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Abstract
Bangia fuscopurpurea is a farmed species in the ancient family Bangiales. It inhabits upper intertidal zones and suffers periodical
desiccation and osmotic stress. The transcriptomic regulation under dehydration and hyposalinity was investigated. The differentially
expressed genes (DEGs) accounted for 18.7% of the unigenes obtained by de novo transcriptome assembly (|log2fold-change| ≥ 1,
FDR ≤ 0.001). Over 72% of the DEGs were downregulated under stress. The DEGs were predominantly enriched into the KEGG
pathways Bmetabolic pathways,^ Bribosome,^ Bbiosynthesis of secondary metabolites,^ Bprotein processing in endoplasmic
reticulum,^ and Boxidative phosphorylation.^ The optimum photosynthetic efficiency (Fv/Fm) and photochemical quenching (qP)
dropped significantly with 89% relative water loss and recovered rapidly after being rehydrated. Most DEGs regarding
Bphotosynthesis^ and BC3 carbon fixation^ were upregulated in the dehydrated thalli, which may enable the thalli to gain photosyn-
thetic recovery once being rehydrated. Fv/Fm and qP decreased significantly with 1 h of 90% freshwater treatment and then recovered
to the control level 1 day later. With 6 h hyposaline treatment, expression of plasma membrane H+-ATPase genes was strongly and
predominantly induced while the mRNA abundance of vacuolar, chloroplastic, and mitochondrial H+-ATPase genes decreased or
showed no significant change. Some transporter, ion channel, and transmembrane protein genes together with the gene-encoding key
enzymes involving in proline and heteroside metabolism were upregulated under hyposalinity. The results indicated that transmem-
brane exchange of ion and osmolytes was induced under hyposalinity to balance the osmotic fluctuation, which seemed to be triggered
by plasma membrane H+-ATPases. These findings will facilitate elucidating the stress acclimation mechanism of B. fuscopurpurea.
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Introduction

Bangia Lyngbye is a group of widespread red algae in the an-
cient family Bangiales (Sutherland et al. 2011). The Bangia-like
fossil Bangiomorpha pubescens is the oldest taxonomically re-
solved eukaryotic fossil and seems to represent the oldest
known case of sexual reproduction (Butterfield 2000, 2009).
Bangia species have been found both in seawater (SW) and
freshwater (FW) habitats (Sheath and Cole 1980). Bangia
fuscopurpurea is a marine species, distributed along marine
shores worldwide (Broom et al. 2004; Wang et al. 2008). It is
superior to Pyropia yezoensis (nori) in terms of nutrient value
and taste (Li et al. 2003) and has been farmed in China since the
1990s (Wang et al. 2008). Bangia fuscopurpurea inhabits the
high intertidal zones and experiences extreme fluctuations in
environmental conditions such as desiccation and salinity.

Marine seaweeds growing in intertidal zones are the spe-
cies most severely challenged by their environment (Lin et al.
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2009). Anti-dehydration capacities of intertidal and subtidal
seaweeds are coordinated with their vertical distribution and
patterns of submersion and emersion (Davison and Pearson
1996). Resistance or adaptation to water deficiency differs
among Porphyra/Pyropia species (Smith et al. 1986). Blades
of high intertidal Porphyra/Pyropia species can survive 85–
95% intercellular water loss during daytime low tide and be-
come crisp sheets against the rocks (Chen et al. 2007; Blouin
et al. 2011). The high tolerance of Pyropia allows their survival
after routine net desiccation during farming (Chen et al. 2007).
Pyropia katadae var. hemiphylla, inhabiting the intertidal
marshes, can endure moderate intercellular water loss and is
vulnerable to extreme desiccation (Wang et al. 2016). Given
its habitat, it is reasonable to speculate that B. fuscopurpurea is
resistant to desiccation and the farming practice validates this
speculation (Wang et al. 2008). However, the molecular mech-
anism of desiccation acclimation is poorly understood.

There are ~ 130 species in Bangiales. Except for Bangia
atropurpurea, all other Bangiales species live in SW
(Sutherland et al. 2011). Although marine Bangia species
are phylogenetically clearly separated from B. atropurpurea
(Sutherland et al. 2011), they can adapt to 100% freshwater
step-by-step in culture (Sheath and Cole 1980). However, lit-
tle is known about the mechanism for marine Bangia species
acclimating to the drastic salinity changes.

The advent of high-throughput RNA-seq technology makes
it possible to determine the gene expression profile at
transcriptomic level, facilitating the identification of stress-
responsive genes in large scale. Transcriptomic reprogramming
under abiotic stress has been confirmed in seaweeds such as
Chondrus crispus (Collén et al. 2007), Ectocarpus siliculosus
(Dittami et al. 2009, 2012), Saccharina latissima (Heinrich et al.
2012), Klebsormidium (Holzinger et al. 2014), and Pyropia sp.
(Choi et al. 2013; Im et al. 2015; Sun et al. 2015). To understand
the physiological and molecular acclimation mechanism of B.
fuscopurpurea under dehydration and hyposalinity, we first de-
termined the photosynthetic response to the stress by PSII chlo-
rophyll fluorescence analysis and then identified the stress-
responsive genes by transcriptomic analyses. We hope that the
present study would facilitate elucidating the mechanisms of B.
fuscopurpurea against dehydration and hyposalinity.

Materials and methods

Sample collection

Gametophytic thalli of Bangia fuscopurpurea were collected
from Putian China (24° 59′ N, 118° 48′ E) in mid-November
2013. The thalli were cultured under 12–13 °C, 30 ±
5 μmol photons m−2 s−1 with a photoperiod of 10 h:14 h
L/D. Medium was filtered sterilized natural SWenriched with
3 mg L−1 NaNO3–N and 0.3 mg L−1 KH2PO4–P and half-

renewed every day. Three days later, the thalli were treated
with stress.

Stress application

The relative intracellular water loss (RWL;%) of the thalli was
calculated as: (W0 −Wt)/W0 × 100, where W0 is the weight of
fresh thalli without dehydration and Wt is the weight of the
dehydrated thalli. Thalli were air-dried at 12–13 °C for 6 h
with the RWL being 89 ± 1.7% and then were subjected to
chlorophyll fluorescence measurement. The thalli with 89%
RWL were emerged into natural filtered sterilized SW for
recovery and the chlorophyll fluorescence measurement was
made after 15, 45, and 90 min, respectively.

For hyposalinity treatment, fresh thalli were cultured in
medium of filtered sterilized natural SW (salinity 28.5) diluted
with 90% sterilized FW. All media were fertilized with
3 mg L−1 NaNO3–N and 0.3 mg L−1 KH2PO4–P.
Temperature was 12–13 °C, irradiance was 30 ±
5 μmol photons m−2 s−1, and photoperiod was 10 h:14 h
L/D. The chlorophyll fluorescence measurement was made
after 1 h, 3 h, 6 h, and 1 day, respectively. Each treatment
was performed in triplicate.

Chlorophyll fluorescence measurement

Chlorophyll fluorescence of the thalli was measured using a
diving pulse amplitude modulation fluorometer (Diving-
PAM,Walz, Germany). The optimum photosynthetic efficien-
cy (Fv/Fm), the photochemical quenching (qP), and the non-
photochemical quenching (NPQ) of the samples were record-
ed after 15 min dark adaptation (Lin et al. 2009). Data were
analyzed by ANOVA at a level of p < 0.05 and followed by
Tukey’s post hoc test where appropriate. All data are reported
as means ± standard deviation (SD) (n = 9).

RNA extraction

Three samples were obtained: fresh thalli without stress treat-
ment (control, salinity 28.5, BC), thalli with 6 h air-drying
(approximately 89% RWL, BD), and thalli cultured in 90%
FW for 6 h (salinity 3.5, BF). Application of stress was carried
out at 12–13 °C and 30 ± 5 μmol photons m−2 s−1. The total
RNAs were extracted from each sample and pooled samples,
separately, using Trizol protocol (Invitrogen). In sum, ten
RNA samples were obtained: one RNA sample from the
mixed thalli of equal quantity of BC, BD, and BF, which
was used for deep RNA-seq and de novo transcriptome as-
sembly, and three repeats of RNA sample from the BC, BD,
and BF, respectively, which were used for global gene expres-
sion analysis. The quality and quantity of the RNA samples
were assessed using a Nanodrop 2000 spectrophotometer
(Thermo, USA) and Agilent 2100 bioanalyzer (Agilent,
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USA). The RNA samples with OD260/280 1.8–2.2, 28S:18S ≥
1, and RIN ≥ 8 were used for library construction.

RNA-seq and de novo assembly

cDNA libraries were generated following the manufacturer’s
instructions (Illumina). The library products were sequenced
via Illumina HiSeq 2000 (Illumina). The sequences of low
quality were filtered from the dataset by (a) removing adapter
contamination; (b) filtering the reads with ambiguous se-
quences; (c) discarding the reads with over 4% bases of se-
quencing quality value (sQ) < 20 (sQ = − 10 lgE, E—sequenc-
ing error). The high-quality reads were saved in fastq files and
deposited at the NCBI Short Read Archive (SRA) with the
accession number SRX759611. The clean reads from the
pooled RNA sample were used for de novo assembly of the
transcriptome by using the Trinity protocol (Grabherr et al.
2011). The assembled sequences were optimized through se-
quence splicing and redundancy removing to acquire non-
redundant transcripts as long as possible (Pertea et al. 2003).

Annotation and functional classification

Unigenes were first aligned by Blastx to the protein databases,
including Nr (NCBI non-redundant protein database),
Swissprot, KEGG (Kyoto Encyclopedia of Genes and
Genomes), and COG (Cluster of Orthologous Groups of pro-
teins), and those showing the hits with a significance of e
value ≤ 10−5 were assigned the same putative function as the
corresponding proteins. The unigenes without Blastx hits in
the protein databases were predicted using ESTScan (Iseli
et al. 1999). The obtained unigenes were further aligned to
the draft genome database of Pyropia yezoensis (http://nrifs.
fra.affrc.go.jp/ResearchCenter/5_AG/genomes/nori/) and the
expressed sequence tags (ESTs) of Porphyra purpurea and
Porphyra umbilicalis (http://dbdata.rutgers.edu/nori/) by
Blastp with an e value ≤ 10−5. The unigenes were finally
assigned to GO (Gene Ontology) functional classification
(Conesa et al. 2005; Ye et al. 2006) and KEGG pathway en-
richment (Kanehisa and Goto 2000) with an e value cut-off ≤
1e−5.

Screening of differentially expressed genes (DEGs)

The RNA samples from BC, BD, and BF were separately
assigned to RNA-seq via Illumina HiSeq 2000 to find out
the DEGs. After sequencing and quality control, the obtained
clean reads were mapped to the B. fuscopurpurea tran-
scriptome dataset using SOAPaligner/soap2 (Li et al. 2009).
The gene expression level was calculated by using RPKM
(reads per kb per million reads) method (Mortazavi et al.
2008). We used |log2fold-change| ≥ 1 and false discovery rate
(FDR) ≤ 0.001 as the threshold to assess the significance of

gene expression variations. All the DEGswere compared with
the whole transcriptome background to search for genes in-
volved in significantly enriched metabolic or signal transduc-
tion pathways and assigned to GO and KEG G classification.
Validation of DEGs was performed by real-time quantitative
PCR (RT-qPCR) according to Wang et al. (2013).

Results

Change of chlorophyll fluorescence parameters
under dehydration and hyposalinity

With 89% RWL, the Fv/Fm dropped sharply, NPQ increased
significantly, and strong fluctuations in the qP values were
detected. During rehydration, Fv/Fm and qP increased and
NPQ decreased to the control level during 45–90 min
(Table 1). The Fv/Fm and qP values decreased while NPQ
increased significantly after 1 h of hyposaline treatment
(p < 0.05). The Fv/Fm and qP values increased and NPQs
decreased to the control level with 6–24 h treatment
(Table 1).

Deep sequencing and de novo assembly
of transcriptome

A total of 77.6 M paired-end qualified clean reads with a
total length of 7.84 G bp were obtained. The GC percent of
the clean reads was 64.25%. The clean reads were assem-
bled into 35,421 unigenes with mean length of 537.5 bp and
N50 length of 673 bp, ranging from 201 bp to 14,567 bp
(Fig. 1). The mean GC content of the unigenes was 66.24%,
a little higher than that of the assembled Pyropia tran-
scriptome and genome (Yang et al. 2011; Nakamura et al.
2013; Xie et al. 2013; Im et al. 2015; Sun et al. 2015;
Brawley et al. 2017).

Transcriptome annotation

There were 14,534 unigenes with homologous protein se-
quences in at least one of the Nr, Swissprot, COG, and
KEGG databases (Fig. 2). A total of 9186 unigenes had both
hits in Nr and Swissprot database with e value ≤ 1e−10

(Table 2). Among the unigenes without hits in the protein
databases, 8399 unigenes were predicted to be possible novel
or highly diverged transcripts in B. fuscopurpurea based on
ESTScan analysis.

The unigenes were assigned to GO classification and got
3419 returns, which were sorted into 57 functional groups and
1993 GO terms. In each of the three main GO categories
(biological process, cellular component, and molecular func-
tion), Bmetabolic process,^ Bcell,^ and Bmetabolic process^
predominated, respectively (Fig. 3). Searching against COG
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database, 8508 unigenes were classified into 24 functional
categories. The top largest three categories were Btranslation,
ribosomal, and biogenesis^; Bgeneral function prediction
only^; and Bposttranslational modification, protein turnover,
and chaperones^ (Fig. 4). By KEGG pathway enrichment,
7619 unigenes were mapped to 117 pathways that were sorted
into 20 groups, including the primary metabolism, energy me-
tabolism, and regulatory systems (Supplementary Table S1).
Except phosphoketolase (EC 4.1.2.9) in C3-pathway and ma-
late dehydrogenase (NADP+) (EC 1.1.1.82) and pyruvate or-
thophosphate dikinase (PPDK, EC 2.7.9.1) in C4-pathway, all
the other genes involved in eukaryotic C3 and C4 photosyn-
thetic carbon fixation were identified (Supplementary
Table S2). Phosphoketolase and PPDK were not identified
in P. yezoensis (Yang et al. 2011) and Porphyra haitanensis
(Xie et al. 2013) either. Malate dehydrogenase was present in
P. yezoensis (Yang et al. 2011) while absent in P. haitanensis
(Xie et al. 2013).

About 34.57% of the Blastx hits in Nr belonged to three red
algae Chondrus crispus, Galdieria sulphuraria, and
Cyanidioschyzon merolae whose complete genome has been
published (Fig. 5). Only hundreds of unigenes were identified
to be homologous to the putative proteins of Pyropia species
by Blastx search against the four public databases. Some of
the recent research regarding Pyropia genome or tran-
scriptome has been deposited in local databases other than
Nr and Swissprot. In order to compare B. fuscopurpurea and
Pyropia species, the obtained unigenes were aligned to the
draft genome database of P. yezoensis (http://nrifs.fra.affrc.
go.jp/ResearchCenter/5_AG/genomes/ nori/) and the
transcriptome database of P. purpurea and P. umbilicalis
(http://dbdata.rutgers.edu/nori/). A total of 5338 B.
fuscopurpurea unigenes matched to the sequences of three
Pyropia species (Supplementary Table S3). Approximately,
90% of the matches had an e value ≤ 1e−50.

Determination of stress application

Experiments carried out on land plants (Seki et al. 2002), red
alga (Collén et al. 2007), and brown alga (Dittami et al. 2009,
2012) indicate that application of stressors for 6 h induces
marked transcriptional changes. Six hours of air-drying result-
ed in ca. 90% RWL in B. fuscopurpurea. There were signifi-
cant changes in the PAM parameters of the thalli with 89%
RWL, which fully recovered after rehydration (Table 1). The
PAM parameters of the thalli cultured under 90% FW were
affected in short period of treatment (< 6 h) while acclimated
after 1 day of treatment (Table 1). Therefore, air-drying for 6 h
(90%RWL) and 6 h treatment of 90% freshwater (salinity 3.5)
were applied in this study.

Differential gene expression under dehydration
and hyposalinity

Over 1.5 billion clean reads were obtained for each sample,
which were mapped to at least 26,420 unigenes from B.

Table 1 Photosynthetic changes of B. fuscopurpurea gametophytic
thalli under dehydration, rehydration, and hyposalinity revealed by
chlorophyll fluorescence measurement

Treatment Fv/Fm qP NPQ

Control 0.63 ± 0.03 0.90 ± 0.07 0.04 ± 0.03

89% RWL 0.11 ± 0.05 0.70 ± 0.68 1.15 ± 0.36

Rehydration 15 min 0.39 ± 0.10 0.88 ± 0.36 0.36 ± 0.12

Rehydration 45 min 0.59 ± 0.05 0.95 ± 0.2 0.25 ± 0.14

Rehydration 90 min 0.61 ± 0.03 0.99 ± 0.10 0.09 ± 0.17

90% FW 1 h 0.41 ± 0.08 0.54 ± 0.1 0.51 ± 0.11

90% FW 3 h 0.52 ± 0.06 0.77 ± 0.06 0.33 ± 0.10

90% FW 6 h 0.53 ± 0.07 0.88 ± 0.12 0.12 ± 0.08

90% FW 1 d 0.62 ± 0.04 88 ± 0.05 0.10 ± 0.03

Fv/Fm the optimum photosynthetic efficiency, FW freshwater, qP the
photochemical quenching, NPQ the non-photochemical quenching,
RWL relative water loss
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Fig. 1 Length distribution of unigenes

Fig. 2 Venn diagram of unigenes with significant hits in the Nr,
Swissprot, COG, and KEGG databases
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fuscopurpurea transcriptome dataset (Supplementary
Table S4). Bangia fuscopurpurea gametophytes are small in
size and the sample used for RNA-seq is composed of a large
population. In order to eliminate artificial deviation and to get
a more general view of B. fuscopupurea transcriptomic re-
sponse to stress, DEGs were screened based on three repli-
cates (Fig. 6).

On the whole, 6623 DEGs above the threshold |log2fold-
change| ≥ 1 and FDR ≤ 0.001 were identified under dehydra-
tion and hyposalinity, accounting for 18.7% of the tran-
scriptome profile. Most DEGs were significantly downregu-
lated under either stress (Fig. 7, Table 3). A larger number of
DEGs was identified in BF than in BD (Table 3).
Nevertheless, more drastic variations occurred in BD than in
BF. The DEGs can be grouped into eight clusters based on
their regulation pattern among samples (Table 3).

Annotation and classification of DEGs

A total of 3854 DEGs had significant Blastx hits in Nr,
Swissprot, COG, and/or KEGG protein databases (e value <
1e−5). Under both stress, DEGs from the GO items Bcatalytic
activity^ and Bregulation of molecular function^ were upreg-
ulated while those from Bdevelopmental process,^
Breproduction,^ Breproductive process,^ Bmulticellular

organismal process,^ Bgrowth,^ Bnegative regulation of bio-
logical process,^ and Bimmune system process^ were down-
regulated (Fig. 8). Approximately, 20% DEGs were mapped
to 109 KEGG pathways (e value < 1e−5). The top significantly
enriched pathwayswere in accordance with the KEGG enrich-
ment of the transcriptome profile (Supplementary Table S1).
The KEGG items with top minimum Q value indicated that
these KO items were predominantly affected by dehydration
or hyposalinity. The difference in the distribution of the
KEGG items indicated that different response and acclimation
mechanism occurred between dehydration and hyposalinity
(Table 4).

The DEGs that play vital roles in stress signaling in
plants are summarized in Fig. 9. Except for the respiratory
burst oxidase genes, genes involved in Bplant circadian
rhythm,^ and photosynthesis-related genes, it was found
that the DEGs regarding the other categories were mostly
downregulated under both stresses. Especially, all respon-
sive hydrolase ubiquitin-mediated proteolysis genes were
downregulated. However, the DEGs involved in Bcircadian
rhythm-plant,^ Bphosynthesis-antenna protein,^ and Bpho-
tosynthesis^ were mostly upregulated in BD and DEGs re-
garding Bchloroplastic components^ and Bporphyrin and
chlorophyll metabolism^ were mostly upregulated in BF
(Fig. 9).

Fig. 3 GO classification of unigenes

Table 2 e value distribution of the blast matches to Nr, Swissprot, COG, and KEGG databases

Database 1e−10–1e−5 1e−20–1e−10 1e−50–1e−20 1e−100–1e−50 1e−150–1e−100 0–1e−150

Nr 2326 3647 4860 1996 666 693

Swissprot 1578 2813 4026 1709 497 480

COG 1350 2114 3170 1199 344 331

KEGG 789 1624 2985 1325 442 454
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Validation by RT-qPCR

Twelve DEGs in response to stress were analyzed by RT-
qPCR. Although the fold-changes of the DEGs varied be-
tween RNA-seq and RT-qPCR, the expression patterns of 12
genes were similar under the same conditions, with the
Pearson correlation coefficients ranging from 0.71–0.99

(Table 5). It was found that expression of four plasma
membrane-type H+-ATPase genes was induced in dozens to
hundreds of folds under hyposalinity while showing no sig-
nificant difference under dehydration by RT-qPCR, which
were among the DEGs with top ten highest transcriptional
abundance in BF.

Discussion

Transcriptome characteristics of B. fuscopurpurea

There are several reports about the global transcriptomic char-
acteristics of Pyropia sp. (Yang et al. 2011; Chan et al. 2012;
Choi et al. 2013; Xie et al. 2013; Im et al. 2015; Sun et al.
2015). A large set of Porphyra/Pyropia ESTs have been de-
posited in public databases that facilitate investigation of these
algae. However, mere 168 Bangia sp. ESTs deposited in
NCBI GenBank and 92.26% are redundant sequences
encoding two proteins. Additional 1252 ESTs have been re-
cently deposited in the NCBI EST database but lack function-
al annotation. The present study identified 35,421 ESTs of B.
fuscopurpurea and 41% of themwere homologous to the pub-
lished putative proteins. Over one third of the Blastx hits in the

Fig. 4 COG classification of unigenes

Fig. 5 Top-hit species distribution of Blastx matches in Nr database
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Nr database belonged to the red algae Chondrus crispus,
Galdieria sulphuraria, and Cyanidioschyzon merolae (Fig.
5). Nakamura et al. (2013) have reported the draft genome
of P. yezoensis that shows a low genome similarity with C.
merolae. Making a comparison between B. fuscopurpurea and
Porphyra/Pyropia, only hundreds of unigenes returned above
cut-off Blastx results (e value < 10−5). We further compared
B. fuscropurpurea unigenes to the dataset of P. yezoensis draft
genome and P. purpurea and P. umbilicalis transcriptomes,
which has been deposited in local databases. A total of 15%
unigenes of B. fuscropurpurea matched to sequences of three
Pyropia species. The findings are consistent with that these
red algae are divergent from each other (Yoon et al. 2004). The
large set of ESTs deciphered here would facilitate further in-
vestigation of B. fuscropurpurea.

Global transcriptomic reprogramming under abiotic
stress

Approximate 18.7% of the unigenes were significantly affect-
ed by 90% RWL and salinity 3.5 based on the screening
threshold |log2ratio| ≥ 1 and FDR ≤ 0.001. Statistical method
significantly affects the number of DEGs, such as FDR (see
Fig. 3 in Dittami et al. 2009). Using the present threshold,
DEGs identified in stress-applied E. siliculosus was < 1%
(Dittami et al. 2009, 2012). Four to 5% of C. crispus genes

were significantly regulated by osmotic stresses (Collén et al.
2007). The Arabidopsis transcriptome varied from 1 to 30%
under drought, osmotic, or cold stress (Kreps et al. 2002; Seki
et al. 2002). The global transcriptomic reprogramming identi-
fied here helped to reveal the endurance mechanism of
B. fuscopurpurea to dehydration and hyposalinity.

The number of downregulated genes was 2.6–3.2-fold of
that of the upregulated genes under dehydration and
hyposalinity (Fig. 7; Table 3). The pathways regarding trans-
lation, transcription, metabolism of carbohydrate and lipid,
reproduction, and growth were all downregulated under both
stresses. Transcription of ribosomal proteins (RPs) has shown
to be one of the least affected by abiotic stress in Ectocarpus
siliculosus (Dittami et al. 2009). It seems very different in
Bangiales. The number of the RP DEGs accounted for 25%
of the total RP unigenes identified in B. fuscopurpurea and
ranked the second highest among all the KEGG classification.
Most RP DEGs were downregulated under both stress while
the chloroplastic RP genes were all upregulated, indicating
that photosynthetic regulation may play vital roles against
dehydration and hyposalinity.

Protein kinases (PKs) and transcription factors (TFs) are
classical stress signaling components in plants and shown to
be affected at the transcriptional level by abiotic stress (Xu
et al. 2013). Here, about 25% PK unigenes and 15% TFs
unigenes were significantly differentially expressed in BD

Fig. 6 Principal component analysis (PCA) of the sample repeats. BC, control, samples without stress treatment; BD, thalli with ca. 90% water loss; BF,
thalli cultured in 90% freshwater + 10% natural seawater for 6 h
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Fig. 7 Hierarchical cluster of the
significantly differentially
expressed genes among the
samples. BC, control, samples
without stress treatment; BD,
thalli with ca. 90%water loss; BF,
thalli cultured in 90% freshwater
+ 10% natural seawater for 6 h
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and/or BF, similar to that reported in higher plants (Seki et al.
2002; Xu et al. 2013). Heat shock proteins (HSPs) play vital
roles in protecting plants against stress by stabilizing proteins
and membranes and their transcription is induced under abi-
otic stress in many organisms (Dittami et al. 2009; Sun et al.
2015). Nearly 24% HSP/chaperon unigenes were affected by
dehydration and/or hyposalinity, which is higher than the find-
ings in stress-applied C. crispus (Collén et al. 2007),

E. siliculosus (Dittami et al. 2009), and P. yezoensis (Sun
et al. 2015). Most HSP DEGs were downregulated, similar
to the hyposaline response of E. siliculosus (Dittami et al.
2009). Plant hormones are involved in response to various
stresses. Seventeen transcripts were identified in the Bplant
hormone signal^ pathway and five of them coding for
PP2C, SnRK2, and PR-1 were downregulated under both
stress, different from the stress response in some plants
(Dinakar et al. 2012; Xu et al. 2013). Three ATP-dependent
Clp protease adapter protein genes were upregulated in BF,
which is hypothesized to mediate an abscisic acid-
independent signaling pathway (Contreras-Porcia et al.
2013). Cytochrome P450s are another stress signaling protein
family that are induced by stress and catalyze oxygenation of
many substrates (Narusaka et al. 2004). Four DEGs of cyto-
chrome P450s were downregulated in BD or BF and only one
cytochrome P450 gene was upregulated in BF (log2fold-
change 1.103). Sixty unigenes of protease and proteasome
and 45 ubiquitin-related unigenes changed significantly under
dehydration and hyposalinity. Only two E3 ubiquitin-protein

Fig. 8 GO classification of DEGs. DEG, the significantly differentially expressed genes; BD, thalli with ca. 90% water loss; BF, thalli cultured in 90%
freshwater + 10% natural seawater for 6 h

Table 3 Statistics of DEGswith varying regulation patterns under stress

Upregulated Downregulated

Especially in BD 745 1231

Especially in BF 1031 1658

Both in BD and BF 149 1650

Up in BD, down in BF 45

Down in BD, up in BF 114

BD: thalli with ca. 90% water loss; BF: thalli cultured in 90% freshwater
+ 10% natural seawater for 6 h
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ligase genes were upregulated in BD. Cyclophilin has been
shown to be involved in stress signaling in many plants and
algae, including P. haitanensis (Jia et al. 2013). Seven DEG-
encoding cyclophilins were identified in BD or BF and only
one were upregulated under hyposalinity (Fig. 9).
Downregulation of these functional genes at transcriptional
level indicated that the corresponding proteins may be down-
regulated, mediating downregulation of the most metabolic
pathways under dehydration and hyposalinity and protecting
the organism against stress.

Response of reactive oxygen species (ROS)-redox
system

ROS usually accumulates under extreme environmental con-
ditions. ROS-redox balance is essential for plants to maintain
normal energy metabolism, control signaling pathways, and
activate acclimation responses (Suzuki et al., 2012).
Carotenoids are supposed to act mainly against potential
ROS-induced damage to photosynthetic apparatus in
phycobilisome-containing species (Sampath-Wiley et al.

Table 5 Validation of selected genes expression by RT-qPCR, taking 18S rRNA (KJ023699) as Bhousekeeping^ gene

Log2 fold-change

RNA-seq RT-qPCR

Gene ID Dehydration Hyposalinity Dehydration Hyposalinity Putative function

Unigene23549 − 0.535 12.824 − 0.796 7.362 Plasma membrane-ATPase

Unigene34837 − 0.398 13.923 0.642 8.71 Plasma membrane-ATPase

Unigene17313 0.569 8.945 0.321 5.571 Plasma membrane-ATPase

Unigene28091 0.698 8.868 − 0.369 6.235 Plasma membrane-ATPase

Unigene25578 − 8.691 − 8.691 − 7.361 − 5.542 V-type ATPase

Unigene561 − 0.832 − 2.705 − 0.993 − 2.654 V-type ATPase

Unigene1196 − 3.279 − 10.18 − 1.036 − 7.51 14-3-3 protein

Unigene6062 − 4.528 − 6.675 − 3.490 − 4.035 14-3-3 protein

Unigene14800 0.698 9.660 − 0.921 6.764 Heat shock 90 kDa protein

Unigene255 − 0.832 1.843 − 1.398 2.563 Chloride channel

Unigene13314 2.117 1.219 3.398 2.563 aarF domain-containing PK

Unigene12871 2.768 − 0.453 3.954 − 1.365 Phosphoglycerate kinase
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2008). Several DEGs regarding carotenoid biosynthesis were
identified while only one gene-encoding zeaxanthin epoxides
was upregulated in BD and a gene-encoding (+)-abscisic acid
8′-hydroxylase was upregulated in BF. There was a DEG iden-
tified in Bflavonoid biosynthesis^ pathway that was upregulated
in BF. Dozens of transcripts regarding the ascorbate-glutathione
cycle were affected under dehydration and six of them was
upregulated in BD or BF. Thirty DEGs of antioxidant enzymes
including superoxide dismutase, peroxidise, catalase, and
thioredoxin reductase were identified in B. fuscopurpurea and
six were upregulated under either stress (Fig. 9). The result that
the genes regarding the classic ROS scavenging components
were not predominantly induced in dehydration- or
hyposalinity-applied B. fuscopurpurea was in accordance with
the findings in Chondrus crispus (Collén et al. 2007) and
E. siliculosus (Dittami et al. 2009). In flowering plants, these
proteins are known to carry out important functions against
ROS. We further identified 30 DEGs coding for kinds of oxi-
dases and found that only four were upregulated in BD. ROS
may not burst in BD and BF-applied B. fuscopurpurea; thus,
there was no need for extensive induction of the redox system.

Plasma membrane H+-ATPase and osmolytic
regulation under hyposalinity

H+-ATPases (proton pumps) play vital roles in osmotic regula-
tion onmany organisms. There are three types of proton pumps
based on the localization: vacuolar membrane (V-type) H+-
ATPases, chloroplastic or mitochondrial inner membrane (F-
type) H+-ATPases, and plasma membrane (P-type) H+-
ATPases. Five DEG-encoding P-type proton pumps were
strongly induced under hyposalinity while were unaffected un-
der dehydration. These DEGs were among the most signifi-
cantly upregulated genes (123–8019-fold). By contrast, expres-
sion of nine V-type proton pump DEGs was downregulated in
BF and seven of them were also downregulated in BD. No F-
type proton pump genes were identified to be significantly
differentially expressed under both stresses. The results indi-
cated that P-type proton pumps of B. fuscopurpurea gameto-
phytes play special roles in response to hyposalinity. P-type
proton pumps generally cooperate with 14-3-3 proteins
(Hanstein et al. 2011), which is activated by kinases (Yu et al.
2006), phosphorylase (Fuglsang et al. 2007), and chaperons
(Yang et al. 2010), et al. Thirteen unigenes were identified to
be homologous to 14-3-3 proteins and none of them showed
significant differential transcription in BF. Piette et al. (2011)
reported that P-type proton pump functions in other ways with-
out cooperation with 14-3-3 proteins in tobacco. In B.
fuscopurpurea, three HSP/chaperon genes, four serine/
threonine PK genes, and one uncharacterized aarF domain-
containing PK gene were upregulated in BF, which may coop-
erates with P-type proton pump. The HSP gene (K04079, e
value = 3.00e−35) was upregulated over 500-fold but showed

no changes in mRNA abundance in BD. The result indicated
that this HSP protein is critical in hyposalinity acclimation of
B. fuscopurpurea. The activity of P-type proton pumps is re-
ported to be dependent on unsaturated fatty acids (UFAs) in
some species (Martz et al. 2006; Janicka-Russak and Kabala
2015). UFA content accounts for over 80% of the total fatty
acids in B. fuscopurpurea (Li et al. 2003), providing a favor-
able intracellular environment for activation of P-type proton
pumps. The plant P-type proton pump generates an electro-
chemical potential difference across the plasma membrane,
which is essential for transporting of many ions and metabo-
lites (Janicka-Russak and Kabala 2015). Aquaporins are trans-
membrane channel proteins involved in the transportation of
water and some small molecules. An aquaporin gene was
found to be upregulated in P. yezoensis under desiccation,
hyposalinity, and high-temperature stress (Kong et al. 2017).
Five aquaporin unigenes ofB. fuscopurpureawere identified in
this study and two of them were specifically upregulated under
dehydration while none was significantly up- or downregulated
under hyposalinity. Six transporter genes were upregulated in
BF, including ABC transporters, band 3 anion transport pro-
tein, sodium/sulfate cotransporter, and K+ efflux antiporter. We
further found that two chloride channel unigenes, one sodium/
potassium/calcium exchanger unigene, a potassium voltage-
gated channel unigene, and two two-pore potassium channel
unigenes together with two transmembrane protein unigenes
were upregulated in BF. Almost all these unigenes were spe-
cially upregulated in BF and unaffected in BD. Upregulation of
these transporter and channel genes suggested an induction of
transmembrane exchange under hyposalinity. Proline is a com-
patible osmolyte in higher plants and algae (Dittami et al.
2009). A proline synthetase gene was upregulated in BF. In
addition, a nitrate reductase gene and a DEG coding for
glutamate-cysteine ligase and a DEG-encoding asparagine syn-
thase were upregulated in BF. Except amino acids, heterosides
play an important role in osmotic adjustment in this species. It
has been shown that floridoside increases with increasing os-
motic pressure in B. atropurpurea (Sheath and Cole 1980).
Here, two DEGs coding for glycosyl hydrolase and glycoside
hydrolase were upregulated in BF. These results indicated that
transmembrane exchange of ion and osmolytes (such as amino
acids and heterosides) may be induced to reduce the osmotic
pressure during hypoosmotic adaptation by upregulating the
expression of P-type proton pumps, transporters, and channels.

Photosynthetic regulation under dehydration

The chlorophyll fluorescence results indicated a high photo-
physiological tolerance to dehydration in B. fuscopurpurea
gametophytes (Table 1), similar to the other stress-resistant
Bangiales (Smith et al. 1986; Chen et al. 2007). It was found
that the Fv/Fm and qP values dropped significantly under 90%
RWL while 43.6% of the chloroplastic DEGs and 91% DEGs
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relating to Bphotosynthesis^ were upregulated by dehydration
(Fig. 9). The dehydrated thalli were capable of regaining the
normal Fv/Fm and qP levels soon after rehydration (Table 1).
Thus, we suggest that upregulation of these genes enabled the
thalli to recover rapidly once being rehydrated. On the one
hand, the excessive electrons generated in dehydrated B.
fuscopurpurea thalli were dissipated as heat as indicated by
the strong increase in NPQs (Table 1). On the other hand, 90%
of the DEGs relating to Bporphyrin and chlorophyll
metabolism^were downregulated in BD, indicating downreg-
ulation of light absorbability. Thus, the ROS stress was dimin-
ished, helping to explain the less induction of the classical
ROS scavenging genes identified here. Most DEGs encoding
the key enzymes involved in C3 pathway were upregulated in
BD while the responsive ESTs except phosphoenolpyruvate
carboxykinase (PEPCK) in C4 pathway and three DEG-
encoding carbonic anhydrase (CA) were downregulated in
BD. CA is responsible for dissolved inorganic carbon uptake.
During dehydration, free CO2 is predominant. It has been
reported that during moderate desiccation, P. yezoensis can
utilize CO2 in ambient air (Zhou et al. 2014) and photosyn-
thetic oxygen evolution is enhanced (Gao and Aruga 1987).
An oxygen-evolving complex component gene was upregu-
lated upon 9-fold under dehydration. This indicated that B.
fuscopurpurea thalli may be capable to take up CO2 directly
from the air resulting in the enhanced C3 carbon fixation in-
dependent of CAs and C4 pathway CO2 concentrating mech-
anism during moderate dehydration.

Conclusion

The transcriptome of the primitive red alga B. fuscopurpurea
is first reported. A total of 35,421 ESTs were identified and
41% of themwere homologous to published putative proteins.
About 15% identified ESTs matched sequences of Pyropia/
Porphyra species based on currently published transcriptome
or genome data, indicating that B. fuscropurpurea is divergent
from Pyropia/Porphyra. Approximately, 18.7% of the ESTs
were significantly affected by dehydration and hyposalinity
based on the threshold |log2ratio| ≥ 1 and FDR ≤ 0.001, with
more DEGs present under hyposalinity. About 43.6% of the
chloroplas t ic DEGs and 91% DEGs re la t ing to
Bphotosynthesis^ were upregulated by dehydration and ex-
pression of plasma membrane H+-ATPase genes was strongly
and predominantly induced under hyposaline stress. The re-
sults suggest distinct regulatory pathways of B. fuscopurpurea
towards desiccation and hyposalinity stress. The large set of
ESTs and DEGs deciphered here would facilitate further in-
vestigation of this important farmed species.
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