp. (Munda and Gubensek, 1986; Tabarsa et al., 2012)

Met mg g−1 DW 0.7 3.4 D. dichotoma, Dictyota sp. (Munda and Gubensek, 1986; Tabarsa et al., 2012)

Ile mg g−1 DW 4.3 5.7 D. dichotoma, Dictyota sp. (Munda and Gubensek, 1986; Tabarsa et al., 2012)

Leu mg g−1 DW 8.5 10.3 D. dichotoma, Dictyota sp. (Munda and Gubensek, 1986; Tabarsa et al., 2012)

Phe mg g−1 DW 4.9 6.2 D. dichotoma, Dictyota sp. (Munda and Gubensek, 1986; Tabarsa et al., 2012)

Lys mg g−1 DW 5.9 6.2 D. dichotoma, Dictyota sp. (Munda and Gubensek, 1986; Tabarsa et al., 2012)
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Table 2 (continued)

Unit Min Max Species References

Fatty acids (composition)

SFAs % of total
fatty
acids
methyl
esters

26.0 56.9 Dictyota sp., D. ceylanica, D. pinnatifida,
D. bartayresiana, D. dichotoma,
C. cervicornis, D. ciliolata, D. haukiana

(Chakraborty and Santra, 2008; Tabarsa et al., 2012;
Kumari et al., 2013)

MUFAs % of total
fatty
acids
methyl
esters

11.3 22.2 Dictyota sp., Dictyota ceylanica,
D. pinnatifida,
D. bartayresiana, D. dichotoma,
C. cervicornis, D. ciliolata, D. haukiana

(Chakraborty and Santra, 2008; Tabarsa et al., 2012;
Kumari et al., 2013)

PUFAs % of total
fatty
acids
methyl
esters

18.3 58.0 Dictyota sp., D. ceylanica, D. pinnatifida,
D.bartayresiana, D. dichotoma,
C. cervicornis,
D. ciliolata, D. haukiana

(Chakraborty and Santra, 2008; Tabarsa et al., 2012;
Kumari et al., 2013)

PUFAs ω6 % of total
fatty
acids
methyl
esters

7.5 7.5 Dictyota sp. (Tabarsa et al., 2012)

PUFAs ω3 % of total
fatty
acids
methyl
esters

10.7 10.7 Dictyota sp. (Tabarsa et al., 2012)

Fatty acids (dry weight basis)

SFAs mg g−1 DW 5.3 35.2 D. bartayresiana, Dictyota sp.,
D. menstrualis

(Gosch et al., 2012; Gosch et al., 2015; Martins et al.,
2018)

MUFAs mg g−1 DW 4.5 30.8 D. bartayresiana, Dictyota sp.,
D. menstrualis

(Gosch et al., 2012; Gosch et al., 2015; Martins et al.,
2018)

PUFAs mg g−1 DW 4.3 39.1 D. bartayresiana, Dictyota sp.,
D. menstrualis

(Gosch et al., 2012; Gosch et al., 2015; Martins et al.,
2018)

PUFAs ω6 mg g−1 DW 1.9 16.7 D. bartayresiana, Dictyota sp.,
D. menstrualis

(Gosch et al., 2012; Gosch et al., 2015; Martins et al.,
2018)

PUFAs ω3 mg g−1 DW 1.0 22.9 D. bartayresiana, Dictyota sp.,
D. menstrualis

(Gosch et al., 2012; Gosch et al., 2015; Martins et al.,
2018)

ω6/ω3 0.3 3.9 Dictyota sp., D. ceylanica, D. pinnatifida,
D. bartayresiana, D. dichotoma,
C. cervicornis, D. ciliolata,
D. haukiana,
D. menstrualis

(Chakraborty and Santra, 2008; Gosch et al., 2012;
Tabarsa et al., 2012; Kumari et al., 2013; Gosch
et al., 2015; Martins et al., 2018)

Vitamins

Vit E μg g−1 FW 24.5 42.8 Dictyota sp. (Jayasree et al. 1985; de Sousa et al. 2008)

β-Carotene μg g−1 FW 4.7 4.7 Dictyota sp. (de Sousa et al. 2008)

Vit A μg g−1 FW 0.8 0.8 Dictyota sp. (de Sousa et al. 2008)

Pigments

Chlorophyll a mg g−1 DW 1.9 6.1 Dictyota sp., D. dichotoma,
D. ceylanica, D. menstrualis

(Perez-Bermudez et al., 1981; Chakraborty and
Santra, 2008; Deyab et al., 2017; Martins et al.,
2018)

Chlorophyll c mg g−1 DW 0.6 2.0 Dictyota sp., D. dichotoma,
D. ceylanica

(Perez-Bermudez et al., 1981; Chakraborty and
Santra, 2008; Deyab et al., 2017)

Carotenoids mg g−1 DW 0.03 0.03 D. ceylanica (Chakraborty and Santra, 2008)

Fucoxanthin mg g−1 DW 0.1 2.3 D. dichotoma, Dictyota sp. (Perez-Bermudez et al., 1981; Deyab et al., 2017)
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Protein and amino acids

As a fast-growing alga, especially in warm temperate to trop-
ical environments, Dictyota may be of interest as a food, feed
or protein source. Protein levels are highly variable, with es-
timates varying between 1.7 and 27.6% of DW depending on
the local conditions, seasonality and nitrogen availability. It
should be noted that many of the protein estimates are obtain-
ed using a traditional nitrogen-to-protein factor of 6.25, which
is unsuitable for seaweeds and has been estimated as
4.55 ± 0.38 for D. menstrualis and 18 other tropical seaweeds
by Lourenço et al. (2002) while Angell et al. (2016) have
suggested a mean value of 5. In a bioreactor setup, the protein
content can be increased by addition of nitrogen irrespective
of CO2 addition (Martins et al., 2016).

Lipid and fatty acids

Estimates of total lipid content varies from 0.5 to 20.2%
of DW (McDermid and Stuercke, 2003; Deyab et al.,
2017). In multispecies comparisons, Dictyota is often
among the brown algae displaying the highest fatty acids
fractions (Burkholder et al., 1971; Montgomery and
Gerking, 1980; McDermid and Stuercke, 2003; Gosch
et al., 2012; Machado et al., 2014; Martins et al., 2018)
and rendering a relatively high caloric content ranging
from 2424 to 3500 cal g−1 (Montgomery and Gerking,
1980; McDermid and Stuercke, 2003; Pillans et al.,
2004). Consequently, species of Dictyota are seen as a
suitable feedstock species because the total fatty acid con-
tent is reported to exceed that of any other seaweed
(Gosch et al., 2015). Furthermore, Dictyota contains large
amounts of ω3 fatty acids with a low ω6/ω3 ratio rang-
ing from 0.3 to 3.9 on a DW basis (Table 2). Dictyota is
therefore appealing for its use in bio-oil industry and as a
healthy food source (Tabarsa et al., 2012; Martins et al.,
2016, 2018). Lipid content (Gosch et al., 2012;
Radulovich et al., 2015; Deyab et al., 2017) and total fatty
acids content (Gosch et al., 2012) can be highly variable
in Dictyota and can be modulated depending on nitrogen
and CO2 contents (Martins et al., 2016). Fatty acids spec-
tra have been characterised for different Dictyota species
(Heiba et al., 1997; Chakraborty and Santra, 2008; Gosch
et al., 2012, 2015; Tabarsa et al., 2012; Martins et al.,
2016, 2018) and may show a high content in PUFAs in
especially D. bartayresiana (Gosch et al., 2012, 2015;
Machado et al., 2014) and Dictyota sp. (Gosch et al.,
2012) (Table 2).

Besides fatty acids, Dictyota possesses phenolics and
phlorotannins that are included in small vesicles (physodes),
which play a role in cell wall crosslinking (Deniaud-Bouët
et al., 2017) and potentially antiherbivore defense (Targett
et al., 1995). The phenolic content is of pharmaceutical

interest. Dictyota species, however, contain relatively low
contents of phenolics (0.01–1.34% of DW) compared to other
brown algae (Targett et al., 1992, 1995; Targett and Arnold,
1998; Chkhikvishvili and Ramazanov, 2000). Bioflavonoids
such as rutin, quercetin and kaempferol have been detected in
relatively high percentages (Al-Saif et al. 2014).

Like all brown algae, Dictyota is characterised by the pres-
ence of oxylipins, C11-carbohydrates that are derived from
fatty acids (Pohnert and Boland, 2002). Both adult thalli
(Schnitzler et al., 2001; Wiesemeier et al., 2008) and female
gametes (Phillips et al., 1990) release a blend of oxylipins.
The blend of female gametes contains the pheromone,
dictyotene, that attracts sperm cells (Maier and Muller,
1986). Oxylipins also function as grazing deterrent, protecting
the zygotes and adult thalli (Hay et al., 1998).

Pigments

Four kinds of pigments are present in the fucoxanthin-
chlorophyll a/c protein assemblies (FCPA) that perform the
energy transfer that supports photosynthesis in D. dichotoma
chloroplasts: Chl a, Chl c, fucoxanthin and violaxanthin in a
molar ratio of 13:3:10:1 (Mimuro et al., 1990). However,
water-depth effects modulate the ratios, with the ratio of chl
c/chl a decreasing in light exposed samples (Perez-Bermudez
et al., 1981). The carotenoid composition of adult thalli is 69%
fucoxanthin, 19% violaxanthin and 12% β-carotene (Katoh
et al., 1989). Violaxanthin can be interconverted to
antheraxanthin or zeaxanthin in response to photoinhibition
(Uhrmacher et al., 1995). Dictyota undergoes a fast recovery
after photoinhibition, which suggests photoinhibition is an
adaptation to strong light exposure (Nultsch et al., 1987).

Vitamins

Dictyota contains large quantities (24.5–42.8 μg g−1 fresh
weight) of vitamin E, also known as α-tocopherol (Jayasree
et al. 1985; de Sousa et al. 2008). The algae also contain
vitamin A (4.7 μg g−1 fresh weight) and β-carotene
(0.8 μg g−1 fresh weight) (de Sousa et al. 2008), but overall
little is known about the vitamin content in Dictyota.

Secondary metabolites

Dictyota is a rich source of secondary metabolites which are
under increasing interest due to their bioactivity. Several phe-
nols (Zouaoui and Ghalem, 2017), sterols (Bouzidi et al.,
2008), fatty acids (Gosch et al., 2015) and polysaccharides
(Rabanal et al., 2014) display significant bioactivity. The main
class of secondary metabolites of interest, however, are diter-
penes. Diterpenes are often specific to certain species of
Dictyota (Teixeira and Kelecom, 1988). The rich complement
of secondary metabolites is thought to enable the survival in
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environments with large pressure from herbivores and patho-
gens and the diversity between species or even populations
has been suggested to result from different evolutionary pres-
sures in different localities (de Paula et al., 2011). Dictyota
regulates the release of diterpenes after wounding which in-
fluences susceptibility to grazers (Wiesemeier et al., 2008).
Up until now, more than 230 diterpenes have been isolated
fromDictyota species (recently reviewed byChen et al. 2018).

The diterpenes have been grouped in three categories de-
pending on the first formal cyclisation of the precursor.

& Group I diterpenes are derived by the first cyclisation be-
tween C1 and C10 of the geranyl-geraniol precursor
(Teixeira and Kelecom, 1988). They contain mainly the
prenylated-guaiane diterpenes. But also some prenylated-
germacrane diterpenes (Sun and Fenical, 1979; Konig
et al., 1991), and an prenylated-epi-elemane diterpene
(Wright et al., 1993) and two prenylated-cadiane diter-
penes (Kolesnikova et al., 2006) have been isolated.

& Group II is the largest group and consists of the diterpenes
that have resulted from a cyclisation of the geranyl-
geraniol precursor between C1 and C11 (Teixeira and
Kelecom, 1988). Based on their diterpene skeletons, they
are subdivided into the dolebellane, dolestane and
secodolestane diterpenes (Chen et al., 2018). One
dictyoxetane diterpene was isolated (Sullivan et al., 1986).

& Group III diterpenes are derived from a cyclisation be-
tween C2 and C10 or by ring contraction of the
prenylated-germacrane. They are subdivided in the
xenicane, crenulidane, dichotomane and crenulane diter-
penes (Chen et al., 2018).

Utilisation

At present no published reports of cultivation of Dictyota are
available and harvesting of the genus has not been
industrialised as is the case for species like Porphyra,
Undaria or Saccharina. Thalli are generally collected from
natural populations (Kaliaperumal and Chennubhotla 2017).
In Hawaii D. acutiloba is often grown in what are known as
“algal gardens” (Pereira 2016).

Food for human consumption

Documented use of Dictyota appears restricted to the
Caribbean, Malayan-Indonesian and Hawaiian regions where
some species are either eaten raw, cooked in coconut milk,
pickled or ground as flour (Pereira 2016, Brandham et al.
2002). Alginates extracted from Dictyota are also being used
in various food products (Ravi et al. 2019).

Health and wellness applications

There is considerable interest in the pharmaceutical applica-
tion of secondary metabolites of Dictyota (and other
Dictyotales). There is a large body of literature describing
the effects of diverse extracts containing secondary metabo-
lites of Dictyota against many diseases. Because of the in-
creasing need for bioactive molecules due to side effects or
antibiotic resistance, many of the above mentioned isolated
phenolics, fucans, laminarans and especially diterpenes are
being tested for a diverse range of bioactivities, ranging from
antioxidant to anticancer activity. While it is clear that differ-
ent diterpenes may have different bioactivity, the choice of
study species by the different labs is largely driven by the local
availability.

Neuroprotective effect

Alzheimer’s disease is a chronic neurological disorder that has
taken epidemic proportions in developed countries. Increasing
the acetylcholine concentrations by inhibition of the enzyme
butyrylcholinesterase (BuChE) is considered as an effective
treatment against the disease (Mehta et al., 2012). Methanolic
extracts of Dictyota have been shown to inhibit this enzyme
and therefore are expected to have a neuroprotective effect
(Stirk et al., 2007; Suganthy et al., 2010). In addition, two
dolastane diterpenes present in at least several species have
an inhibitory effect on Na+K+-ATPase, which is involved in
the physiology of Alzheimer’s disease and a diverse range of
other pathologies (Garcia et al., 2009).

Anticoagulant and antihemolytic activity

Dysfunction in coagulation and platelet aggregation may lead
to diverse cardiovascular pathologies. Therefore, there is an
interest in phytochemicals with an antihemostatic effect for
drug design. The most available and used is heparin.
Heterofucans of Dictyota (and C. cervicornis) are of interest
because of their strong anticoagulant activity (Garcia et al.,
2009; Costa et al., 2010). Interestingly the purified
heterofucans have a higher anticoagulant activity than heparin
(Albuquerque et al., 2004). Besides heterofucans, some diter-
penes have also been attributed an anticoagulative effect
(Moura et al. 2011; 2014). Secodolastane diterpenes from
C. cervicornis where attributed an inhibitory effect against
the clotting and proteolytic effects of crude snake venom of
Lachesis muta, a South-American pit viper (Domingos et al.,
2011). The same diterpenes did also inhibit the hemolytic
effect of phospholipase A2 (a component in the venom) but
could not inhibit the hemolytic effect of the crude venom
(Domingos et al., 2011). Similarly, the coagulation activity
and hemolytic effects of the venom of Lonomia obliqua, a
toxic caterpillar, can be inhibited by extracts from Dictyota
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species (Domingos et al. 2009). The activities can be specific
to particular diterpenes because both C. cervicornis and
D. pfaffii extracts do inhibit the coagulation activity but only
extracts from D. pfaffii inhibit also the hemolytic activity
(Domingos et al. 2009). In vivo studies have shown that
CH2Cl2/MeOH extracts from D. pulchella induce vasorelax-
ation in rats (Queiroz et al., 2011).

Anti-inflammatory activity

CH2Cl2 fractions of methanolic extracts or specific isolated
diterpenes from Dictyota have been shown to be efficient
inhibitors of nitric oxide and PGE2 generation in macro-
phages, suggesting these contain interesting compounds for
anti-inflammatory drug discovery (Lee et al., 2008; Yoon
et al., 2009; Cheng et al., 2014; Zhao et al., 2015). Anti-
inflammatory effects are not confined to diterpenes, because
also heterofucans may provide candidates as anti-
inflammatory or antinociceptive molecules (Albuquerque
et al., 2013).

Antimelanogenesis

Excess production of melanin in the skin may cause hyperpig-
mentation phenomena such as freckles and aging spots. A
di terpene of D. cor iacea was shown to exhib i t
antimelanogenesis effects without showing cell toxicity (Ko
et al., 2013).

Anticancer activity

Extracts from Dictyota have been demonstrated to show a
particularly strong cytotoxic effect on cancer cell lines and
to have a relatively high antiproliferative effect compared to
many other algae (Zubia et al., 2009; Guedes et al., 2013;
Miranda-Delgado et al., 2018; Kosanić et al., 2019), where
they can induce apoptosis of the cancer cells (Gomes et al.,
2015). Different molecules in the extracts have been attributed
this anticancer activity. In hexane extracts, fucosterol and two
diterpenes have been identified with cytotoxic activities
(Caamal-Fuentes et al., 2014). Both sulfated laminarans and
fucans of Dictyota are being explored for their anticancer ac-
tivity and show synergistic effects with X-radiation (Abdel-
Fattah et al., 1978; Usoltseva et al., 2018; Yousefi et al., 2018;
Malyarenko et al., 2019). Additionally, the polyphenol frac-
tion was attributed an antiproliferative effect on pancreatic
cancer cells (Aravindan et al., 2013). The relatively weak se-
lectivity of the cytotoxic effect may be seen as a disadvantage
(Harada and Kamei, 1997), but may be due to the diverse
nature of the effect. Potential application of fucan-coated sil-
ver nanoparticles are being studied in cancer therapy
(Fernandes-Negreiros et al., 2017). Next to coating of nano-
particles with its fucans, Dictyota may also be used for the

environmentally friendly synthesis of anti-ruthenium nano-
particles and delivery to tumors is being explored (Yacoob
et al., 2017).

Antiviral activity

Dolabelladienetriol, a dolabellane diterpene isolated from
D. pfaffii, was shown to have activity against herpes simplex
virus Type-1 (HSV-1), where it inhibits the replication by
inhibiting reverse transcriptase in a non-competitive manner
(Barbosa et al., 2004; Abrantes et al. 2010; Cirne-Santos et al.
2008). The potential drug showed low cytotoxicity in preclin-
ical tests (Cirne-Santos et al., 2008; Abrantes et al. 2010;
Miceli et al. 2012) and has shown to be non-toxic in experi-
mental animals (Garrido et al., 2011; Garrido et al. 2017).
Experiments on mice showed crude extracts from
C. cervicornis are potential treatments of HSV-1 cutaneous
lesions (Barros et al. 2017). The effect has been attributed to
two dolastane diterpenes which represent promising anti-
HSV-1 molecules (Vallim et al. 2010). The effect against
HSV-1 is specific to some diterpenes, because for example
isopachydic tyo la l f rom D. dichotoma and 4-α -
acetyldictyodial from D. linearis did not show such a strong
effect (Siamopoulou et al. 2004). CH2Cl2/MeOH extracts and
isolated diterpenes from different species of Dictyota were
shown to exhibit anti-HIV-1 and anti-ZIKV (Zika
virus) effect, where they inhibit replication of the virus in cell
cultures (Pereira et al. 2004; Abrantes et al. 2010; Barros et al.
2017; Cirne-Santos et al. 2019). The effect in D. pfaffii has
been attributed to dolabelladienol A and dolabelladienol B,
which showed to be even more effective against HIV-1 than
dolabelladienetriol and non-cytotoxic against the tested cell
lines (Pardo-Vargas et al. 2014). In D. menstrualis the anti-
HIV-1 effect was attributed to two dichotomane diterpenes
(Pereira et al. 2005), while in D. friabilis the effect has been
attributed to dolabelladienetriol (Stephens et al. 2017). In
D. plectens 2 xenicane diterpenes were found to exhibit a
similar effect, while another xenicane from D. plectens was
effective against H5N1 (Zhao et al., 2015). Also, antiviral
activities (against HSV-1 and CVB3) of the galactofucan rich
subfractions of fucoidans have been demonstrated (Rabanal
et al. 2014).

Antifungal activity

Methanolic extracts of Dictyota are also of interest for their
antifungal activity against Candida albicans (ATCC 10231,
ATCC 14053), Aspergillus niger MTCC109 (Stirk et al.,
2007; Solomon and Santhi 2008; Manzo et al., 2009;
Zouaoui and Ghalem, 2017; Kosanić et al., 2019), and other
fungi (Reichelt & Borowitzka 1984). One xenicane has been
shown to have a mild antifungal activity against Candida
albicans ATCC14053 (Manzo et al., 2009), however,
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diterpenes with an antifungal activity appear to be much more
common in other Dictyotales species like Dictyopteris (de
Paula et al. 2011).

Antibacterial activity

Although extracts of Dictyota spp. have shown in vitro anti-
biotic activity (Reichelt & Borowitzka 1984) they have not led
to new antibiotics. Beta-lactam antibiotics comprise almost
half of the total fraction of the global antibiotic usage. Their
effectivity is under threat due to prolonged usage and the
evolution of beta-lactamases that hydrolyse the antibiotics
and render bacterial strains resistant. Dictyota methanolic ex-
tracts were shown to effectively inhibit beta-lactamases and
therefore may be a source of new beta-lactamase inhibitors
(Houchi et al., 2019). Several compounds fromDictyota have
been attributed an antibacterial activity (see Chen et al., (2018)
for a review).

Antileishmanial and antitrypanosomal activity

Different diterpenes, including dolabelladienetriol, from
Dictyota showed interesting activity against Leishmania
amazonensis and Trypanosoma cruzi responsible for respec-
tively leishmaniasis and trypanosomiasis (Chagas disease)
(León-Deniz et al., 2009; Soares et al., 2012; Alançia et al.,
2014; Lira et al., 2016; Chiboub et al., 2019), an activity that is
not shared by extracts from other marine algae and vertebrates
(Bianco et al., 2013).

Antioxidant activity

Although similar antioxidant activities are not confined to
Dictyota and related species, several multispecies compari-
sons have demonstrated that especially Dictyota (and
Dictyotales) extracts have high antioxidant activity compared
to other tested seaweeds (Martins et al., 2013; Tariq et al.,
2015). Polysaccharide content is at least a part of the explana-
tion of this high activity (Camara et al., 2011; Tariq et al.,
2015). Also, the phenolic content of Dictyota is of interest
for their antioxidant activities (Zouaoui and Ghalem, 2017;
Miranda-delgado et al., 2018); however, the high antioxidant
effect does not always correlate with the total phenolic content
in the extract (Tariq et al., 2011; Martins et al., 2013; Van
et al., 2013; Tariq et al., 2015; Chale-Dzul et al., 2017). Due
to its high antioxidant potential and anti-inflammatory effects
the extracts ofD. coriacea are among the most chemopreven-
tive ones among 30 seaweeds with an estimated chemopre-
vention index (the ratio between the cytotoxicity and the qui-
none reductase activity) of 4.36 using Hepa1c17 cells (Lee
et al., 2008).

Biodiesel

While other macroalgae have low prospect for biodiesel pro-
duction because of their low lipid content, the high lipid frac-
tion in D. bartayresiana and Dictyota sp. (10.8–11.9% of
DW) (Gosch et al., 2012) of up to 16.1% and 20.2% of DW
in D. acutiloba and D. sandvicensis, respectively, suggests
they may be comparable to or exceeding that of several
microalgal species such as Tetraselmis, Rhodomonas and
Scenedesmus and strains of Skeletonema and Isochrysis
(Gosch et al., 2012; Kumari et al., 2013). However, also lower
estimates (0.5–4.2% of DW) have been reported (Chakraborty
and Santra, 2008; Deyab et al., 2017; Mwalugha et al., 2015;
Tabarsa et al., 2012). Consequently, bioreactor-based cultures
have been explored which modulate the lipid and fatty acids
content of Dictyota (Martins et al., 2016) and seasonal and
spatial variation of lipid and TFA contents has beenmonitored
(Gosch et al., 2012, 2015). A protocol for nano-catalyzed
biodiesel production from the lipids ofD. dichotoma has been
described (Khan et al., 2017).

Biofouling

Several studies have explored the effect of Dictyota extracts
against biofouling (Barbosa et al., 2007; Ktari et al. 2010;
Murugan and Begum, 2010; Othmani et al., 2013; Bakar
et al., 2019). Larvae of invertebrates show mortality and ab-
normal development in response to application of diterpenes
(Schmitt et al., 1998). Diterpenes of Canistrocarpus and
Dictyota were shown to inhibit byssal threads of mussels
(Bianco et al., 2009; Siless et al., 2018). Furthermore, coral
mortality was induced in the presence of Dictyota species
(Kuffner et al., 2006). Several other studies demonstrated the
antibacterial activity of a range of diterpenes (reviewed by
Chen et al., 2018) and sterols (Bakar et al., 2019), which can
consequently inhibit bacterial biofilm formation (Viano et al.,
2009; Othmani et al., 2013).

Animal feed

Traditionally dried and ground Dictyota is utilised as supple-
ments to cattle, poultry and fish feed (Kaliaperumal and
Chennubhotla, 2017). Recently, it was established that the
addition of supplements of D. bartayresiana may reduce
in vitro methane production of ruminants with 92.2%, and
therefore offers a promising alternative for mitigating enteric
CH4 emissions (Machado et al., 2014).

Conclusions

Dictyota is characterised by a thin parenchymatous thallus
structure with a meristem region developing in a thallus with
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cortical and medullary cell layer(s) depending on the species.
Its synchronously released and dividing zygotes are under
increasing academic interest. Dictyota species often show a
large degree of morphological plasticity. The life cycle is an
isomorphic alternation of a haploid and diploid phase. As a
near cosmopolitan genus, Dictyota only lacks from the polar
seas. Dictyota and its taxonomically and morphologically
closely associated dictyotalean sister genera can seasonally
emerge as dominant species in the sublittoral and eulittoral
rock pools and may form algal blooms under certain condi-
tions. Traditionally, its commercial value has been closely
connected to local uses and traditions such as food, feed or
cosmetics. In more recent times, propelled by the increased
interest in its secondary metabolites such as phenols, sterols,
fatty acids, polysaccharides and especially diterpenes, the ge-
nus has received increased attention. Especially the demon-
strated antibiofouling and pharmaceutical potential
(Alzheimer’s disease, anticoagulant, anti-inflammatory, anti-
cancer, antioxidant, antibiotic and antiviral activity) of their
extracts and isolated compounds stand out. Recently, some
new potential applications as biofuel source and cattle feed
supplement, respectively due to its reported high lipid content
and its antimethanogenic effect, have emerged warranting fur-
ther exploration.
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