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Abstract
Environmental stresses such as nitrate deprivation and high light are effective at increasing lipid content inmicroalgae, but they can also
slow down and even stop growth. In this study, the phytohormones methyl jasmonate, salicylic acid, gibberellin, abscisic acid, and
ethephon were introduced to cultures of the oleaginous marine diatom Phaeodactylum tricornutum in an attempt to increase growth
and lipid production. Single-factor experiments showed that the influences of some of the phytohormones were closely related to their
concentrations. Methyl jasmonate, abscisic acid, and salicylic acid promoted P. tricornutum growth and lipid accumulation at certain
concentrations. The differing effects of the three phytohormones on P. tricornutum may be related to the respective phytohormone’s
responsive cis-regulatory elements in the upstream regions of the triacylglycerol (TAG) synthesis genes. Methyl jasmonate, abscisic
acid, and salicylic acid were further studied in response surface experiments, through which a 141% increase in TAG production was
attained for 10-L cultures of P. tricornutum grown under optimal conditions. This study suggests that some phytohormones can
promote P. tricornutum lipid accumulation without hindering growth. It also provides another strategy for improving the production
of microalgae for use as biodiesel.
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Introduction

Microalgae are the optimal raw material for biodiesel, but are far
from being widely used for industrial applications (Liu et al.
2017a, b). To date, there have been many studies and methods
on promoting microalgae growth rate (Mohan et al. 2015) and
increasing triacylglycerol (TAG) accumulation under environ-
mental stresses (Ge et al. 2014; Peng et al. 2014; Barka et al.

2016). Yet it is difficult to simultaneously obtain rapid growth
rates and high lipid production. Therefore, a new method for
sustainable TAG production in microalgae has become the focus
of attention.

The oleaginous Phaeodactylum tricornutum with more than
20% lipid of the dry weight (DW) is a model diatom for studying
the lipid synthesismechanism. The genome ofP. tricornutum has
been reported as having about 27.4 Mbp (Bowler et al. 2008).
Many researchers have characterized the TAG synthesis mecha-
nism (Yang et al. 2013; Levitan et al. 2015) and key enzymes
(Guihéneuf et al. 2011; Gong et al. 2013; Niu et al. 2013; Cui
et al. 2013, 2018) inP. tricornutum. The accumulation of lipids in
P. tricornutum is a consequence of intermediate metabolism re-
modeling, especially reactions in the tricarboxylic acid and the
urea cycles (Levitan et al. 2015). As with other algae, for exam-
ple, Chlorella sorokiniana (Hunt et al. 2010), the synthesis and
accumulation of TAG in P. tricornutum are always affected by
environmental factors, especially nitrate deprivation, and bio-
mass always declines under conditions of stress (Peng et al.
2014; Yang et al. 2014; Yu et al. 2016). Thus, the resulting
two-step culture ofP. tricornutum, which requires a growth phase
and TAG accumulation phase, hinders its use for industrial
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applications because of high production costs and long culture
cycles.

Several phytohormones such as salicylate and gibberellic acid
have been found to affect microalgal growth andmetabolism (Xu
et al. 2013; Bajguz and Piotrowska-Niczyporuk 2014; Kim
et al. 2016; Le Henry et al. 2017; Lin et al. 2018; Parsaeimehr
et al. 2017). Naphthylacetic acid and gibberellin could promote
Arthrospira platensis and Arthrospira maxima growth, boosting
the growth rate of the normal culture to 150% while increasing
the amount of metabolic products such as the total extracellular
sugar and total intracellular protein (Chen et al. 2009). Lu et al.
(2010) found that jasmonic acid methyl ester and gibberellin
promoted the synthesis of the microalga Haematococcus
pluvialis and accumulation of astaxanthin by regulating the key
enzyme BKT in the astaxanthin synthesis pathway.
Naphthylacetic acid was reported to improve the fatty acid com-
position of the microalga Chlorella pyrenoidosa (Liu et al.
2017a, b). Recently, Xu et al. (2017) found that 40 μM salicylic
acid could stimulate TAG accumulation in P. tricornutum at the
stationary phase.

Based on previous researches, it can be hypothesized that
phytohormones may simultaneously increase the growth rate
and TAG production of P. tricornutum and, as a result, save on
both the time and costs involved in its production for biodiesel.
Thus, single-factor and Box-Behnken tests were conducted to
detect the influence of single phytohormones on P. tricornutum
and the optimal proportions needed for the highest lipid yield.
Furthermore, the expression patterns of key enzymes in the lipid
synthesis pathway were analyzed to investigate the mechanism
by which the phytohormones influence P. tricornutum.

Materials and methods

Culture of P. tricornutum

The P. tricornutum strain was kindly donated by Prof. Mingyan
Yin of the Key Laboratory of Experimental Marine Biology,
Institute of Oceanology, Chinese Academy of Sciences.
P. tricornutum was cultured in f/2 medium (Guillard and
Ryther 1962) at 23 ± 2 °C and illuminated with cool-white fluo-
rescent light at 35 μmol photons m−2 s−1 on a 12-h:12-h
light:dark cycle. The artificial seawater for the f/2 was made
using Reef Salt™ (Seachem Laboratories, USA) diluted in dis-
tilled water to a concentration of 34 g L−1, and the pH level was
adjusted to 7.2 with 10% hydrochloric acid.

Single-factor experiments with phytohormones

The phytohormones methyl jasmonate, salicylic acid, gibber-
ellin, abscisic acid, and ethephon (Sigma, USA) were dis-
solved in ethyl alcohol before being added separately to
P. tricornutum cultures at the logarithmic phase of growth.

The algae were then cultured under the same conditions de-
scribed above for 6 days. The final concentration gradients of
methyl jasmonate, salicylic acid, and abscisic acid in the
200-mL P. tricornutum cultures were 0, 1, 2, 6, 10, 14, 18,
and 30mgL−1. The concentrations of gibberellin were 0, 0.15,
1.50, 2.00, and 20.0 mg L−1, while those of ethephon were 0,
0.06, 0.60, 2.00, and 20.0 mg L−1. Absorption was measured
at 730 nm every 24 h.

A Water-PAM fluorometer (Walz GmbH, Germany) was
used to monitor Fv/Fm in P. tricornutum every 72 h.
Phaeodactylum tricornutum cultures were first dark adapted
for 5 min, then exposed to a saturating pulse (0.8 s;
5640 μmol photons m−2 s−1) and a set of actinic irradiances
at 322 μmol photons m−2 s−1 for 0.8 s every 20 s over a 5-min
interval. There was a 40-s delay between the saturating pulse
and the actinic light. The experiments were performed in
triplicate.

Box-Behnken experiment and response surface
methodology

The Box-Behnken test design in the MyDesign-Design-
Expert 8.0.6 software (www.statease.com/soft_ftp.html) was
used to find the optimal amounts of additives, with the TAG
content as the response value (Kansedo and Keatteong 2013).
Based on the results of the single-factor experiments, methyl
jasmonate at concentrations of 10 to 14 mg L−1 and salicylic
acid and abscisic acid at ranges of 2 to 6 mg L−1 were studied
further. Ten-liter P. tricornutum cultures were exposed to the
phytohormones at these concentrations for 6 days, and the
results were analyzed using analysis of variance (ANOVA).
The growing conditions for the 10-L cultures were as de-
scribed above with continuous aeration at 1.3 m3 min−1.

Lipid extraction and analysis

TheP. tricornutum cultures from the single-factor experiments
and the cultures exposed to multiple phytohormones were
harvested after 6 days by centrifugation at 1500×g at 18 °C
and then freeze-dried for 48 h. The resulting powders were
broken down and digested with 4 mol L−1 hydrochloric acid at
room temperature for 1 h, and the total lipids were extracted
from the powder using the chloroform-methanol method
(Yoon et al. 2012). The weight and concentration of the total
lipids were measured with an electronic balance. The TAG
was separated by thin-layer chromatography (silica gel plate,
HSGF254, Yellow Sea, China) with a mixture of normal
hexane/diethyl ether/acetic acid (70:30:1 by volume) as the
mobile phase. The lipid and TAG quantification was per-
formed by gas chromatography-mass spectrometry (GC-
MS), as previously described (Yoon et al. 2012).
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Expression pattern of TAG synthesis enzymes
in P. tricornutum

To investigate the influences of the three phytohormones
methyl jasmonate, salicylic acid, and abscisic acid on the lipid
synthesis pathway, the expression patterns of the key enzymes
in P. tricornutum for TAG synthesis were examined by quan-
titative PCR (Q-PCR). The key enzymes included acetyl-CoA
carboxylase (ACC, NC_011686.1 and NC_011698.1), long-
chain acyl-coenzyme A synthetases (LACS, KF359938.1,
KF359939.1, KF359940.1, KF359941.1, and KF359942.1),
lysophosphatidic acid acyltransferase (LPAAT, JQ837824.1),
and diacylglycerol acyltransferase (DGAT, HQ589265.1,
JQ837823.1, JX469837.1, XP_002184474.1). The Q-PCR
primers for these enzymes are listed in Table 1. The cis-regu-
latory elements in the 5′ upstream region of the key enzymes’
genes were analyzed through the PLANTCARE website
(http://bioinformatics.psb.ugent.be/webtools/plantcare/html/).

Phaeodactylum tricornutum induced by the three phyto-
hormones for 0, 3, and 6 days were harvested and frozen in

liquid N2. RNA was isolated from algal samples using
RNAiso extraction reagent (TAKARA, China) according to
the manufacturer’s instructions. cDNA synthesis and relative
quantitative real-time PCR were performed as described by
Cui et al. (2018) using the Applied Biosystems 7500 Fast
Real-Time PCRSystem (Thermo Fisher Scientific, USA) with
SYBR Green PCR Master Mix (TAKARA, China). The
mRNA expression level was normalized using the 18S
cDNA gene as the internal control.

Statistical analysis

All experiments were performed using biological triplicates to
ensure reproducibility. Values are presented as means ± SD.
Statistical analyses were performed using the SPSS statistical
package (SPSS Inc., USA). Paired sample t tests were applied.
Differences were considered statistically significant when p-
values < 0.05.

Results

Effects of phytohormones on growth and TAG
accumulation in P. tricornutum

In the single-factor experiments, methyl jasmonate, salicylic
acid, and abscisic acid were found to stimulate the growth rate
of P. tricornutum to 0.7 to 0.9 mg L−1 day−1 at several con-
centrations. These include methyl jasmonate at 10 and
14 mg L−1; salicylic acid at 2, 6, and 30 mg L−1; and abscisic
acid at 2 mg L−1. Meanwhile, gibberellin and ethephon did not
promote the growth of P. tricornutum at any of the tested
concentrations (Fig. 1).

The DW, TAG productivity, and TAG content (TAG/
DW%) of P. tricornutum following 6 days of induction with
the phytohormones are shown in Table 2. The TAG produc-
tivity of P. tricornutum cultures induced by methyl jasmonate,
salicylic acid, and abscisic acid at some concentrations was
higher than that of the control. For methyl jasmonate, the
highest biomass and TAG productivity of P. tricornutum were
achieved at 10 mg L−1, which is 1.51-fold the control value.
Meanwhile, for abscisic acid, the highest TAG production was
1.97-fold of the control at 10 mg L−1. In contrast, gibberellin
and ethephon caused the TAG productivity of P. tricornutum
to decline by a large margin.

The TAG content inP. tricornutum induced by these phyto-
hormones in most tested concentrations—except 10 mg L−1

methyl jasmonate, 0.15 and 1.5 mg L−1 gibberellin, and
0.06 mg L−1 ethephon—was lower than that of the control.
Thissuggests thatsalicylicacidandabscisicacidcouldpromote
the growth of P. tricornutum to achieve high TAG production,
but not strengthen TAG synthesis. The phytohormones

Table 1 The primers for Q-PCR in the research

Number Name Sequence (5′-3′)

1 18S rDNA-for CCAGGTCCAGACATAGTAAG

18S rDNA-rev GTACAAAGGGCAGGGACGTA

2 ACC1-for GGCCACCGAGTTTGCGGATTT

ACC1-rev CACCCTGGCGCATTTGACCC

3 ACC2-for TGTTGGTATGGTGGCGTGGCT

ACC2-rev TTCTCGGGTTCCAAAGCTCCC

4 LAPPT-for GGCAACTATTTGGCCGGGTAG

LAPPT-rev AGATGGCGACGATGATGAGG
CA

5 LACS1-for CGCTGTTCAAGGCGCTCGTC

LACS1-rev TCCCTCCACATCCCGGCGAT

6 LACS2-for CGACGCACCGCTGGACGAAT

LACS2-rev TCGTCTGTCACCGGCTGCAC

7 LACS3-for CCAGCCCACCGTGCTCTTT

LACS3-rev TAGTGCATCCCGCGTCCCT

8 LACS4-for GTGGCGGATGTCGCTTGGA

LACS4-rev AGACACCGGCAGGGATTCCTCC

9 LACS5-for CCGTCGCTCTTGGAACCCTG

LACS5-rev TGCAGGGACCGAGCGGGTTCA

10 DGAT1-for TTATGCACGAGGTGCTTG

DGAT1-rev CCGGGAATTTGCGATAGAG

11 DGAT2A-for CGCTAGTATGGGTTCCATTGA

DGAT2A-rev ATAACGAGAACTGCCAGAATC

12 DGAT2D-for CAATTTGTGTTCGCCGTTAG

DGAT2D-rev ATCTTGCTTGCAGTCTGT

13 WS/DGAT-for AGCTCCCACAACAATCATC

WS/DGAT-rev CGTGAAAGCAAGCATAGGT
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gibberellin and ethephonmaypromote TAGsynthesis at sever-
al concentrations, but inhibit growth at the same time.

The Fv/Fm of P. tricornutum showed a slight decline during
the late logarithmic phase of growth (Fig. 2). Methyl
jasmonate, salicylic acid, and abscisic acid did not influence
photosynthetic activity (p > 0.05, two-way repeated measures
ANOVA), while gibberellin and ethephon limited photosyn-
thetic activity after 3 days of induction.

Based on these results, the phytohormones methyl
jasmonate, salicylic acid, and abscisic acid could improve
the TAG production as well as the growth of P. tricornutum;
thus, they were further analyzed for optimization. Gibberellin
and ethephon did not increase growth or TAG production, and
thus were not evaluated further.

Effects of methyl jasmonate, salicylic acid,
and abscisic acid on the TAG synthesis pathway

The TAG content (TAG product per 1 mg DW) in
P. tricornutum induced by methyl jasmonate, salicylic acid,
and abscisic acid did not rise obviously or even declined in
most cases as listed in Table 2, which may indicate the TAG
synthesis pathway in P. tricornutum was not strengthened by
these phytohormones. To survey the influences of methyl
jasmonate, salicylic acid, and abscisic acid on the TAG syn-
thetic pathway, the key enzymes related to ACC1, ACC2,

LAPPT, and so on were further monitored by Q-PCR every
72 h (Fig. S1). The R2 values for all the primer pairs were all
higher than 0.90. The results showed that these key enzymes’
expression were related to the phytohormone concentrations
and the inducing time (Figs. 3, 4, and 5), and were suppressed
in most sets except 6-day inducing of 10 mg L−1 methyl
jasmonate (Fig. 3).

The cis-regulatory elements responsive to the three phyto-
hormones in these gene upstream regions were also analyzed
and are listed in Table 3. The methyl jasmonate-responsive el-
ements (CGTCA-motif and TGACG-motif) were found in the
upstream regions of most genes except DGAT1, while the
abscisic acid- and salicylic acid-responsiveelementswerepres-
ent in just some of the gene upstream regions. Considering the
Q-PCR results (Fig. 3) and the TAG content measurements
(Table 2), methyl jasmonate appears to influence TAG content
through theexpressionof thekeyenzymes in theTAGsynthesis
pathway. Its most effective concentration range for increasing
TAGsynthesis inP. tricornutumwas10 to14mgL−1 for6days.
Salicylic acid and abscisic acid suppressedgenes’ expressionat
all the concentrations, includingDGAT2Awhich contained the
regulatory elements responsive to the phytohormones, and the
TAG content of P. tricornutum induced by the two phytohor-
mones decreased. Based on these results, salicylic acid and
abscisic acid were predicted to increase TAG production
through biomass but not the TAG content.

Fig. 1 Growth curves of P. tricornutum cultures containing the
phytohormones. a P. tricornutum containing methyl jasmonate. The
numbers in the figure are the concentrations of methyl jasmonate: 0, 1,
2, 6, 10, 14, 18, and 30 mg L−1. b P. tricornutum containing salicylic acid.
The numbers in the figure are the concentrations of salicylic acid: 0, 1, 2,
6, 10, 14, 18, and 30 mg L−1. c P. tricornutum containing abscisic acid.

The numbers in the figure are the concentrations of abscisic acid: 0, 1, 2,
6, 10, 14, 18, and 30mg L−1. d P. tricornutum containing gibberellin with.
The numbers in the figure are the concentrations of gibberellin: 0, 0.15,
1.50, 2.00, and 20.0 mg L−1. e P. tricornutum containing ethephon. The
numbers in the figure mean the concentrations of ethephon: 0, 0.06, 0.60,
2.00, and 20.0 mg L−1. (Data are mean ± SD, n = 3)
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Combination of methyl jasmonate, abscisic acid,
and salicylic acid for inducing TAG accumulation
in P. tricornutum

Based on the single-factor experiments, the effects of methyl
jasmonate, abscisic acid, and salicylic acid were further exam-
ined using the response surface test. Ten-liter cultures of
P. tricornutum with three phytohormones inducing were
established according to the design of the software, and the
resulting TAG products (Table 4) were used as the response
values to find the optimal conditions for growth. These results

were then analyzed using ANOVA. The resulting parameters
calculated based on TAG yield as the response are presented
in Table 5 and the response surface model was established
with p < 0.05. The combination of methyl jasmonate and
salicylic acid (group AB in Table 5) and of methyl jasmonate
and abscisic acid (group AC in Table 5) may increase TAG
production in P. tricornutum cultures, much more than just
one of these phytohormones will do (Table 5). And salicylic
acid (group C in Table 5) may be more effective to increase
TAG production in P. tricornutum than the other two phyto-
hormones (group A and group B) during inter-group analysis.

Table 2 TAG product of
P. tricornutum induced by PGRs PGRs Concentration

(mg L−1)
DW
(mg L−1 day−1)

TAG productivity
(mg L−1 day−1)

TAG content
(TAG/DW%)

Methyl jasmonate 0 67.67 ± 2.01 2.61 ± 0.14 3.85 ± 0.21

1 63.37 ± 1.01 2.04 ± 0. 15 3.21 ± 0.19

2 66.00 ± 3.01 2.20 ± 0.13 3.34 ± 0.23

6 68.67 ± 1.01 2.20 ± 0.13 3.20 ± 0.21

10 100.33 ± 1.01 3.93 ± 0.12 3.92 ± 0.15

14 97.00 ± 2.01 3.59 ± 0.13 3.70 ± 0.17

18 87.67 ± 1.01 3.04 ± 0.09 3.47 ± 0.18

30 95.33 ± 0.01 3.20 ± 0.13 3.36 ± 0.18

Salicylic acid 0 71.00 ± 1.01 2.61 ± 0.14 3.67 ± 0.21

1 67.10 ± 2.21 2.49 ± 0.06 3.71 ± 0.19

2 82.33 ± 1.01 2.95 ± 0.07 3.58 ± 0.15

6 74.63 ± 0.98 2.56 ± 0.08 3.43 ± 0.24

10 58.20 ± 0.82 1.48 ± 0.04 2.55 ± 0.25

14 61.47 ± 2.01 1.66 ± 0.07 2.69 ± 0.18

18 71.19 ± 1.02 2.42 ± 0.05 3.40 ± 0.24

30 79.67 ± 2.01 2.32 ± 0.08 2.91 ± 0.19

Abscisic acid 0 67.67 ± 1.21 2.61 ± 0.04 3.85 ± 0.22

1 67.00 ± 1.28 2.32 ± 0.03 3.47 ± 0.20

2 133.67 ± 0.71 5.13 ± 0.04 3.84 ± 0.25

6 80.33 ± 1.00 2.54 ± 0.02 3.17 ± 0.18

10 66.00 ± 0.81 1.43 ± 0.02 2.17 ± 0.08

14 74.53 ± 1.31 2.03 ± 0.04 2.72 ± 0.35

18 63.67 ± 0.61 2.15 ± 0.12 3.38 ± 0.17

30 62.33 ± 0.31 2.02 ± 0.03 3.24 ± 0.38

Gibberellin 0 67.67 ± 2.01 2.61 ± 0.14 3.85 ± 0.22

0.15 64.83 ± 2.01 2.53 ± 0.04 3.90 ± 0.21

1.5 64.50 ± 0.91 2.56 ± 0.13 3.97 ± 0.21

2 61.33 ± 1.01 1.48 ± 0.04 2.41 ± 0.35

20 60.25 ± 2.01 2.14 ± 0.03 3.56 ± 0.16

Ethephon 0 67.67 ± 2.01 2.61 ± 0.14 3.85 ± 0.21

0.06 66.05 ± 0.81 2.60 ± 0.04 3.94 ± 0.18

0.6 66.65 ± 0.91 2.57 ± 0.03 3.85 ± 0.17

2 65.65 ± 0.41 1.92 ± 0.03 2.93 ± 0.15

20 62.33 ± 2.00 0.35 ± 0.13 2.17 ± 0.17

TAG productivity ¼ TAG product in the induced cultures mgð Þ−TAG product in the cultures before phytohormones exposure mgð Þ
the volume Lð Þ�the inducing days
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Fig. 2 The Fv/Fm of P. tricornutum cultures with phytohormones. a
Cultures with methyl jasmonate. The 8 different concentrations of
methyl jasmonate were 0, 1, 2, 6, 10, 14, 18, and 30 mg L−1. b Cultures
with salicylic acid. The 8 different concentrations of salicylic acid were 0,
1, 2, 6, 10, 14, 18, and 30 mg L−1. c Cultures with abscisic acid. The 8

different concentrations of abscisic acid were 0, 1, 2, 6, 10, 14, 18, and
30 mg L−1. d Cultures with gibberellin. The 5 different concentrations of
gibberellin were 0, 0.15, 1.50, 2.00, and 20.0 mg L−1. e Cultures with
ethephon. The 5 different concentrations of ethephon were 0, 0.15, 1.50,
2.00, and 20.0 mg·L−1. (Data are mean ± SD, n = 3)

Fig. 3 The expression pattern of the key enzyme genes in TAG synthetic
pathway in P. tricornutum with methyl jasmonate induction. The
P. tricornutum cultures were conducted with Q-PCR for every 3 days
and each sample has three biological replicates, while each biological

triplicate sample has three analytical triplicates in Q-PCR. The numbers
on the X-axis are the concentrations of methyl jasmonate: 0, 1, 2, 6, 10,
14, 18, and 30 mg L−1
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Fig. 5 The expression pattern of the key enzyme genes in TAG synthetic
pathway in P. tricornutum with abscisic acid induction. The
P. tricornutum cultures were conducted with Q-PCR for every 3 days
and each sample has three biological replicates, while each biological

triplicate sample has three analytical triplicates in Q-PCR. The numbers
on the X-axis ae the concentrations of abscisic acid: 0, 1, 2, 6, 10, 14, 18,
and 30 mg L−1

Fig. 4 The expression pattern of the key enzyme genes in TAG synthetic
pathway in P. tricornutum with salicylic acid induction. The
P. tricornutum cultures were conducted with Q-PCR for every 3 days
and each sample has three biological replicates, while each biological

triplicate sample has three analytical triplicates in Q-PCR. The numbers
on the X-axis are the concentrations of salicylic acid: 0, 1, 2, 6, 10, 14, 18,
and 30 mg L−1

J Appl Phycol (2019) 31:1009–1019 1015



Finally, according to the model, 6.83 mg L−1 day−1 TAG
product, which was 2.41-fold the control value, was obtained
from 10-L cultures of P. tricornutum with 14 mg L−1 methyl
jasmonate, 6 mg L−1 abscisic acid, and 2 mgL−1 salicylic acid.
The combined influence of the three phytohormones was
stronger than just one of them for increasing TAG accumula-
tion in P. tricornutum.

Discussion

In the photoautotrophic culture of P. tricornutum, some envi-
ronmental conditions such as nitrate deprivation and high light
could increase TAG content 2- to 3-fold (Peng et al. 2014;
Yang et al. 2014; Yu et al. 2016). But these environmental
conditions, especially nitrate deprivation, inhibit algal growth
when P. tricornutum is exposed to a nitrate-deprived medium
at the logarithmic growth phase. In this study, the effects of

five commonly used phytohormones—methyl jasmonate,
salicylic acid, gibberellin, abscisic acid, and ethephon—on
TAG accumulation in this diatom were investigated. All of
these five phytohormones play important roles in the growth
and development of the higher plants (Hara et al. 2012;
Vankova 2012; Muhammad et al. 2013; Ozturk et al. 2018;
Thongkum et al. 2018). They also participate in the signaling
of biotic and abiotic stress responses in the higher plants (Hara
et al. 2012; Vankova 2012; Jiang et al. 2018). Salicylic acid
could increase the heat stress tolerance of bread wheat seeds
(Kousar et al. 2018) and hinder the biotrophic pathogen, for
example, Pseudomonas syringae (Vlot et al. 2009). The phy-
tohormones were also used to increase the secondary metab-
olites in higher plants and algae. The methyl jasmonate pro-
moted astaxanthin synthesis in H. pluvialis (Lu et al. 2010)
and TAG synthesis in P. tricornutum (Table 2).

In this study, salicylic acid increased TAG productivity in
P. tricornutum by stimulating algal growth but not the TAG

Table 3 The cis-regulatory elements related to the PGR responsiveness presented in the upstream of the key enzymes’ genes in P. tricornutum

Function Elements Sequences Number Genes

Involved in the methyl jasmonate
responsiveness

TGACG-motif TGACG 2 ACC1
CGTCA-motif CGTCA 2

TGACG-motif TGACG 1 ACC2
CGTCA-motif CGTCA 1

TGACG-motif TGACG 1 LAPPT
CGTCA-motif CGTCA 1

TGACG-motif TGACG 5 LACS1

CGTCA-motif CGTCA 5

TGACG-motif TGACG 5 LACS2

CGTCA-motif CGTCA 5

TGACG-motif TGACG 2 LACS3

CGTCA-motif CGTCA 2

TGACG-motif TGACG 1 LACS4

CGTCA-motif CGTCA 2

CGTCA-motif CGTCA 1 LACS5

TGACG-motif TGACG 1 DGAT2A

CGTCA-motif CGTCA 1

TGACG-motif TGACG 1 DGAT2D

CGTCA-motif CGTCA 1

TGACG-motif TGACG 2 WS/DGAT

CGTCA-motif CGTCA 2

Involved in the abscisic
acid responsiveness

ABRE TACGTGTC/TACGTG 2 LACS1

2 LACS2

1 LACS5

1 DGAT1

1 DGAT2A

Involved in salicylic acid
responsiveness

TCA-element CCATCTTTTT 1 LACS4

1 DGAT2A
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content per DW, but interestingly, it was found to stimulate
TAG synthesis of P. tricornutum at the stationary phase (Xu
et al. 2017). The effects of salicylic acid application depend on
numerous factors such as the species and the developmental
stage of the plant (Hara et al. 2012). The extent of salicylic
acid’s various influences on P. tricornutum may be related to
the growth phases: the stationary phase in the research by Xu
et al. (2017) and the logarithmic phase in the present study.

Fv/Fm is the maximum photochemical efficiency of open
reaction centers in photosystem II, and has been used as a
character for reflecting the PSII efficiency of a light-
dependent process. Environmental factors and endogenous
diel patterns can both impact the Fv/Fm value (Cosgrove and
Borowitzka 2011). In the present study, environmental factors
such as light, temperature, and nutrient status were set as the
parallel parameters during all the experiments, and the added
phytohormones in the cultures were the only extracellular fac-
tor to influence Fv/Fm. Gibberellin and ethephon limited algae
growth and decreased Fv/Fm, whereas methyl jasmonate,
salicylic acid, and abscisic acid did not influence Fv/Fm

though they stimulated algal growth and promoted TAG syn-
thesis (Table 2 and Figs. 2, 3, 4, and 5) in P. tricornutum.
These results may be related to the cellular metabolisms influ-
enced by the respective phytohormones and further studies
including the enzymatic reaction of PSII, the transcriptomes,
and metabolome analysis will be needed.

The relative elements responsive to these phytohormones
were found in the 5′ upstream region of the TAG synthesis-
related genes in this study. The gene expression patterns in
P. tricornutum induced by phytohormones were consistent
with the TAG content changes compared with those of the
control. Methyl jasmonate promoted TAG synthesis and up-
regulated the genes related to TAG synthesis, while salicylic
acid and abscisic acid declined TAG synthesis and downreg-
ulated these genes. Methyl jasmonate at the concentration of
10 mg L−1 could promote the TAG synthesis-related gene
expression (such as ACC1, LACS1, LACS2, LACS5,
LAPPT, DGAT2A in Fig. 3) and increase the TAG content
to 3.92% compared with 3.85% TAG content in the control.
Meanwhile, salicylic acid and abscisic acid downregulated the
TAG synthesis-related gene expression (ACC1, ACC21,
LACS1, LACS2, DGAT2A, DGAT2D,WS/DGAT) at the
concentration of 2 mg L−1 (Figs. 4 and 5) and decline the
TAG content to 3.58 and 3.84% respectively (Table 2). TAG
synthesis and accumulation in P. tricornutum are closely re-
lated to endogenous intermediate metabolism (Levitan et al.
2015) and are influenced by many factors such as light and
nutrients. The phytohormones methyl jasmonate, salicylic ac-
id, and abscisic acid may act as signals for regulating internal
mechanisms such as the tricarboxylic acid cycle and starch
synthesis, but not directly induce TAG synthesis. The mecha-
nisms of the phytohormones influencing TAG synthesis and
accumulation will be explored in future studies.

Table 4 The design and resulting TAG productivity in response to
surface experiment

Test
number

Content of
methyl
jasmonate
(mg L−1)

Content of
abscisic
acid
(mg L−1)

Content of
salicylic
acid
(mg L−1)

TAG
productivity
(mg L−1 day−1)

1 12 4 4 4.17 ± 0.11

2 12 2 2 4.83 ± 0.17

3 12 4 4 4.00 ± 0.12

4 12 4 4 4.17 ± 0.14

5 12 2 6 3.33 ± 0.11

6 10 4 2 3.50 ± 0.11

7 10 4 6 5.17 ± 0.09

8 14 4 2 5.00 ± 0.14

9 12 4 4 4.17 ± 0.07

10 12 6 6 4.00 ± 0.06

11 10 2 4 5.33 ± 0.05

12 10 6 4 3.50 ± 0.13

13 14 4 6 3.17 ± 0.11

14 14 6 4 6.00 ± 0.12

15 12 4 4 4.00 ± 0.14

16 14 2 4 3.83 ± 0.12

17 12 6 2 5.17 ± 0.21

Control
1

10 0 0 3.93 ± 0.21

Control
2

0 2 0 5.13 ± 0.12

Control
3

0 0 2 2.95 ± 0.21

Control
4

0 0 0 2.83 ± 0.21

Table 5 Analysis of variance (ANOVA) for TAG from BBD design

Source df Sum of squares Mean square F value P value

Model 9 0.04 3.83E−03 6.27 0.01

A-MJ 1 1.36E−04 1.36E−04 0.22 0.65

B-AC 1 5.03E−04 5.03E−04 0.82 0.39

C-SC 1 3.81E−03 3.81E−03 6.24 0.04

AB 1 0.02 0.02 25.04 0.00

AC 1 0.01 0.01 17.92 0.00

BC 1 9.34E−05 9.34E−05 0.15 0.71

A^2 1 9.31E−04 9.31E−04 1.52 0.26

B^2 1 2.49E−03 2.49E−03 4.07 0.08

C^2 1 2.30E−04 2.30E−04 0.38 0.56

Source meant the names the analysis sets; Model meant the total analysis;
A-MJ meant the group Awas methyl jasmonate treatment; B-AC meant
the group was abscisic acid treatment; C-SC meant the group C was
salicylic acid treatment. The inter-group analysis contained A-MJ, B-
AC, and C-SC, and the intra-group analysis contained AB (group A to
group B), AC (group A to group C), BC (group B to group C), A^2
(group A to group A), B^2 (group B to group B), and C^2 (group C to
group C)
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The three phytohormones—methyl jasmonate, salicylic
acid, and abscisic acid—were found to increase TAG pro-
duction in P. tricornutum, while salicylic acid and abscisic
acid just stimulated the growth rate. The combination of
these three phytohormones could increase TAG productiv-
ity to 6.00 mg L−1 day−1, which is higher than that of
P. tricornutum with N deprivation (5.40 mg L−1 day−1;
Yang et al. 2013; Cui et al. 2018). The TAG content of
P. tricornutum induced by phytohormones was 1.7-fold
than that of the control, indicating that TAG accumulation
is strengthened by the combination of the three phytohor-
mones. These results suggest that phytohormone induction
is a promising method for improving TAG accumulation in
P. tricornutum for industrial use.
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