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Abstract
Plant-derived allelochemicals have the potential to be used as eco-friendly measures for control of Microcystis aeruginosa
blooms. However, the susceptibility of M. aeruginosa to plant allelochemicals under a range of environmental factors, such as
alkalinity, is not clear. This study investigated the effects of different alkalinity treatments on 1,2,3-trihydroxybenzene
(pyrogallol) toxicity to a toxic strain of the cyanobacterium, M. aeruginosa (FACHB 905). Pyrogallol toxicity to
M. aeruginosa cultures, both pre-adapted to a range of alkalinity levels and un-adapted, increased when alkalinity was increased
from 0.09 to 1.51 meq L−1. The mean inhibition ratios calculated according to OD650, cell concentration, Chl a, and carotenoid
concentrations of M. aeruginosa cultures were highest in the highest alkalinity treatment (1.51 meq L−1), i.e., up to 74%, 80%,
73%, and 87% for alkalinity-adapted cells on day 3. The lowest cell concentrations and photosynthesis pigment concentrations
were found in the highest alkalinity treatment (1.51 meq L−1) for un-adapted cells in 12-day bioassays. This trend was more
obvious over time. Pyrogallol and TPC (total phenolic compounds) concentrations measured immediately after pyrogallol
addition into the culture medium decreased more rapidly in higher alkalinity treatments. In contrast, faster oxygen consumption
and higher production of quinone end products occurred within the first 30 min after pyrogallol addition at higher alkalinity
levels. Quinones and oxygen radicals have been shown previously to be more toxic to cyanobacteria than pyrogallol itself. This
provides a potential explanation for the enhanced pyrogallol toxicity to M. aeruginosa under higher alkalinity. Therefore, it is
important to take alkalinity into account when considering pyrogallol as a potential biocide.
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Introduction

The increasing frequency and magnitude of toxic cyanobacterial
blooms are partially driven by accelerated eutrophication and
reduced water flow. Cyanobacterial blooms are a threat to the
structure and function of aquatic ecosystems (Paerl and Otten
2013). Successful control of cyanobacterial blooms has been a
major challenge, despite multiple approaches including algicide

treatment (Jones and Orr 1994), nutrient removal, and flow
regulation/flushing (Huisman et al. 2018). Therefore, new ways
are being developed to prevent and mitigate cyanobacterial
blooms. Microcystis aeruginosa (Kützing) Lemmerman is one
of themost ubiquitous bloom-forming species in freshwater bod-
ies (Harke et al. 2016). It is, however, sensitive to plant-derived
bioactive compounds such as pyrogallol from the submerged
macrophyte Myriophyllum spicatum L. (Nakai et al. 2000),
salcolin from barley straw (Xiao et al. 2014), and
epigallocatechin-3-gallate from tea (Camellia sinensis (L.)
Kuntze) (Lu et al. 2013).Microcystis aeruginosa has been shown
to be more sensitive to allelochemicals from M. spicatum than
the diatom Stephanodiscus minutulus (Kützing) Cleve &Möller,
and the green alga Scenedesmus armatus (Chodat) Chodat
(Körner and Nicklisch 2002). When co-cultured with
M. spicatum, or exposed to allelopathic polyphenols,
M. aeruginosa was also inhibited more effectively than the
chlorophyte Selenastrum capricornutum Printz (Zhu et al.
2010). Another study showed that M. aeruginosa was more
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sensitive to the extracts of four Chinese herbal plants than
Chlorella pyrenoidosaH.Chick (Ye et al. 2014), which is a green
alga. Cyanobacteria also exhibited a greater susceptibility to gal-
lic acid in mesocosms compared with green algae, brown algae,
and cryptophytes (Techer et al. 2016). Therefore, it appears pos-
sible to use plant-derived allelochemicals as an eco-friendly con-
trol agent forM. aeruginosa.

Most studies on the inhibitory effects of plant
allelochemicals are typically conducted in controlled condi-
tions that might not reflect environmental conditions (Gao
et al. 2017a). In natural systems, a range of environmental
factors can interact to affect cyanobacterial responses to
allelochemicals. There has already been some experimental
evidence testing this hypothesis. The toxicity of eight plant
allelochemicals produced by M. spicatum towards
M. aeruginosa was higher at lower temperatures and light
intensities (Nakai et al. 2014). Hydroquinone exerted very
strong inhibitory effect on the cyanobacterium Synechocystis
sp. after pre-exposure at pH 7.0, but exhibited no inhibition
after pre-exposure at pH 11.0 for 4 days (Bährs et al. 2013).
However, the susceptibility of M. aeruginosa to plant
allelochemicals under some other environmental factors, such
as alkalinity, is not clear.

Alkalinity is a common measure used as a proxy for many
chemical and biological processes in waterbodies (Nguyen and
Rittmann 2016). Higher alkalinity reflects an increase in the
acid-neutralizing ability and pH buffering capacity of freshwa-
ters (Dunnivant 2005; Somridhivej and Boyd 2017). Increased
alkalinity has been shown to affect the concentrations of free
metal ions in the water column, thereby changing their toxicity
to aquatic organisms (Miller and Mackay 1980). Alkalinity
significantly reduced copper accumulation in macroalgae
Ulva fasciata Delile (Geddie and Hall 2019). Hydroxide

(OH−), bicarbonate (HCO−
3 ), and carbonate (CO2−

3 ) are the
main components of alkalinity. Bicarbonate (HCO−

3 ) is often
the dominant component of alkalinity in most surface fresh
waters (Stumm and Morgan 1996). Higher bicarbonate can
provide higher inorganic carbon availability for some aquatic
phototrophs (Kahara and Vermaat 2003). Alkalinity varies be-
tween freshwater bodies worldwide and over time. For exam-
ple, the median alkalinity value was 0.80 meq L−1 in Danish
lakes (Vestergaard and Sand-Jensen 2000), 1.64 meq L−1 in
summer and 1.68 meq L−1 in winter in Spanish reservoirs
(Marcé et al. 2015), 1.11 meq L−1 in 134 UK lakes (Carvalho
et al. 2011), and lower than 1.00 meq L−1 in Lake Taihu, China,
over the period 1991–1999 (Chen et al. 2003). Cyanobacterial
abundance in summer clearly increased from low alkalinity
lakes (< 0.2 meq L−1) to high alkalinity lakes (> 1.0 meq L−1)
based on phytoplankton composition data collected from >
1500 European lakes (Carvalho et al. 2013). However, the out-
come of different alkalinity levels on allelopathic effects from
aquatic plants on cyanobacteria is unclear.

Pyrogallol is a phenolic acid which can inhibit the growth
ofM. aeruginosa. It was isolated and identified from the sub-
merged aquatic freshwater macrophyte M. spicatum (Nakai
et al. 2000). Although there have been many studies showing
the physiological and ecological mechanisms for this inhibi-
tion (Shao et al. 2009; Lu et al. 2014, 2017; Wang et al. 2016),
the effect of alkalinity on its toxicity to cyanobacteria is un-
known. This information is needed to optimize the use of
pyrogallol for control of cyanobacterial bloom species.

In this study, a strain ofM. aeruginosa was selected to test
pyrogallol toxicity under three alkalinity levels. Since bioas-
say experiments with M. aeruginosa strains commonly use
BG11 media (Shao et al. 2009; Lu et al. 2014, 2017; Wang
et al. 2016), which has an alkalinity lower than the alkalinity
levels of many lakes around the world (Vestergaard and Sand-
Jensen 2000; Carvalho et al. 2011; Marcé et al. 2015) but
higher than the alkalinity of some other lakes, e.g., Taihu
Lake (Chen et al. 2003). Therefore, low alkalinity of
0.09 meq L−1, standard alkalinity in BG 11 medium of
0.38 meq L−1, and high alkalinity of 1.51 meq L−1 were cho-
sen for the two experiments conducted in the study. In the first
experiment, cells were pre-adapted to different alkalinities,
simulating levels that M. aeruginosa has been observed to
grow in the field (Chen et al. 2003; Maileht et al. 2013). In
the second experiment, cells without pre-adaption were sub-
jected to abrupt shifts in alkalinity. The underlying toxicity
mechanisms were also examined by analyzing the autoxida-
tion process of pyrogallol under varying alkalinities.

Materials and methods

Cyanobacterial culturing Microcystis aeruginosa (strain
FACHB 905) with single cell morphology was obtained from
the Freshwater Algae Culture Collection of the Institute of
Hydrobiology (FACHB), the Chinese Academy of Sciences.
Cultures were grown in autoclaved BG 11 medium (Rippka
et al. 1979) under controlled conditions (12:12 h light: dark
cycle with light intensity of 25μmol photons (PAR)m−2 s−1 at
25 ± 1 °C). Cultures were manually shaken twice each day,
and cells in exponential growth phase were prepared for the
experiments.

Assessment of pyrogallol toxicity to M. aeruginosa under
varying alkalinities The effect of alkalinity on the toxicity of
pyrogallol toM. aeruginosawas tested based on the effects on
growth with and without pre-adaptation (Table 1). Three alka-
linity treatment levels were chosen, i.e., low alkalinity of
0.09 meq L−1, standard alkalinity in BG 11 medium of
0.38 meq L−1, and high alkalinity of 1.51 meq L−1.
Alkalinity was adjusted up or down by addition or removal
of Na2CO3 from standard BG11 medium. The initial cell
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concentration was about 1.5 × 106 cells mL−1. The concentra-
tion of pyrogallol added to the cultures was 5.0 mg L−1. This
was a concentration with an inhibition ratio higher than 30%
on M. aeruginosa growth in our preliminary experiment,
while 10 mg L−1 pyrogallol killed all M. aeruginosa cells in
the preliminary experiment. Pyrogallol was purchased from
Sigma-Aldrich (USA) and dissolved in Milli-Q water. An
equivalent volume of pyrogallol-free Milli-Q water was added
to the controls. All flasks were sealedwith a breathable sealing
membrane and cultured under the conditions described above.
Experiments were conducted in triplicate. The total culture
volume was 100 mL for the first experiment and 150 mL for
the second experiment.

The first experiment (expt. I) was designed to investigate
the effects of pyrogallol onM. aeruginosa pre-adapted to three
alkalinities before subjecting them to the 3-day bioassays.
This experiment was designed to compare short-term re-
sponses ofM. aeruginosa to pyrogallol exposure in water with
different ambient alkalinities. Cultures were pre-adapted over
three cell cycles to different alkalinities by sub-culturing into
BG 11 medium containing different concentrations of
Na2CO3. The effec ts of a lka l in i ty on OD650 of
M. aeruginosa after alkalinity adaption over two and three
cycles showed the same trends. The pre-adapted cultures were
then exposed to pyrogallol for 3 days. The controls under each
alkalinity level were set up simultaneously. Subsamples were
collected at the start (day 0) and end (day 3) of the experiment
for OD650 measurement, cell counts, andmeasurement of pho-
tosynthetic pigment concentrations.

The second experiment (expt. II) was used to test the effect
of pyrogallol onM. aeruginosa cells without pre-adaptation to
different alkalinities, in 12-day bioassays. The rationale for
this experiment was to test how M. aeruginosa responded to
pyrogallol toxicity while changing alkalinity simultaneously.
The changes over time were also tested in this experiment.
M. aeruginosa cells in exponential growth phase were cul-
tured in original BG 11 medium and inoculated into new
growth media containing different levels of alkalinity.
Treatment cultures also had pyrogallol added. The control
for each of the three treatments was the same, i.e.,
M. aeruginosa cultured in the original BG 11 medium, where

alkalinity was retained at 0.38 meq L−1. Subsamples were
collected every other day to determine OD650 and photosyn-
thetic pigment concentrations of M. aeruginosa cells.

Measurement of growth parameters of M. aeruginosa Five
milliliters of subsamples was sampled from the cultures and
measured spectrophotometrically at 650 nm. Subsamples
were preserved with 1% Lugol’s iodine solution until counted
by an optical microscope (BA210, MOTIC, China) at × 400
magnification with a hemocytometer as previously described
(Gao et al. 2017b).

Measurement of chl a and carotenoid concentrations of
M. aeruginosa A 5-mL subsample of each culture was cen-
trifuged at 7100×g for 10 min and the pellets were harvested
and extracted with 95% ethanol for 24 h in the dark. The
extracts were centrifuged again at 7100×g for a further
10 min. The absorbance of the supernatant was measured at
665, 649, and 470 nm. The concentrations of chl a and carot-
enoids in the extracts were calculated as described previously
(Lichtenthaler and Buschmann 2001).

Calculation of inhibition ratio Cell concentrations, OD650, chl
a, and carotenoid concentrations of the samples were deter-
mined as described above. The inhibition ratio (IR, %) of py-
rogallol onM. aeruginosa under each treatment was calculated
by comparing each of these parameters in treated cultures with
that of the corresponding control, according to Eq. 1,

IR %ð Þ ¼ 100� Pc−Ptð Þ=Pc ð1Þ

where Pt is the value measured for each parameter treated with
pyrogallol and Pc is the value measured for the controls.

Assessment of pyrogallol autoxidation at different alkalinities
Microcystis aeruginosa cells in exponential phase were inoc-
ulated into 150 mL alkalinity-modified BG 11 medium and
exposed to pyrogallol. Auto-oxidation dynamics of pyrogallol
under the three alkalinity levels (0.09, 0.38, and 1.51meq L−1)
were tested. Pyrogallol and total phenolic compound (TPC)
concentrations, dissolved oxygen (DO) concentrations,

Table 1 The experimental design
to investigate the effects of
alkalinity on pyrogallol toxicity to
M. aeruginosa pre-adapted to a
change in alkalinity (expt. I), ver-
sus those were not (expt. II)

Expt. I, 3 days Expt. II, 12 days

Control Treatment Control Treatment

Alkalinity (meq L−1) 0.09 0.09 0.38 0.09

0.38 0.38 0.38 0.38

1.51 1.51 0.38 1.51

Pyrogallol (mg L−1) 0 5 0 5

Initial cell concentration (cells mL−1) 1.5 × 106 1.5 × 106 1.5 × 106 1.5 × 106
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OD600 and OD440 were all measured. The TPC concentra-
tion in M. aeruginosa cultures represents the sum of the
concentrations of pyrogallol and other oxidized products
that contain phenolic hydroxyl groups. Changes in DO
were measured to test for increases in oxygen consump-
tion rates following exposure to pyrogallol, while measur-
ing OD600 and OD440 respectively to represent changes of
intermediate auto-oxidant and quinone end products fol-
lowing pyrogallol degradation (Ramasarma et al. 2014).
Pyrogallol and TPC concentrations were sampled and
measured immediately following pyrogallol addition
(day 0) and on day 3. DO, and OD440 and OD600 were
measured at 0, 10, 20, and 30 min following pyrogallol
addition. The total alkalinity and pH of the culture solu-
tions on day 0 and day 3 were also measured.

Quantification analysis of pyrogallol Five milliliters of sub-
samples was collected and pyrogallol concentrations in
the cultures were determined by solid phase extraction
(SPE) and gas chromatography (GC) as described previ-
ously (Lu et al. 2016) but modified as follows: A subsam-
ple was centrifuged at 7100×g for 10 min. The superna-
tant was harvested and concentrated using an SPE car-
tridge (OASIS HLB, Waters, USA) and eluted with ace-
tone then derivatized using bis(trimethylsilyl)trifluoroacetamide
(BSTFA, Supelco, USA). The derivatized pyrogallol was then
analyzed with an Agilent 6890 N GC fitted with an HP-5ms
(30 m× 0.25 mm× 0.25 μm) capillary column. The carrier gas
was He at a constant flow rate of 1 mL min−1. The GC was
temperature programmed with an initial oven temperature of
80 °C for 1 min, then raised linearly to 280 °C at 15 °C min−1

with a final isotherm of 2 min. The injection port temperature
was 280 °C. The sample was injected in splitless mode. The
pyrogallol concentration measured immediately after addition
to pure Milli-Q water at a concentration of 5.0 mg L−1 was 3.9
± 0.08 mg L−1, indicating a recovery rate of using this method of
about 80%.

Quantification analysis of total phenolic compounds The
TPC concentration in cultures was determined by the
Folin-Ciocalteu colorimetric method, described previous-
ly (Wu et al. 2009). Briefly, 2 mL subsamples was
mixed with 1 mL Folin-Ciocalteu reagent (Solarbio,
USA) and incubated at room temperature for 5 min,
followed by addition of 1 mL 10% Na2CO3. Samples
were then incubated at 25 °C for 2 h, and the optical
density measured at 765 nm. The results were calculated
using the equation described by Wu et al. (2009) and
expressed as the content of pyrogallol. The measured
TPC concentration was 5.5 ± 0.08 mg L−1 immediately
after pyrogallol addition to Milli-Q water when the ac-
tual concentration was 5.0 mg L−1, indicating the recov-
ery of TPC using this method was about 110%.

Determination of DO, OD600, and OD440 The changes of DO
concentrations in the cultures were determined with a portable
dissolved oxygen analyzer (HQ40D, HACH, USA). The
OD600 and OD440 were measured using an ultraviolet/visible
light spectrophotometer.

Determination of alkalinity and pH values Alkalinity was de-
termined using the acid-base titration method (Lei 2006).
Hydrochloric acid standard solution was used to titrate water
samples with two acid-base indicators. The first indicator, phe-
nolphthalein, changed from red to colorless when titrated to a

pH of 8.3, and the hydroxide (OH−) and carbonate (CO2−
3 ) ions

were neutralized. The second indicator, methyl orange-aniline
blue, changed from orange-yellow to light purple when titrated
to a pH range of 4.4–4.5, and all bicarbonate (HCO−

3) ions were
neutralized. The total alkalinity and the relative concentrations
of each component of the total alkalinity including hydroxide

(OH−), bicarbonate (HCO−
3), and carbonate (CO2−

3 Þ were cal-
culated according to the amount of hydrochloric acid con-
sumed by the two-step titration. The pH of the cultures was
measured with a portable pH analyzer (HQ40D, HACH,
USA).

Statistical analyses All data were analyzed with Microsoft
Excel and R (R Development Core Team 2011). Differences
among the three alkalinities in the control and pyrogallol treat-
ment and differences among the control and pyrogallol treat-
ments on the same day were analyzed respectively by a one-
way ANOVA, and multiple comparisons were performed using
the Tukey HSD test at p < 0.05 (Bates et al. 2012). Pearson
correlation coefficient was chosen for the correlation analysis
of alkalinity and OD650, cell concentrations and concentrations
of photosynthesis pigments for the second experiment.

Results

Effects of pyrogallol on the alkalinity-adaptedM. aeruginosa
culturesAfter pre-adaptingM. aeruginosa in alkalinity-modified
BG 11 medium over three cell cycles, different responses of
M. aeruginosa towards varying alkalinities were observed over
the 3-day culture period (Fig. 1). The OD650 and cell concentra-
tions at alkalinities of 0.38 and 1.51 meq L−1 were significantly
higher than those at 0.09 meq L−1 (p < 0.05). However, the chl a
and carotenoid concentrations were significantly higher at lower
alkalinities (0.09 and 0.38 meq L−1, p < 0.05). The optimal alka-
linity level for thisM. aeruginosa strain was 0.38 meq L−1 in the
present study.

The OD650, cell concentration, chl a, and carotenoid con-
centrations in the pyrogallol treatments were all lower
(p < 0.05) compared with the controls on day 3 (Fig. 1), sug-
gesting a negative effect of pyrogallol. Additionally, OD650,
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cell concentrations, chl a, and carotenoid concentrations in all
pyrogallol-treated cultures at 1.51 meq L−1 were lower after
3 days than on day 0.

The mean inhibition ratio for pyrogallol-treated
M. aeruginosa cells calculated from OD650, cell concentration,
chl a, and carotenoid concentrations of alkalinity-adapted
M. aeruginosa cells on day 3 increased as alkalinity increased
from 0.09 to 1.51 meq L−1 (Fig. 2). The mean inhibition ratios
were highest in the highest alkalinity treatment (1.51 meq L−1),
i.e., up to 74%, 80%, 73%, and 87% for OD650, cell concentra-
tion, chl a, and carotenoid concentration respectively.

Toxicity of pyrogallol to M. aeruginosa without alkalinity
pre-adaptation The OD650, cell concentrations, chl a, and
carotenoid concentrations in the three pyrogallol treatments
were significantly lower than those for the control from day
4 to day 12 (p < 0.05). Pyrogallol toxicity increased with

increasing alkalinity (Fig. 3). As for the pyrogallol treatment
at the highest alkalinity level (1.51 meq L −1), OD650, cell
concentrations, chl a, and carotenoid concentrations declined
gradually from day 2, being lower than other treatments and
control. By the end of the experiment, values were only 0.06,
8.8 × 103 cells mL−1, 3.33 μg L−1, and 1.12 μg L−1 respec-
tively. There was a significantly negative correlation between
alkalinity and OD650 (r = − 0.50, p < 0.001), cell concentra-
tions (r = − 0.39, p < 0.001), chl a (r = − 0.43, p < 0.001),
and carotenoid concentrations (r = − 0.43, p < 0.001).

Rapid auto-oxidation process of pyrogallol under varying al-
kalinities Extracellular pyrogallol concentrations decreased
more rapidly after addition into cultures with higher alka-
linity. Pyrogallol was added at an initial concentration of
5.0 mg L−1, but the extracellular concentration immediately
fell to 1.99 mg L−1 in the low alkalinity (0.09 meq L−1)
treatment, to 0.05 mg L−1 in the medium alkalinity
(0.38 meq L−1) treatment, and to 0.03 mg L−1 in the high
alkalinity (1.51 meq L−1) treatment as shown in Table 2.
Concentrations of TPC (the sum of pyrogallol and its autox-
idation products containing phenolic hydroxyl groups) also
decreased with the increase of alkalinity, but the rate of
decrease was much lower than for pyrogallol itself. The
measured TPC concentration in the cultures was significant-
ly higher than pyrogallol concentrations at each alkalinity
immediately after pyrogallol addition, ranging from
2.96 mg L−1 at the alkalinity of 0.09 meq L−1 to
1.54 mg L−1 at the alkalinity of 1.51 meq L−1 (p < 0.05).
Pyrogallol and TPC concentrations on day 3 were also mea-
sured and were below 0.03 and 0.80 mg L−1 respectively.

Fig. 2 Mean inhibition ratio of pyrogallol on the OD650, cell
concentrations, chl a, and carotenoid concentrations of M. aeruginosa
at each alkalinity level in expt. I

Fig. 1 OD650 (a), cell
concentrations (b), chl a (c), and
carotenoid concentrations (d) of
alkalinity-adapted M. aeruginosa
cultures in the control and pyro-
gallol treatments at each alkalinity
level in expt. I. Significant differ-
ences are indicated by different
lowercase letters in the control
and different uppercase letters in
the pyrogallol treatments (one-
way ANOVA, p < 0.05)
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The changes in DO concentrations and the production of
intermediate auto-oxidants and quinone end products (mea-
sured by changes in OD600 and OD440) during the first
30 min demonstrated rapid auto-oxidation of pyrogallol fol-
lowing addition to the culture medium (Fig. 4). The autoxida-
tion rate was faster with higher alkalinity. The most rapid DO
reduction and the most rapid increase of OD600 and OD440

occurred within 10 min following pyrogallol addition.
Increased OD600 measures the production of intermediate deg-
radation products and it declined after 10 min. Conversely,
OD440 which measures the production of the quinone end
products increased during the first 30 min.

The changes of alkalinity and pH values The measured alka-
linity values in the M. aeruginosa cultures were consistent
with the calculated levels in the treatments, and they slightly
increased from day 0 to day 3 for each treatment (p > 0.05,
Table 3). The percentage of bicarbonate (HCO−

3 ) in total

alkalinity decreased with increasing alkalinity on day 0, but
was 100% for each treatment on day 3.

The initial pH of cultures ranged from 6.83 to 8.51 increas-
ing with increasing alkalinity levels (Table 3). For the two
lower alkalinity treatments, pH levels increased by 1.13 and
0.26 units respectively from day 0 to day 3, but decreased by
0.59 units for the highest alkalinity treatment.

Discussion

This study showed a positive correlation between alkalinity
and pyrogallol toxicity with the lowest toxicity in the
0.09 meq L−1 treatment and the highest toxicity in the
1.51 meq L−1 treatment, in both adapted and un-adapted
M. aeruginosa cultures. This study is the first to show that
increasing alkalinity correlated with increased pyrogallol tox-
icity to M. aeruginosa. This trend was found to be more ob-
vious over time during our 12-day experiment. Specifically,
the ambient alkalinity conditions of systems with
M. aeruginosa present must be taken into account as an im-
portant factor in the evaluation of pyrogallol toxicity. The
cyanobacterial control efficacy of pyrogallol might be
underestimated in the lab experiment using BG 11 culture
medium with an alkalinity of 0.38 meq L−1 and enhanced in
those waterbodies with higher alkalinity levels. The study also
provided a potential way to improve the efficacy of pyrogallol
as an algicide to control M. aeruginosa, that is, to elevate
ambient alkalinity levels to some extent.

Fig. 3 The temporal change
curves of OD650 (a), cell
concentrations (b), chl a (c), and
carotenoid concentrations (d) of
un-adapted M. aeruginosa
exposed to pyrogallol under a
range of alkalinities (meq L−1)
during the 12 days of expt. II

Table 2 Pyrogallol and TPC concentrations in the culture medium
measured immediately following pyrogallol addition. Significant
differences are indicated by different uppercase letters for pyrogallol
and by different lowercase letters for TPC (one-way ANOVA, p < 0.05)

Concentration (mg L−1) Alkalinity (meq L−1)

0.09 0.38 1.51

Pyrogallol 1.99 ± 0.17A 0.05 ± 0.03B 0.03 ± 0.05B

TPC 2.96 ± 0.13a 1.70 ± 0.24b 1.54 ± 0.17c
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This study demonstrated that pyrogallol was more effec-
tively auto-oxidized under higher alkalinity levels. Previous
studies have shown that auto-oxidized breakdown products of
pyrogallol can also enhance the toxicity of pyrogallol to
M. aeruginosa (Nakai et al. 2000; Lu et al. 2016). The oxida-
tion products of pyrogallol in sequence were pyrogallol-ortho-
quinone, purpurogallin, purpurogallin-quinone, and complex
polymers. The concentration dynamics of these quinone
breakdown products can be measured spectrophotometrically
at OD600 and OD440 respectively (Ramasarma et al. 2014).
Pyrogallol and TPC concentrations in the culture solutions
decreased, while intermediate products and quinone end prod-
ucts increased with alkalinity. It can be deduced that the con-
centration of the proton acceptor, i.e., bicarbonate, increased
with increased alkalinity, causing a decrease in the concentra-
tion of phenolic hydroxyl groups and an increase of the con-
centration of quinonoid carbonyl groups. It has been reported
that the quinones are around 1000-fold more toxic to algae
than phenolic acids (Pillinger et al. 1994). Additionally, the
rapid decrease in DO concentrations indicated the production
of more oxygen radicals, i.e., H2O2, during the process of
pyrogallol autoxidation, which are capable of affecting oxida-
tive damage to organisms (Liu et al. 2007; Ramasarma et al.
2014). Therefore, the enhanced toxicity of pyrogallol to
M. aeruginosa might be due to production of quinones

coupled with the presence of oxygen radicals produced under
higher alkalinities.

As expected, the pH value of the cultures on day 0 was
higher at higher alkalinity levels and ranged from 6.83 to 8.51.
Higher toxicity occurred at higher alkalinity and higher initial
pH levels. A previous study has shown that pyrogallol toxicity
to a toxic M. aeruginosa strain increased when the initial pH
was increased from 8.0 to 9.0 (Liu et al. 2007). However, it
has also been reported that polyphenol toxicity was enhanced
via auto-oxidation when the pH value was higher than 7.0, but
decreased due to oxidative polymerization when the pH value
was higher than 8.3 (Bährs et al. 2014). The highest pyrogallol
toxicity indicated oxidative polymerization did not happen at
the highest alkalinity level, although the initial pH value
exceeded 8.3 in the present study. It might be due to enhanced
pH buffering by higher alkalinity. Although the pH increased
with time due to the growth and photosynthesis of
M. aeruginosa for the two lower alkalinity levels (0.09 and
0.38 meq L−1) which reflects previous studies (Krüger et al.
2012; Tann et al. 2016), it decreased with time at the high
alkalinity level (1.51 meq L−1). The pH value in the three
pyrogallol treatments ranged from 7.76 to 7.96 on day 3.
Higher pH buffering capacity at higher alkalinity levels re-
duced the pH value of the cultures into the range that favored
auto-oxidation instead of oxidative polymerization.

Fig. 4 The dynamics of DO
concentrations (a), OD600 (b), and
OD440 (c) of culture medium
during the initial 30 min after
pyrogallol addition into culture
medium

Table 3 The changes of pH
values and actual alkalinity (CA)
levels as well as the percentage of
bicarbonate alkalinity shown
inside the parentheses

Setting CA (meq L−1) Measured CA (meq L−1) Measured pH values

Day 0 Day 3 Day 0 Day 3

0.09 0.27 ± 0.04 (100%) 0.60 ± 0.04 (100%) 6.83 ± 0.01 7.96 ± 0.09

0.38 0.67 ± 0.08 (92%) 0.82 ± 0.08 (100%) 7.50 ± 0.04 7.76 ± 0.06

1.51 1.31 ± 0.14 (68%) 1.66 ± 0.10 (100%) 8.51 ± 0.08 7.92 ± 0.08
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Microcystis aeruginosa strains with either sbtA or bicA
genes that are responsible for different bicarbonate up-
take systems have been shown to behave differently at
varying dissolved inorganic carbon (DIC) conditions
(Sandrini et al. 2014). Rapid adaptive changes in the
genotype composition in response to changes in inor-
ganic carbon availability ensure that Microcystis is ca-
pable of living in a wide range of alkalinities and there-
fore pH and can result in dominance of the phytoplank-
ton community with increasing carbon concentrations
(Sandrini et al. 2016). The alkalinity in Microcystis-
dominated Lake Taihu, for example, ranged from 13.8
to 52.8 μeq L−1 during 1991 and 1999 (Chen et al.
2003), which was much lower than the highest alkalin-
ity level in the present study. A dense cyanobacterial
bloom dominated by M. aeruginosa was present in the
main lake basin of Lake Krugersdrift, South Africa,
during 2005 and 2006, where the alkalinity in the two
bloom sites was more than 50-fold higher than Lake
Taihu at 2.58 and 2.70 meq L−1 (Oberholster et al.
2009), and in an alkaline Hungarian lake, where alka-
linity was as high as 13.58 meq L−1 (Bell et al. 2018).
The higher frequency of cyanobacteria dominance was
positively related to higher nutrient concentrations and
higher alkalinity during an analysis of phytoplankton
data and habitat conditions from 1500 lakes in 20
European countries (Maileht et al. 2013). Our findings
indicated that it may be possible to control harmful
M. aeruginosa using plant polyphenols, e.g., pyrogallol,
under higher alkalinity conditions.

Conclusions

In summary, this study showed that alkalinity affected py-
rogallol toxicity against a toxic strain of M. aeruginosa.
Increasing the alkalinities from 0.09 to 1.51 meq L−1 en-
hanced the toxicity of pyrogallol to M. aeruginosa in both
alkalinity pre-adapted and un-adapted cultures, for a range
of growth parameters and pigment concentrations. The
study demonstrated more efficient auto-oxidation of pyro-
gallol under higher alkalinity levels, causing a rapid de-
crease of the concentration of phenolic hydroxyl groups
and an increase of the concentration of quinonoid carbonyl
groups, which were more toxic to M. aeruginosa cells. The
study has enhanced our understanding of the interactive
effects of an environmental parameter, i.e., alkalinity, and
plant allelochemicals on the resilience of M. aeruginosa
blooms. The results of this study provide important back-
ground information for the development of a more effective
and environmentally friendly technique to control harmful
cyanobacterial blooms using plant-derived allelochemicals.
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