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Abstract
We tested the interactive effects of increased temperature and nutrient (ammonium, NH4

+) levels on physiological properties such
as photosynthetic rates, NH4

+ uptake rates, relative growth rates, chlorophyll fluorescence, and tissue nutrient contents in Ulva
linza Linnaeus. The experiments were conducted at four temperatures (LT, low temperature (15 °C); MT, medium temperature
(20 °C); CT, control temperature (25 °C); and HT, high temperature (30 °C)) and three NH4

+ concentrations (LN, low nutrient
(4 μM); MN, medium nutrient (60 μM); and HN, high nutrient (120 μM)). The interaction between temperature and NH4

+ levels
influenced the photosynthetic rates, NH4

+ uptake rates, relative growth rates, photosynthetic efficiency, tissue nitrogen contents,
and C:N ratios in algal tissues. Temperature strongly affected the photosynthetic rates, NH4

+ uptake rates, and photosynthetic
efficiency. Nutrient enrichment increased the photosynthetic rates, nutrient uptake rates, relative growth rates, photosynthetic
efficiency, tissue nitrogen contents, and tissue C:N ratios. Our study results could help understand the physiological responses of
U. linza under future ocean environmental conditions such as ocean warming and eutrophication.
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Introduction

Atmospheric CO2 concentration has increased from 280 ppm
in the pre-industrial era to the current level of 400 ppm be-
cause of anthropogenic activities following the Industrial
Revolution (IPCC 2014). Many studies predict CO2 concen-
trations will double their current levels by the year 2100
(Roleda et al. 2012; IPCC 2014). According to the IPCC re-
port (2014), global average temperature will increase by 0.6 to
2.0 °C, based on projections of the climate change model. If
no effort is made to curb CO2 emissions, then global average
temperature will increase by 2.6 to 4.8 °C (IPCC 2014). In
addition, seawater temperatures could increase from 1.9 to
5.8 °C by the end of the twenty-first century under elevated
CO2 conditions (IPCC 2014).

Seawater temperature is an important factor for macroalgae
survival, growth, reproduction, morphology, and metabolism
(Lüning and Neushul 1978; Davison 1991; Wernberg et al.
2010; Rothäusler et al. 2011; Martínez et al. 2012).
Temperature change could influence the activity of enzymes
including photosynthetic C and N assimilation, ribulose-1,5-
bisphosphate carboxylase oxygenase (Rubisco) activity, and
nitrate reductase formation (Raven and Geider 1988; Davison
1991; Yoshida et al. 1999; Berges et al. 2002). Elevated sea-
water temperature can have a positive effect on some
macroalgae (Fan et al. 2014; Zou and Gao 2014). However,
ocean warming has negatively affected changing of biomass,
productivity, growth, structure of community, and physiolog-
ical performance of macroalgae (Raven and Geider 1988;
Barry et al. 1995; Yesson et al. 2015; Ji et al. 2016; Kay
et al. 2016). Macroalgae also experience high or low disrup-
tive stresses in the form of cellular and subcellular damage
(Davison and Pearson 1996; Eggert 2012). In addition, bio-
geographical distribution of macroalgae has moved from the
tropical and temperate regions towards the poles because of
ocean warming (Wernberg et al. 2011; Díez et al. 2012).

Eutrophication is also an acute environmental problem in
the coastal areas that experience ocean warming (Lohman and
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Priscu 1992; Fei 2004). Elevated concentrations of nitrogen
(N) and phosphorus (P) could increase macroalgal growth and
biomass (Luo et al. 2012; Hurd et al. 2014; Li et al. 2016).
Under natural conditions, nitrogen and phosphorus are factors
limiting algal productivity (Dring and Dring 1991). Nitrogen
is an important constituent of many compounds such as
Rubisco, the main enzyme in photosynthesis (Dawes and
Koch 1990); phosphorus has various chloroplast functions,
including use in ATP generation, photosynthetic protein pro-
duction, and enzyme phosphorylation (Zer and Ohad 2003).
However, Carpenter (2008) reported that nitrogen and phos-
phorus could cause ocean eutrophication. Excessive nutrient
input causes severe blooming of macroalgae such as Ulva
spp., Chaetomorpha spp., Cladophora spp., and Sargassum
spp., the latter two being responsible for what are known as
green and golden seaweed tide, respectively (Taylor et al.
2001; Cohen and Fong 2006; Ye et al. 2011; Smetacek and
Zingone 2013; Li et al. 2016). Bloom-forming species have a
negative ecological impact because the decomposition of bio-
mass in the water column decreases oxygen levels in the ben-
thic environment (Lomstein et al. 2006; Wang et al. 2009). In
addition, elevated nutrient concentrations have been shown to
decrease biodiversity, affect marine habitats, and change eco-
system functioning (Yang et al. 2005; Liu et al. 2009; Mineur
et al. 2015).

Ulva spp. are green tide forming species with traits of op-
portunistic species, which is found near the coastal areas.
Opportunistic macroalgae have higher growth and nutrient
uptake under optimal environmental conditions than do other
macroalgae (Taylor et al. 2001; Nelson et al. 2008). Many
studies have been conducted using Ulva spp. under various
environmental conditions such as different temperatures, CO2

levels, nutrient concentrations, light intensities, and/or salin-
ities (Figueroa et al. 2014a, b; Stengel et al. 2014; Cui et al.
2015; Kang et al. 2016; Gao et al. 2016a, b; Kang and Chung
2017). Previous studies indicated that the physiological re-
sponses of Ulva spp. change differently depending on the
species. For example, U. australis was shown to display dif-
ferent physiological responses under elevated CO2/pH and
nutrient concentrations (Kang and Chung 2017; Reidenbach
et al. 2017). Cui et al. (2015) indicated that U. prolifera,
U. compressa, U. flexuosa, and U. linza were influenced dif-
ferently under various temperatures and light intensities.
Therefore, research needs to identify specific information on
the physiology ofUlva species. Our study focused onU. linza
Linnaeus (Ulvales, Chlorophyta), which several researches
have studied under different environmental conditions (Kim
et al. 2011; Luo et al. 2012; Kang et al. 2016), but not under
combinations of temperature and ammonium (NH4

+)
concentrations.

In this study, we used NH4
+ as the nitrogen form.Ulva spp.

grow faster under NH4
+ than under nitrate conditions (NO3

−)
(Ale et al. 2011; Li et al. 2019). In addition, NH4

+ is the

preferred nitrogen form for macroalgae because, in compari-
son with NO3

−, less energy is required to assimilate its nitro-
gen (McGlathery et al. 1996; Pedersen and Borum 1996;
Runcie et al. 2003). The utilization of NO3

− by macroalgae
involves the reduction of NH4

+ by nitrate reductase activity
(NRA) (Syrett 1981; Teichberg et al. 2007).

The objective of this study was to examine the physiolog-
ical activities of U. linza under elevated temperature and nu-
trient concentrations. In addition, we tried to determine the
interactions between ocean warming and eutrophication in
physiological responses of this alga. Therefore, we measured
the oxygen evolution rates during photosynthesis, rates of
nutrient uptake, rates of relative growth, chlorophyll fluores-
cence, and nutrient contents in tissues of this alga.

Materials and methods

The samples of U. linza were collected from Cheongsapo,
South Korea (35°09′N, 129°11′E) in September 2017. At this
sampling site temperature was 25.80 ± 0.50 °C, salinity was
33.50 ± 0.2 ‰, and pH was 8.10 ± 0.12. Temperature and sa-
linity were measured with a YSI Pro 2030 meter (YSI, USA)
and pH values were measured with a YSI Pro 10 meter (YSI,
USA). Samples were transported to the laboratory and washed
several times with 0.20 μm filtered seawater to remove all
epiphytes. After washing, the samples were kept in a culture
room in filtered seawater at 20 °C with 80 μmol photons
m−2 s−1 under a 12:12 light:dark cycle. The samples of
U. linza were acclimated 3 days before the experiments. For
each treatment, samples (1 g) were placed in 500 mL of fil-
tered seawater. The multi-factorial design experiment was set
up with four temperature conditions (LT; low temperature
(15 °C), MT; medium temperature (20 °C), CT; control tem-
perature (25 °C), and HT; high temperature (30 °C)) and three
NH4

+ concentrations (LN; low nutrient (4 μM), MN; medium
nutrient (60 μM) and HN; high nutrient (120 μM)). Of the
four temperature treatments, 15 and 20 °C were used for the
optimal growth condition (Taylor et al. 2001). The tempera-
ture 25 °C was used to reflect the summer seawater tempera-
ture in the coastal areas of Cheongspo, Korea (KHOA 2017).
The upper 30 °C condition represented the summer seawater
temperature at Cheongsapo predicted to be recorded with in-
creasing global temperature (4 °C), based on the IPCC report
(2014). NH4

+ nutrient levels followed Kang and Chung
(2017). Other experimental conditions such as temperature,
light intensity and light period followed the above acclimation
conditions. Each experimental condition had four replicates.
The temperature conditions were maintained in the incubator
throughout the experiments. To support the NH4

+ concentra-
tions, we added NH4Cl to the filtered seawater. The medium
was changed every two days to prevent nutrient depletion.
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The photosynthetic rates (μmol O2 g
−1 FW h−1) and NH4

+

uptake rates (μmol NH4
+ g−1 FW h−1) were measured 12 h

after the beginning of the experiment. The photosynthetic
rates (μmol O2 g−1 FW h−1) were measured with a Clark-
type microelectrode oxygen sensor (Unisense, Denmark).
The oxygen sensor was calibrated by mixing a solution of
sodium ascorbate (C6H7NaO6) and sodium hydroxide
(NaOH), and it detected photosynthetic rates in less than 1 s.

The NH4
+ uptake rates (μmol NH4

+ g−1 FW h−1) were
determined based on the average amount that disappeared
from the culture medium over the incubation period of 12 h.
The measurement method followed Parsons et al. (1984). The
following equation was used to calculate the NH4

+ uptake
rate:

V ¼ Si−S f
� �� vol
� �

= W � Tð Þ

where Si is the initial concentration of NH4
+, Sf is the final

concentration of NH4
+ after T hours of incubation, vol is the

volume of the culture medium, and W is the fresh weight of
each sample.

The growth, chlorophyll fluorescence and carbon (C) and
nitrogen (N) contents in algal tissue were measured after
14 days of the experiment. Ulva linza growth was determined
at the end of the experiment. The relative growth rates (%
day−1) were calculated as follows:

RGR ¼ lnW2−lnW1ð Þ=Tð Þ � 100

where W1 is the initial fresh weight, W2 is the final fresh
weight after 14 days, and T is the cultivation period (14 days).

Chlorophyll fluorescence was measured with a pulse am-
plitude modulation fluorometer (Diving-PAM, Walz,
Germany) at the end of the experiment. The maximum quan-
tum yield of photosystem II was measured as follows:

Fy=Fm ¼ Fm−Foð Þ=Fm

where Fv/Fm is the photosynthetic efficiency, as measured
using saturating pulse under dark-adaptation, Fm is the maxi-
mum fluorescence after dark-adaptation, and Fo is the mini-
mum fluorescence after dark-adaptation. Samples were placed
in the leaf-clip holders and kept in the dark for 15 min before
measuring chlorophyll fluorescence.

Carbon and nitrogen contents in algal tissue were analyzed
at the end of the experiment, using samples of U. linza. The
samples were dried at 60 °C for 48 h and then ground to a
powder. Carbon and nitrogen contents (%) in the tissue were
analyzed using an elemental analyzer (Vario-Micro Cube,
Elementar Analysensysteme GmbH, Germany). In addition,
we calculated C:N ratio on a molar basis.

A two-way analysis of variance (ANOVA) was conducted
on all experimental data. Before the statistical analysis was
performed, all data were tested for normality and

homogeneity. Tukey’s tests were used to compare the treat-
ments. A p value of 0.05 represented significant difference
among treatments. All statistical analyses were performed
with the SPSS program version 23.0 (IBM, USA).

Results

Photosynthetic rates (μmol O2 g
−1 FW h−1) were affected by

temperature and NH4
+ conditions. In addition, the samples of

U. linza were influenced by the interactive effects of temper-
ature and NH4

+ concentrations (Table 1). After the 12-h ex-
perimental period, the photosynthetic rates (μmol O2 g

−1 FW
h−1) ranged from 38.10 ± 3.76 to 89.38 ± 8.04 μmol O2 g−1

FW h−1 (Fig. 1). The minimum value was found at LTLN and
the maximum value was observed at MTHN. When the

Table 1 Results of two-way ANOVA derived from physiological re-
sponses (photosynthetic rate (μmol O2 g

−1 FW h−1), NH4
+ uptake rate

(μmol NH4
+ g−1 FW h−1), relative growth rate (% day−1), photosynthetic

efficiency (Fv/Fm), tissue carbon content (%), tissue nitrogen content (%),
and C:N molar ratio) of Ulva linza

Source DF MS F value p value

Photosynthetic rate

Temperature 3 72.21 4.50 0.01

NH4
+ concentration 2 5157.19 321.37 < 0.01

TxNH4
+ 6 46.18 2.88 0.03

NH4
+ uptake rate

Temperature 3 0.88 39.56 <0.01

NH4
+ concentration 2 85.87 3848.25 <0.01

TxNH4
+ 6 0.33 14.64 <0.01

Relative growth rate

Temperature 3 0.14 1.63 0.18

NH4
+ concentration 2 18.78 218.16 < 0.01

TxNH4
+ 6 0.41 4.73 0.01

Photosynthetic efficiency

Temperature 3 < 0.05 2.87 0.03

NH4
+ concentration 2 < 0.05 7.21 < 0.01

TxNH4
+ 6 < 0.05 11.22 < 0.01

Tissue carbon content

Temperature 3 0.24 1.29 0.30

NH4
+ concentration 2 1.23 1.99 0.16

TxNH4
+ 6 <0.05 0.57 0.75

Tissue nitrogen content

Temperature 3 0.54 1.32 0.29

NH4
+ concentration 2 0.03 7.20 <0.01

TxNH4
+ 6 <0.05 8.14 <0.01

C:N molar ratio

Temperature 3 29.70 2.63 0.08

NH4
+ concentration 2 2.02 7.21 < 0.01

TxNH4
+ 6 1.78 6.37 < 0.01
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temperature remained constant, the photosynthetic rates in-
creased significantly with increasing NH4

+ concentrations
(p < 0.05). In the case of the HN, the MT treatment had sig-
nificantly higher photosynthetic rates than did the treatments
at CT and HT (p < 0.05).

The rates of NH4
+ uptake (μmol NH4

+ g−1 FW h−1) were
influenced by temperature, NH4

+ levels, and the combined
effects of temperature and NH4

+ levels (Table 1). The mini-
mum NH4

+ uptake rate was 0.16 ± 0.02 μmol NH4
+ g−1 FW

h−1 at HTLN; the maximum rate was 5.93 ± 0.05 μmol NH4
+

g−1 FW h−1 at MTHN (Fig. 2). At LN, the NH4
+ uptake rates

were not significantly different under any temperature condi-
tions (p > 0.05). However, the rate was significantly different
between treatments at LT and over LT under LN condition
(p < 0.05).

The relative growth rates were measured after 14 days of
incubation. The relative growth rates (% day−1) were affected
by NH4

+ and the combined effects of temperature and NH4
+

combinations (Table 1). The relative growth rates ranged from
5.36 ± 0.38 to 8.07 ± 0.12% day−1 (Fig. 3). The minimum rel-
ative growth rate was observed at LTLN; the maximum value
was observed at MTHN.When the temperature was the same,
relative growth rates under MN and HN were significantly
higher than that under LN (p < 0.05), but the values were not
significantly different between the MN and HN (p > 0.05).

Photosynthetic efficiency (Fv/Fm), as measured by chloro-
phyll fluorescence after 2 weeks of the experiment, was influ-
enced by temperature, NH4

+, and the interactive effects of
temperature and NH4

+ (Table 1). Fv/Fm ranged from 0.61 ±
0.01 to 0.76 ± 0.02 (Fig. 4). Fv/Fm was lowest at CTLN and
highest at MTHN. In addition, Fv/Fm values increased signif-
icantly in elevated NH4

+ concentrations at all temperatures
(p < 0.05), but were not significantly different between MN
and HN (p > 0.05). At the HN condition, the Fv/Fm values
were significantly different between CT and HT (p < 0.05).

The carbon content in algal tissues (%) was not affected by
any culture treatments (Table 1). The tissue carbon contents
ranged from 24.40 ± 0.39 to 24.94 ± 0.08% (Fig. 5). Carbon
content was lowest at LTMN and highest at MTHN, but there
was no significant difference among the culture conditions
(p > 0.05).

The tissue nitrogen contents (%) were influenced by NH4
+

levels and the combined effects of temperature and NH4
+ level

(Table 1). The tissue nitrogen contents ranged from 1.52 ±
0.11 to 2.20 ± 0.04% (Fig. 6). Nitrogen content was lowest
at MTLN and highest at MTHN. When the temperature
remained constant, the tissue nitrogen content increased under
elevated NH4

+ levels (p < 0.05). When NH4
+ levels were the

Fig. 1 Photosynthetic rate (μmol O2 g−1 FW h−1) of Ulva linza under
different temperature and ammonium treatments. Significant differences
among the treatments are indicated by different letters (p < 0.05). Data are
means±SD (n = 4)

Fig. 2 Rates of NH4
+ uptake (μmol NH4

+ g−1 FW h−1) of Ulva linza
under different temperature and ammonium treatments. Significant
differences among the treatments are indicated by different letters
(p < 0.05). Data are means±SD (n = 4)

Fig. 3 Relative growth rate (% day−1) of Ulva linza under different
temperature and ammonium treatments. Significant differences among
the treatments are indicated by different letters (p < 0.05). Data are
means±SD (n = 4)
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same, tissue nitrogen contents were not significantly different
among temperature conditions (p > 0.05).

The C:N ratios in tissue were affected by NH4
+ and the

interactive effects of temperature and NH4
+ level (Table 1).

The tissue C:N ratios ranged from 11.32 ± 0.24 to 16.15 ±
0.92 (Fig. 7). The ratio was lowest at MTHN and highest at
MTLN. At the MT condition, the ratios were significantly
different under elevated NH4

+ conditions (p < 0.05). At other
temperatures, there were not significantly different between
MN and HN (p > 0.05). In the case of HN, the values were
significantly different between LT and MT conditions
(p < 0.05).

Discussion

Previous studies indicated that the photosynthetic rates of
Ulva spp. increased under elevated temperature or nutrient
concentrations (Zou and Gao 2014; Li et al. 2016; Kang and
Chung 2017). In our study, the photosynthetic rate was highest
at MTHN. Photosynthesis in Ulva sp. was highest at 20 to
25 °C (Murase et al. 1994). Also, the elevated nutrient con-
centrations increased photosynthetic rates in Ulva spp. (Kang
et al. 2016; Kang and Chung 2017). Li et al. (2016) showed
that the photosynthetic rates of U. prolifera were increased at
elevated nitrogen and phosphorus levels. In case of the in-
creased nutrient concentrations in the seawater, macroalgae
could easily take up nutrients because of higher nutrient avail-
ability (Yu and Yang 2008). The higher availability of nutri-
ents could increase photosynthesis in U. linza because this

Fig. 6 Nitrogen content (%) in tissue of Ulva linza under different
temperature and ammonium treatments. Significant differences among
the treatments are indicated by different letters (p < 0.05). Data are
means±SD (n = 4)

Fig. 7 C:N molar ratio in tissue ofUlva linza under different temperature
and ammonium treatments. Significant differences among the treatments
are indicated by different letters (p < 0.05). Data are means±SD (n = 4)

Fig. 4 Photosynthetic efficiency (Fv/Fm) of Ulva linza under different
temperature and ammonium treatments. Significant differences among
the treatments are indicated by different letters (p < 0.05). Data are
means±SD (n = 4)

Fig. 5 Carbon content (%) in tissue of Ulva linza under different
temperature and ammonium treatments. Significant differences among
the treatments are indicated by different letters (p < 0.05). Data are
means±SD (n = 4)
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species is an opportunistic and bloom-forming species found
near coastal areas. In addition, Zou and Gao (2014) indicated
that photosynthetic rates increase under elevated temperatures
at high nutrient concentrations.

The rate of NH4
+ uptakes were influenced by temperature,

NH4
+ treatment, and the combined effects of temperature and

NH4
+ treatments. Temperature is an important factor in the

nutrient uptake of algae (Gao et al. 2018). Fan et al. (2014)
indicated that macroalgae could have different nutrient re-
quirements under various temperature conditions. Our result
shows that the NH4

+ uptake rate was highest at MTHN. Fan
et al. (2014) also showed that the nutrient uptake rate of
U. prolifera was highest at 20 °C. In addition, the rate in-
creased at higher temperatures (25 and 30 °C) when compared
to control the temperature condition (15 °C) at 60 and 120 μM
NH4

+ (Fan et al. 2014). The NH4
+ uptake rates of Ulva spp.

increased under elevated NH4
+ concentrations. Many re-

searches have indicated that increased nutrient concentrations
could elevate the nutrient uptake rate of Ulva spp. (Luo et al.
2012; Kang and Chung 2017; Reidenbach et al. 2017).
Seawater has high nutrient concentrations; so, macroalgae
could more easily and efficiently perform nutrient uptake in
seawater than in other environments (Yu and Yang 2008;
Runcie et al. 2003). In addition, the morphological and oppor-
tunistic characteristics of U. linza could increase nutrient up-
take rates under elevated nutrient concentrations (Littler 1980;
Wallentinus 1984). The high nutrient uptake rate could affect
the metabolism of macroalgae because they generate Rubisco
and ATP using nitrogen and phosphorus, respectively (Dawes
and Koch 1990; Zer and Ohad 2003).

The relative growth rates of our samples were not affected
by elevated temperature conditions. However, several studies
have indicated that temperature affects macroalgal growth
(Mantri et al. 2011; Gao et al. 2016a, b, 2017; Chen et al.
2018). Temperature is an important factor affecting the phys-
iology of algal metabolism and growth (Zou and Gao 2013,
2014). Mantri et al. (2011) found that seaweed growth could
accelerate immediately under elevated temperatures because
of increased metabolism. Taylor et al. (2001) found that Ulva
species could grow over a broad temperature range (10–
30 °C). The growth rates of Ulva spp. were highest at 15–
20 °C and decreased over 20 °C (Taylor et al. 2001). Cui
et al. (2015) also observed that U. linza grew the fastest at
20 °C. However, our results suggest that relative growth rates
did not significantly decrease over 20 °C under constant NH4

+

concentrations. Therefore, there may be several environmen-
tal conditions influencing U. linza growth. In contrast, the
relative growth rate of Ulva sp. has been reported to increase
under various nutrient concentrations (Zou and Gao 2014; Li
et al. 2016; Kang and Chung 2017; Ober and Thornber 2017;
Reidenbach et al. 2017). Kang et al. (2016) mentioned that the
growth of U. linza increased more under elevated nutrient
concentrations at a low salinity (10 ‰) condition than under

a high salinity one (30 ‰). In addition, the relative growth
rates ofU. linzawere not only affected by temperature but also
by the interaction between temperature and NH4

+. Therefore,
in our culture conditions, the NH4

+ level was the main factor
affecting growth in U. linza. Lotze and Worm (2002) have
reported that elevated temperature and nutrient levels have a
combined effect on the growth of green algae.

Schreiber and Bilger (1993) state that chlorophyll fluores-
cence studies are a powerful tool for analyzing photosynthe-
sis. Fv/Fm is a particularly valuable measure of photosynthetic
efficiency (Hanelt et al. 1995). Many studies have been con-
ducted on photosynthetic efficiency under different tempera-
tures or nutrient levels (Padilla-Gamino and Carpenter 2007;
Zou and Gao 2014; Kang and Kim 2016). The photosynthetic
efficiency of our samples was affected by temperature. Kang
and Kim (2016) reported that warming temperatures do not
affect the photosynthetic efficiency of U. australis. Padilla-
Gamino and Carpenter (2007) show that the photosynthetic
efficiency of Asparagopsis taxiformis decreased under elevat-
ed temperature. However, the photosynthetic efficiency in
their study possibly changed seasonally because of acclimati-
zation to natural seawater temperatures in different seasons.
Therefore, we need to determine the pattern of photosynthetic
efficiency of U. linza in different seasons. The photosynthetic
efficiency was also affected by NH4

+ levels. Photosynthetic
efficiency increases with increasing nitrogen concentrations in
macroalgae (Dawes and Koch 1990). In the case of
U. australis, photosynthetic efficiency increased at higher
NH4

+ concentrations (Kang and Chung 2017; Reidenbach
et al. 2017). However, Kang et al. (2016) found that the pho-
tosynthetic efficiency of U. linza was not affected by elevated
nitrate concentrations. Therefore, the photosynthetic efficien-
cy of U. linza changes with various nitrogen sources and
concentrations.

The tissue carbon and nitrogen contents and C:N ratios of
U. linzawere not affected by different temperatures. A similar
result was also was found in U. australis (Kang and Kim
2016). Our results, however, show that NH4

+ concentration
affects tissue nitrogen content and C:N ratio. The C:N ratio in
tissues is a good index of the physiological status of
macroalgae and can be used as an indicator of macroalgae
status (Vergara et al. 1993; Kang et al. 2011). When nutrients
were abundant, the C:N ratio of U. australis decreased (Kang
and Chung 2017; Reidenbach et al. 2017; Ober and Thornber
2017). Ober and Thornber (2017) stated that C:N ratios de-
crease under higher nutrient treatments, and this, in turn, in-
creases the tissue quality of samples. Under sufficient nutrient
concentrations, macroalgae could possibly assimilate more
nutrients compared with the control nutrient level
(Reidenbach et al. 2017). Gómez-Pinchetti et al. (1998) indi-
cated that macroalgae might store the nitrogen in their tissue
under abundant nutrient conditions. We found that tissue ni-
trogen content and C:N ratio were significantly affected by the
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interaction between temperature and NH4
+ concentrations.

Although temperature and NH4
+ concentration had a signifi-

cant interactive effect on the C:N ratio of U. linza, NH4
+

concentration is the main driver of C:N ratio because the tem-
peratures were not affected any culture treatments.

In conclusion, the U. linza was positively affected by in-
creased temperatures and nutrient concentrations. The photo-
synthetic rates, NH4

+ uptake rates, and photosynthetic effi-
ciency were affected by temperature, NH4

+ concentration,
and the interaction between temperature and NH4

+ concentra-
tion. The relative growth rates, tissue nitrogen contents, and
C:N ratios were affected by NH4

+ concentration and the com-
bined effects of temperature and NH4

+ concentration. The
tissue carbon contents, however, were not affected by any
culture condition. According to our study, the physiological
responses of U. linza could increase under future ocean con-
ditions. This phenomenon could be a serious problem near the
coastal areas by inducing the formation of green tides. On the
contrary, this species could have a bioremediation capacity
because of its fast growth and high nutrient uptake rate.
Therefore, both characteristics of U. linza have to be consid-
ered when judging whether it represents a harmful macroalga
or a potential solution to coastal environmental problems.
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