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Abstract
The aim of this study was to characterize the yield and chemical compositions of sulfated polysaccharides (SP) from the brown
seaweed Silvetia compressa collected off the Pacific coast of Baja California, Mexico. SP yield was evaluated from basal and
apical tissues and fruiting bodies. Chemical heterogeneity was evaluated by ethanol fractionation and anion-exchange chroma-
tography and characterized by FTIR spectra. Geographic differences in yield (11–12.1%) and sulfate content (15–16%) were
minimal. Basal thallus had a higher yield, while fruiting bodies contained more fucose and sulfates. The SP of S. compressa are
composed of variable amounts of fucose, sulfates, and uronic acids (fucoidan type). The heterogeneity of SP was demonstrated
by fractionation with ethanol at 50% which yields a soluble fraction, composed of fucose with high sulfate content devoid of
uronic acids. Similarly, the anion-exchange chromatography separated fractions composed of molecules differing in fucose
content. FTIR spectra showed characteristic signals for SP: a strong peak at 1240–1250 cm−1 (S=O), a peak at 840–850 cm−1

(axial sulfate C-4), and peaks at 1625 and 1417 cm−1 (carboxylic group of uronic acids). These results indicate that SP of S.
compressa correspond to a fucoidan-type polysaccharides with sulfates occurring mainly on C-4 of the fucose units and con-
taining low amounts of uronic acids.
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Introduction

The carbohydrates are one of the main components in marine
seaweeds, representing nearly 50% of the dry weight. As in
terrestrial plants, they act as energy storage and structural el-
ements. In brown seaweeds, the main storage polysaccharides
are neutrally charged chains of glucans, built up predominant-
ly by 3-linked β-D-glucopyranose residues known as
laminaran (Percival and McDowell 1967; Painter 1983;

Kloareg and Quatrano 1988; Lobban and Harrison 1994).
On the other hand, structural polysaccharides are more com-
plex; besides the insoluble cellulose, brown seaweeds contain
the ionic polysaccharides alginates and fucoidans (Percival
and McDowell 1967; Painter 1983; Kloareg and Quatrano
1988). The fucoidans are a very heterogeneous polysaccha-
rides composed of fucose-bearing sulfate groups; they may
contain a variable amount of fucose, xylose, galactose, uronic
acids, and half ester sulfates (Percival 1968; Medcalf et al.
1978; McCandless and Craigie 1979; Painter 1983; Kloareg
et al. 1986; Berteau and Mulloy 2003). Fucoidan in brown
algae represents up to 20% of the dry weight (Usov et al.
2001). In algae, its main function is the building of cell walls;
it has been suggested also to be enrolled in osmoregulatory
activities and protection against desiccation (Black 1954;
Percival 1979; Kloareg and Quatrano 1988). Some studies
also suggest that fucoidans play a role in the morphogenesis
of zygotes of fucoid algae (Hogsett and Quatrano 1978;
Bisgrove and Kropf 2001).

Environmental factors which modify the physiology of the
algae, also affect the yield and composition of sulfated poly-
saccharides (SP) (Kloareg and Quatrano 1988; Honya et al.
1999; Usov et al. 2005; Mak et al. 2013; Bruhn et al. 2017). In
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agreement with its function, the fucoidan content is expected
to be higher in seaweeds with long periods of exposure to the
air, particularly species belonging to the Fucaceae family that
inhabit the upper intertidal zone; the closer the algae are to the
surface, the greater is their fucoidan content (Black 1954;
Kloareg 1981); in the same way, the content and composition
of fucoidan differ with the season of harvesting (Skriptsova
2016; Fletcher et al. 2017) and from the part of the thallus
where it is obtained (Kloareg and Quatrano 1988; Usov
et al. 2005; Skriptsova et al. 2012).

The fucoidan possesses numerous biological properties
with potential human health applications (Berteau and
Mulloy 2003). Its bioactivity (e.g., antioxidant, anticoagulant,
and anticancer) is related to its heterogeneity (Berteau and
Mulloy 2003; Ghosh et al. 2009; Ushakova et al. 2009;
Fitton et al. 2015; Usoltseva et al. 2018), particularly to the
molecular weight; content of fucose, glucuronic acid, and sul-
fates; and the position of the sulfate groups on the sugar res-
idues (Colliec et al. 1994; Berteau and Mulloy 2003; Li et al.
2005; Zhao et al. 2008; Ale et al. 2011; Kraan 2012).

Silvetia compressa (J. Agardh) E. Serrão, T.O. Cho, S.M.
Boo & Brawley (previously known as Pelvetia fastigiata (J.
Agardh) De Toni) belongs to the Fucaceae family. This is a
dominant species in the upper intertidal zone of the temperate
waters of the west coast of Baja California (Abbott and
Hollenberg 1976; Ricketts et al. 1985; Murray and Bray
1993). The first report of S. compressa in the Pacific coast of
Baja California was given by Setchell and Gardner (1925) as
Pelvetia fastigiata f. gracilis. Since then, many floristic stud-
ies reported its presence in the temperate Pacific region of the
Baja California peninsula (see Pedroche et al. 2008). Up to
date, there are no studies reported on SP content of this specie;
however, it is expected that S. compressa contain SP similar in
composition to those species belonging to Fucaceae. Silvetia
compressa is not currently used in Mexico since there are no
chemical and biological studies that justify its commercial
harvesting. The aim of the present study is to evaluate the
yield and chemical compositions of the SP produced by S.
compressa and, by fractionation, evaluate the chemical het-
erogeneity of its fucoidan molecule. Additional analyses were
done to evaluate differences among basal and apical tissues
and fruiting bodies.

Materials and methods

Silvetia compressa thalli were collected on the intertidal zone
of the temperate waters of the Pacific Ocean, along 160 km of
Baja California’s coast (Fig. 1) where its presence is more
conspicuous (Abbott and Hollenberg 1976; Pedroche et al.
2008). Three locations were selected within this region of
similar oceanographic conditions based on the access and
presence of fishing communities. About 15 whole adult plants

were collected by sampling (a total biomass of 3 kg (w/w)
when exposed to low tide on three different sites (total dis-
tance 160 km). The collected material was dried in a forced air
oven at 40 °C, then prior to analysis milled to particle size
≤ 0.5 mm.

Parts of the thallus

From the collected material, subsamples of three complete
plants from El Rosario were used to evaluate differences
among parts of the thallus: (1) basal part, comprised from
the basal disc to the second dichotomies; (2) apical segments,
new terminal growth of the plant, without vesicles; and (3)
fruiting bodies, considered to be all the vesicles on the termi-
nal dichotomies of the plant. The separated samples were
dried in a forced air oven at 40 °C and milled prior to being
analyzed.

Sulfated polysaccharide extraction

Samples of 3 g of dry and milled seaweed were extracted in
triplicate with 45mL of 0.2MHCl in a water bath at 60 °C for
120 min. The solution was centrifuged at 1500 rpm for 5 min,
and the remaining particles were re-extracted with 30 mL of
0.2MHCl at 60 °C for an additional 120min. The solutions of
both extractions were pooled and vacuum-filtered through di-
atomaceous earth. In order to recover the polysaccharide from
the solution, crystals of NaCl were added to 0.1 M and then
precipitated with three volumes of concentrated ethanol; the
mixture was centrifuged at 1500 rpm and decanted. To remove
salts, the precipitated material was washed twice with 70%
ethanol, then twice with concentrated ethanol; pressed; and
dried at 60 °C, until constant weight.

Fractionation

The extracted sulfated polysaccharides were fractionated by
two methods: (1) ethanol-MgCl2 and (2) anion-exchange
chromatography.

a) Ethanol fractionation was performed using a modification
of the method proposed by Larsen (1978). Briefly, the
extracted polysaccharides were precipitated in two ways:
(a) 50% ethanol and (b) 50% ethanol with MgCl2 salts
(0.1 M), in order to separate soluble and insoluble
fractions.

b) Anion-exchange chromatography

Fractionation was performed in a column of 15 × 120 mm,
filled with 7.5 g (15 mL) of DE-52 anion-exchange resin.
Previous to injection of the sample, the resin was activated
by washing with four volumes of 50 mM acetate buffer
(pH 5).
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A sample of 100 mg of the dry crude extract of S.
compressa was dissolved in 5 mL of acetate buffer. To
elute, first 30 mL of 50 mM acetate buffer was allowed
through the column. Then, NaCl solutions in an ascendant
step gradient of 0.25, 0.5, 1.0, 1.5, and 2.0 M, 30 mL
each, were allowed through the column. With a flow rate
of 1 mL min−1, 5-mL fractions were successively collect-
ed and characterized.

Chemical analysis

Total carbohydrates in the crude extract were determined
colorimetrically by the phenol-sulfuric acid method
(Dubois et al. 1956), using D-galactose and L-fucose as
standards. Fucose was measured by the method of cyste-
ine for deoxy sugars (Dische 1955), using fucose as stan-
dard. Uronic acids were quantified by the modified meth-
od of carbazole (Bitter and Muir 1962) using glucuronic
acid as standard; and sulfates by the turbidimetric method
of barium chloride-gelatin, using K2SO4 as standard
(Tabatabai 1974; modified by Craigie and Wen 1984).

The contents (%) of fucose, sulfates, and uronic acids were
converted to the molar fraction and correlated to fucose as the
unit.

FTIR spectra

About 3 mg of the dry extract of each sample was ho-
mogenized in solid KBr to form pellets. Their infrared
spectra were acquired in the transmission mode in the
range of 400 to 4,000 at 4-cm−1 resolution and analyzed
after 10 scans by Fourier transform using an FTIR-100
Perking Elmer spectrophotometer.

Results

The average SP yield of S. compressa from the three sites was
11.4 ± 0.7% in relation to the dry weight of the plant. Yield
varied from 11.0 ± 1.0% at the northern locality (Eréndira) to
12.2 ± 0.4% at the southern locality (El Rosario). The sulfate
content in the dry extract had a similar pattern with an average
of 15.3 ± 0.6% sulfate content (14.8 ± 0.2% in the northern
locality to 16.0 ± 0.2% in the southern locality; Fig. 2).

Thallus part

There were differences in SP yield and composition related to
the thallus source. The basal part had the higher SP yield
(20.7%) and higher sulfate, fucose, and uronic acid contents
(5.9, 16.7, and 4.1%, respectively); fruiting bodies had the
lower SP yield (9.8%), while the apical part had the lowest
sulfate content (2.1%) (Table 1).

Fractionation

The ethanol fractionationwith and withoutMgCl2 yielded two
fractions, soluble and insoluble; in both cases, the uronic acids
were present only in the insoluble fractions. The soluble frac-
tion was composed only of sulfated fucose. The use of mag-
nesium salts in the fractionation decreases the amount of in-
soluble fraction with respect to using only ethanol (Table 2).

Four fractions were obtained by ionic exchange chroma-
tography (Fig. 3). A first fraction was eluted with acetate buff-
er (uncharged molecules). The second fraction appears while
increasing the eluent NaCl molarity (0.4–0.8 M). The third
and main fraction (at 0.8–1.5 M NaCl) corresponds mainly
to fucose with some moiety of uronic acids; and the last frac-
tion (1.5–2.0 M) was composed only of fucose devoid of
uronic acids.
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Fig. 1 Sampling sites along the Pacific coast of Baja California, Mexico
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Fig. 2 Fucoidan and sulfate contents in samples of S. compressa
collected in three different localities of Baja California, Mexico ((1)
Eréndira, (2) San Quintín, (3) El Rosario); the vertical lines show the
standard deviation (n = 3)



The infrared analysis (FTIR) showed the characteristic sig-
nals of sulfated polysaccharides: a strong signal at 1250 cm−1

associated to stretching vibration of S=O bond; a signal at
840–850 cm−1 associated to axial sulfate group (C-4); addi-
tionally, a doublet signal at 1614 and 1417 cm−1 generated by
the carboxyl groups of uronic acids (Fig. 4a, b). From the
fractionation with ethanol in the soluble fractions, there was
a small signal at 1417 cm−1, but is absent in the soluble frac-
tion of ethanol/MgCl2 (Fig. 4a); this agrees with the obtained
chemical results (Table 2).

Molar ratio

The molar ratio (fucose:sulfates:uronic acids) calculated for
the SP of S. compressa varied from the less sulfated apical
part (1.00:0.65:0.38), to the more sulfated fruiting bodies
(1.00:1.20:0.32), while the whole plant was about
1.00:0.98:0.45 (Table 3).

In the same way, the ethanol fractionation modified the
molar ratio, where the soluble fraction in ethanol 50% was
higher in sulfates but devoid of uronic acids (1:1.12:0.0),
while the highest in uronic acids corresponded to the insoluble
fraction in ethanol/MgCl2 (1:0.85:1.44) (Table 4).

Discussion

Fucoidan was originally described as sulfated polysaccharides
from brown seaweed species such as Laminaria and Fucus
vesiculosus (Kylin 1913). Later studies reported that all the
brown seaweeds had sulfated polysaccharides related to
fucoidan (McCandless and Craigie 1979; Painter 1983;

Berteau and Mulloy 2003). However, the synthesis of
fucoidan is species dependent (Honya et al. 1999; Usov
et al. 2001; Skriptsova et al. 2012; Ustyuzhanina et al. 2014;
Skriptsova 2015; Wang and Chen 2016). Before this study,
there are no previous results on the polysaccharides of S.
compressa.

The yield of acid SP of S. compressa obtained in this study
fluctuated between 11 and 12.1% (dw), which is a value with-
in the range of yields reported for related species. Black
(1954) found up to 13% fucoidan content in a similar
Fucaceae species, i.e., Pelvetia canaliculata, and lower
fucoidan content (7%) in species growing at a lower water
level, Fucus serratus. Usov et al. (2001) found that in brown
algae, the composition of polysaccharides depends on the spe-
cies, where seaweeds with a high content of alginates have
less fucoidan, especially in Laminariales. However, in a
Fucaceae species, i.e., Fucus evanescens, they reported con-
siderable amounts of alginates and fucoidan (17.3 and 7.7%,
respectively). Larsen (1978) reported a fucoidan content of 6–
8% in dw in Ascophyllum nodosum, 9–11% in Fucus species,
and 5–20% in Laminaria sp., but in P. canaliculata, they
found a fucoidan content of 20% in dw.

Several studies have reported that the content and compo-
sition of SP in brown seaweeds differ with the part of the
thallus (Kloareg and Quatrano 1988; Usov et al. 2005;
Skriptsova et al. 2012; Skriptsova 2016). In this study, the
older tissue (basal) showed the highest fucose yield and sul-
fate yield (16.7 and 5.9%, respectively), indicating the highest
fucoidan content, while the apical part had the lowest (8.7%).
Our results are concordant with those reported by

Table 1 Average yield and composition of SP from different thallus
parts of S. compressa (total carbohydrates, fucose, sulfate groups, and
uronic acids)

% of plant dry weight

Thallus part CHOS Fucose Sulfates Uronic acids

Fruiting bodies 9.8 ± 0.2 10.0 ± 0.5 4.2 ± 0.8 2.1 ± 0.4

Apical 10.1 ± 0.5 8.7 ± 0.5 2.1 ± 0.2 2.3 ± 0.2

Basal 20.7 ± 0.9 16.7 ± 0.9 5.9 ± 0.1 4.1 ± 0.1

Table 2 Fractionation of sulfated
polysaccharides of S. compressa
in 50% ethanol and 50% ethanol/
0.1 M MgCl2

Fraction Media % of total Fucose Sulfates Uronic acids

Soluble Ethanol 44.7 16.9 ± 0.1 10.4 ± 0.03 0.00

Ethanol/MgCl2 54.8 44.5 ± 0.6 22.2 ± 0.8 0.00

Insoluble Ethanol 55.3 19.7 ± 0.2 8.5 ± 0.04 33.0 ± 0.2

Ethanol/MgCl2 45.2 18.9 ± 0.6 8.8 ± 0.3 33.4 ± 0.4
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Fig. 3 Fractionation of soluble polysaccharides of S. compressa by in
DE52 anion-exchange resin in a step gradient molarity of NaCl (0 to
2 M); total carbohydrates, fucose, and uronic acids



Zvyagintseva et al. (2003) who found a higher fucoidan con-
tent in older plants of Laminaria cichorioides compared with
young ones. In contrast, other studies in brown seaweeds have
shown that the reproductive tissue has higher fucoidan content
(Usov et al. 2005; Skriptsova et al. 2012; Mak et al. 2013).
Skriptsova et al. (2012) reported that fertile plants of Silvetia
babingtonii have relatively high fucoidan content (25% dry
weight). Some studies showed that in the non-reproductive
thallus, these fronds contain more fucoidan than stipes and
midribs (Black 1954; Usov et al. 2005). Our results suggest
that the proportion variation of SP of the different parts of the
plant varies with the species.

As previously referred, the extraction method influences
the yield and composition of the extracted polysaccharides

(Berteau and Mulloy 2003; Ale et al. 2011). Thus, in the
original extraction method (Kylin 1913), the acid extract
could be composed of a mixture of sulfated polysaccharides,
some fragment of uronic acids, and free sugars (Ale and
Meyer 2013; Bruhn et al. 2017). The employed acid strength
(0.2 N) was intended to avoid the concomitant extraction of
alginates and proved to extract more sulfated polysaccharides
than did water alone or CaCl2 media (data not shown).

The heterogeneity of the extracted SP of S. compressa was
demonstrated by precipitation with ethanol and ethanol/
MgCl2 (Larsen 1978) and by anion-exchange chromatogra-
phy. The ethanol precipitation rendered soluble and insoluble
fractions, where the soluble fraction was bigger with the use of
magnesium salts than when using only ethanol, while the in-
soluble fraction was lower. In both conditions, i.e., ethanol
and ethanol/MgCL2, the soluble fraction was devoid of uronic
acids, while the insoluble was enriched in uronic acids
(Table 2). Thus, the obtained composition of the soluble frac-
tion could be compared with the strict fucoidan definition
(Larsen et al. 1966; Larsen 1967, 1978; Mian and Percival
1973; Hogsett and Quatrano 1975; Bilan et al. 2002).

On the other hand, the anion-exchange chromatography
applied to the SP of S. compressa showed that the extracted
polysaccharides in acid media corresponded to a mixture of
different charged molecules, where four fractions were obtain-
ed (Fig. 3). It is noticeable that the fucose-containing polysac-
charides (fractions 3 and 4) represent more than 90% of the
extracted polysaccharides and must be the more sulfated mol-
ecules (data non-available). Similar results were obtained for
commercial fucoidan by Patankar et al. (1993), who separated
fucoidan fractions differing in sulfate content. Other studies
found a similar pattern in crude fucoidan extract of F.
evanescens (Bilan et al. 2002) and in the hydrolyzed extract
of Hizikia fusiforme (Wang et al. 2012)

In agreement with our results, FTIR analysis showed the
characteristic signals of sulfated polysaccharides: a strong sig-
nal at 1240–1250 cm−1 for total sulfates (S=O stretching vi-
bration) (Pereira et al. 2013); a signal at 840–850 cm−1 due to
axial sulfate group in C-4 position; this is in accordance with
the fact that the main sulfate group for fucoidan of different
brown seaweeds is positioned in C-4 as occurs in Chorda
filum (Chizhov et al. 1999), Sargassum stenophyllum

Table 3 Molar ratio of components in sulfated polysaccharides from
different thallus parts of S. compressa

Thallus part Fucose Sulfates Uronic acids

Fruiting bodies 1.0 1.20 0.32

Apical 1.0 0.65 0.38

Basal 1.0 0.95 0.36

Whole 1.0 0.98 0.45

Table 4 Molar ratio of the components (fucose:sulfates:uronic acids)
obtained of the fractions of fucoidan from S. compressa, separated by
precipitation in ethanol and ethanol with 0.1 M MgCl2

Fraction Media Fucose Sulfates Uronic acids

Soluble Ethanol 50% 1.00 1.12 0.00

Ethanol 50%/MgCl2 0.1 M 1.00 0.90 0.00

Insoluble Ethanol 50% 1.00 0.78 1.37

Ethanol 50%/MgCl2 0.1 M 1.00 0.85 1.44

J Appl Phycol (2019) 31:3841–3847 3845

Fig. 4 FTIR spectra for fractions of fucoidan from S. compressa obtained
by precipitation in ethanol at 50% and ethanol at 50% with MgCl2: a
soluble and b insoluble fractions



(Duarte et al. 2001), and Laminaria saccharina (Cumashi
et al. 2007). Other signal is a doublet at 1620 cm−1 and
1416 cm−1 indicating the asymmetric and symmetric
stretching vibrations of carboxylate (RCOO-) (Synytsya
et al. 2003; Silva et al. 2005; Wang and Chen 2016). On the
other hand, the absence of uronic acids in the soluble fraction
is detected by changes in the signal at 1417 cm−1 only in the
FTIR spectra of ethanol with MgCl2 (Table 2, Fig. 4a).

Finally, the molar ratio of components of the fucoidan of S.
compressa showed that this polysaccharide is composed
mainly of fucose with high proportion of sulfates (from 0.6
to 1.1 mol by mol of fucose) and the uronic acids (from 0.3 to
1.44 mol per mol of fucose) (Tables 3 and 4). Bilan et al.
(2002) found a molar ratio of fucose:sulfates of 1:1.23 for
fucoidan of F. evanescens. The fractionation with ethanol
yields molecules with 1 mol of sulfate for each mole of fucose
(Table 4) in agreement with the fucoidan from Nemacystus
decipiens (Tako et al. 1999).

Conclusions

The polysaccharides isolated in acidic conditions from the
brown seaweed S. compressa are fucoidan type, composed
of a mixture of fucose with high sulfate content and fractions
of uronic acids. While the yield of SP was relatively constant
along the sampled region, the content and composition varied
between the tissue sources, where a higher content was ob-
tained for basal tissue but higher sulfation occurs in fruiting
bodies. The crude SP extracted from S. compressa can be
separated in molecules containing sulfated fucose with uronic
acids and molecules with only sulfated fucose.

The obtained molar ratio showed that in the sulfated poly-
saccharide of S. compressa, each mole of fucose corresponds
almost 1 mol of hemiester sulfate and, based on FTIR spectra,
the fucoidan of S. compressa is mainly sulfated in C-4 (axial
sulfate group). Thus, this sulfation pattern is more related to
Laminariales species than to Fucales. This study provides the
bases for potential use of S. compressa as a source of fucoidan.
It is important to point out that before any attempts to consider
this species for commercial purposes, population and biolog-
ical studies would be necessary in order to define sustainable
harvesting potential.
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