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Abstract Phototrophic biofilms are complex conglomerations
of light-driven microorganisms as autotrophs with heterotrophs
embedded in a mucilaginous matrix comprising EPS (extracel-
lular polymeric substances), attached to a solid surface. EPS
provide structural and functional integrity and is essential for
the physico-chemical and biological properties of the biofilms.
These biofilms thrive in simple to extreme environments and
comprise cyanobacteria, diatoms, microalgae, fungi, bacteria
and protozoa. Formation of flocs/biofilms is an essential facet
of bioremediation and wastewater treatment. Biofilm formation
is a scourge in medical sciences, but in agriculture, they can be
potent candidates for integrated nutrient and diseasemanagement
or soil structure improvement, as they aid in better and effective
colonization in soil and around roots, enabling a network from
soil to the plant. The process of biofilm formation is intriguing
and presents a challenge for understanding the signals and me-
tabolites involved and the orchestration of multiple biochemical
pathways. Metagenomic analysis of biofilms has unveiled com-
plex genomic data and molecular diversity among culturable and
non-culturable microbial communities dwelling in such biofilms;
however, information on phototrophic biofilms is scanty.
Particle-tracking techniques have shown the significance of wa-
ter channels in mediating water flow, nutrient cycling and ex-
change of metabolites within the biofilm community. Proteomic
analyses and their bioinformatic delineation have illustrated that
in these biofilms, the phototrophic partner is involved in intercel-
lular signaling, aggregation, carbohydrate and amino acidmetab-
olism. The present review focuses on phototrophic biofilm

formation, their diversity, applications and ecological roles with
special emphasis on agriculture and allied sectors.
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Introduction

Phototrophic biofilms are mixed microbial communities com-
prising phototrophic and heterotrophic microorganisms, stabi-
lized in a mucilaginousmatrix of EPS (extracellular polymeric
substances) in light-exposed surfaces. Extracellular polymeric
substances exported from intercellular space (Flemming and
Wingender 2010) form the matrix and act as an adhesive for
the biofilm architecture. The phototroph nurtures microbial
communities in a phototrophic biofilm (Paerl et al. 2000),
while regeneration of nutrients is derived by chemotrophic
heterotrophs (Canfield and Des Marais 1993). Phototrophic
biofilms have immense applications in basic sciences, envi-
ronment, pharmaceuticals, bioremediation and energy produc-
tion, and recently, their role in agriculture as sustainable sys-
tems is being much appreciated (Fig. 1).

Diversity and ecology of phototrophic biofilms

A great deal of understanding has been gathered regarding the
diversity of phototrophic biofilms, based on their morphological,
ultrastructural and molecular aspects. Metagenomic studies have
been helpful in deducing the role of non-culturable diversity in
biofilms (Krohn-Molt et al. 2013; Sanli et al. 2015). Phototrophic
biofilms often form thick mats where light-dependent redox gra-
dients localize different groups of microbes inside the mat
(Babauta et al. 2014). The upper light exposed layer is dominated
by oxygenic phototrophs comprising cyanobacteria and
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microalgae such as green algae and diatoms, while the interior
zone comprises anoxygenic phototrophs along with the hetero-
trophs, which includes bacteria, protozoans and fungi, forming a
complex community (Roeselers et al. 2007). However, there are
gaps in information regarding photoautotrophic-heterotrophic in-
teractions, due to lack of suitable pure-culture laboratory
techniques.

Organisms associated within phototrophic biofilms occupy
distinct ecological niches, because of differences in trophic
levels and growth phase, and the participating species adapt
to fluctuating environments, particularly those related to nu-
trients and light. It is difficult to obtain axenic cultures of
phototrophs from the biofilm with those they are associated,
as some of them form intimate associations with their hetero-
trophic partners. At present, biofilms (natural or laboratory
grown) are also being explored to broaden their scope in
agro-based research as novel plant growth promoting,
biofertilizing, or biocontrol agents. Such biofilms can be inte-
grated into nutrient and pest management strategies, providing
ecofriendly options for agriculture. Metagenomics, proteo-
mics and transcriptomics are being employed as modern tools
for investigating the molecular and genetic basis of biofilm
formation, community organization, phylogeny and their
complex interactions in photic zones and with plants.

Phototrophic biofilms are found in a wide range of illu-
minated environments (Table 1). Phototrophic biofilms can
be micrometres to several centimetres thick layer, often
observed as greenish-brown mucoid films (Buhmann
et al. 2012), which create colourful mats. Most of the
phototrophic biofilms in nature are dominated by
cyanobacteria, which are cosmopolitan due to their inher-
ent capacity to withstand various biotic and abiotic stresses

such as a temperature range from hot to freezing point, or
salinity, acidity, desiccation, high light intensity and UV
radiations. This leads to high net productivity even in such
hostile environments. In aquatic systems, factors including
light, irradiance, flow velocity and temperature affect de-
velopment and physiology of phototrophic biofilms (Hill
1996; Stevenson 1996; Staats et al. 2000; Sabater et al.
2002). Intertidal mud flat sediments (estuaries and low
coast environments) that are considered as productive
areas are stabilized by cohesive silt particles and exudes
of EPS, secreted by biofilms/mats of diatoms (Stal and De
Brouwer 2003). De Brouwer et al. (2005) showed that the
structuring of EPS plays an important role in the biogenic
stabilization of intertidal sediments and diatoms such as
Nitzschia cf. brevissima are actively involved in this pro-
cess. Comparison of endurance and survival of biofilms of
two strains of Chrococcidioposis (CCMEE 057 and
CCMEE 029) exposed to space and Martian simulations,
both as dried biofilms or multilayered planktonic samples,
illustrated that the biofilms of strain CCMEE 057 may have
better tolerance (Baqué et al. 2013). Recent studies in astrobi-
ology using microalgae revealed that on anoxic planets, UV
radiation can be a strong selection pressure on surface-
dwelling organisms. Chroococcidiopopsis, being a
polyextremophile, tolerant of multiple combined stressors in-
cluding desiccation, ionizing radiation and temperature excur-
sions, was found to be the most tolerant (Cockell et al. 2011).

Extracellular mucilage or EPS

EPS form the backbone of biofilms, acting as a prerequisite
for building up extensive biofilms in the biosphere by pro-
viding structural and functional integrity, and are essential
for the physico-chemical and biological properties of the
biofilms. EPS resemble a gel-like, hydrated biofilm matrix,
in which microorganisms are embedded (Wingender et al.
1999). EPS are versatile, accounting for 50 to 90% of the
total organic carbon and comprise polysaccharides, pro-
teins, glycolipids, uronic acid, extracellular DNA, etc.
Inorganic components such as silt, silica and carbonate
may also contribute to the EPS of phototrophic biofilms
(Sigmon and Cahoon 1997). The matrix interconnects the
cells in the biofilm and mediates digestion of dissolved,
colloidal and solid biopolymers by extracellular enzymes
(Flemming and Wingender 2010). EPS act as light trans-
mitters to provide photons to the organisms located deeper
in a phototrophic mat (Flemming and Wingender 2010).
The matrix plays a major role in the collective behaviour
of microbes in the biofilm and gives them ecological ad-
vantages including protection from predators and biocides,
mechanical stability, genetic stability, nutrient sequestra-
tion from oligotrophic environment and network of inter-
cellular water channels helps in nutrient flow and

Fig. 1 Functional role of phototrophic biofilms in agriculture and allied
sectors
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separation of one microcolony from another (James et al.
1995; O’Toole et al. 2000; De Philippis et al. 2001;
Ramanan et al. 2010; Di Pippo et al. 2013; Pereira et al.
2013).

Wide varieties of sugars, from monomers to polysac-
charides, were reported in EPS of cyanobacteria belong-
ing to Nostocales, Oscillatoriales, Stigonematales and
Chroococcales (De Philippis and Vincenzini 1998).
These sugars include glucose, galactose, mannose, ri-
bose, xylose, arabinose, fucose and rhamnose along
with acidic hexoses such as glucuronic and galacturonic
acid. Sulphated heteropolysaccharides of commercial

importance, such as emulcyan by Phormidium sp. strain
J-1 (Bar-Or and Shilo 1987), are components of EPS.

Prevalence of biofilms in diverse habitats

Aquatic environment

Phototrophic biofilms often predominate the surface of sub-
merged rocks, plants and sediments. In aqueous environment,
they are the basic component of food webs, contributing to
primary production (Cahoon 1999; Glud et al. 2002). Diatoms
are among the most important primary producers and

Table 1 Diversity of
phototrophic biofilms in various
niches

Niche Phototrophs/Heterotrophs in biofilms Reference

Phyllosphere Nostoc, Anabaena, Calothrix, Gloeotrichia, green
algae, diatoms

Venkatachalam et al.
(2016)

Biological Crust Nostoc sp., Microcoleus sp., Calothrix sp

Lichens (Collema coccophorum, Lecanora muralis,
Psora decipiens), fungi (Cryptococcus,
Thelebolus, Alternaria, Acremonium)

Bates et al. (2010)

Belnap et al. (2001)

Chroococcidiopsis

Mycoplana dimorpha, Stenotrophomonas,
Ralstonia frigida, Synechocystis sp.

Dong et al. (2007)

Ozturk and Aslim
(2010)

Marine water Cyanobacteria, Bacteriodetes, Alphaproteobacteria

Oscillatoria sp., Beggiatoa sp.

Chroococcus sp., Aphanothece sp., Oscillatoria sp.,
Lyngbya sp., Phormidium sp.

Synedra, Licmophora, Navicula, Leptolyngbya,
Lyngbya, Rivularia;

Microcoleus sp., Oscillatoria sp., Lyngbya

Trichodesmium

Leary et al. (2014)

Guidi-Rontani et al. (2014)

Montoya (2009)

De Philippis et al.
(2005)

Woebken et al. (2012)

Passow et al. (2012)

Buildings/Caves Hassallia, Tolypothrix, Scytonema, Lyngbya,
Calothrix

Aphanocapsa sp., Calothrix sp., Chroococcus sp.,
Gloeocapsa sp., Nostoc sp., Oscillatoria sp.,
Phormidium sp., Chlorella sp., Scenedesmus sp.,
Navicula sp., Nitzschia sp., black fungi

Keshari and Adhikary
(2014)

Cuzman (2009)

Geitlerinema deflexum, Leptolyngbya antarctica,
Leptolyngbya frigida, Phormidium murrayi,
Phormidium priestleyi, Oscillatoria
subproboscidea, Calothrix sp.

Taton et al. (2006)

Fresh water Microcystis

Lyngbya wollei, Scytonema cincinnatum

Cladophora , Escherichia coli;

Oscillatoria sp.

Worm and Sondergaard
(1998)

Seifert et al. (2007)

Olapade et al. (2006)

Hamill (2001)

Ice
Sheet/Glaciers

Acaryochloris marina, Nostoc sp., Oscillatoria sp.

Nostoc, Oscillatoria, Gloeocapsa, Chroococcidiopsis,
Phormidium sp., Lyngbya, Microcoleus, Calothrix,
Synechococcus

De Los Rios et al. (2007)

Vincent (2000)

Nodularia sp., Anabaena sp., Nostoc sp. Hitzfeld et al. (2000)

Phormidium sp., Chlorella sp., Cylindromonas sp.,
Chlamydomonas nivalis, ciliates (Monodinium,
Strombidium, Halteria)

Sawstrom et al. (2002)
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dominant members of biofilms in littoral zones (Bahulikar and
Kroth 2008).

Phototrophic biofilms also invade natural streams in the
form of attached microbial communities, where matrix pro-
vides refuge for these communities prone to hydraulic shear
forces (Lock 1993). A mat of Phormidium and Oscillatoria
spp. and epilithic tufts of aKlebsormidium sp predominated in
flowing waters, while Zygnema was present in slow flowing
shallow streams (Hawes and Brazier 1991). Phototrophic
biofilms influence the survival of marine invertebrates as re-
ported in didemnid ascidian (Lissoclinum patella), harbouring
the biofilm of cyanobacterium (Acaryochloris marina) and
anoxygenic phototrophs in their tunic tissue, benefitting the
invertebrate through their photosynthetic metabolism
(Behrendt et al. 2012). Romani and Sabater (2000) empha-
sized the relevance of algal biomass to the heterotrophic com-
ponent of biofilms in rivers which is intrinsically related to the
polymeric carbohydrates available in algal exudates. Battin
et al. (2003) highlighted the functional links between algal
biomass and the heterotrophic populations in glacial streams.

At the air-sea interface, thin transparent exopolymer parti-
cles (TEPs) (Sieburth 1983) form the basis of biofilm forma-
tion in aquatic environments (Berman and Passow 2007) and
cover 70% of the Earth’s surface, leading to significant
nutrient and gaseous exchange between atmosphere and
ocean. TEPs are the coagulated biogenic polysaccharides
produced by phytoplankton, which often act as binders in
biofilm formation. Verdugo (2012) reported that EPS are im-
portant components of marine DOC (dissolved organic car-
bon) and play a significant role in self-assembled microgels
(SAG). However, in seas and oceans, the submerged portion
of ships, submarines and other industrial implants in water
bodies are often negatively impacted by proliferation of these
biofilms, which cause degradation, generally termed as
fouling.

Terrestrial/subterrestrial environment

Phototrophic biofilms on terrestrial and subterrestrial environ-
ments include soil environment, phyllosphere, rhizosphere and
lithic surfaces (rocks and building structures). The primary colo-
nizers of newly exposed terrestrial surfaces are generally algae
and bacteria (including cyanobacteria), as well as micromycetes
(Gorbushina and Broughton 2009). Subaerial biofilms (SABs)
are found on land surface and lithospheric environment
(Gorbushina and Krumbein 2000). In lithic environments, bio-
film communities thrive on surface layer, fissures or in interstitial
spaces between the lithic layers. Scanning electron microscopy
revealed that the dominant population of inhabitants of open
pores between mineral particles on building stones was endolith-
ic algal morphotypes (coccoid algae and diatoms), growing as
phototrophic biofilms. Phototrophic organisms boost the fungal
ability to produce organic acids by their carbon inputs and thus

accelerate the weathering andmineralization of rocky lithosphere
in conjugation with other chemotrophic bacteria. Cyanobacterial
biofilm-like growthwas reported in phyllosphere or on soil-water
interface flooded wetlands, including rice. Biofilms comprising
cyanobacteria (Nostoc, Anabaena, Calothrix and Gloeotrichia),
green algae and diatoms were reported on the leaf sheaths of rice
plants (Venkatachalam et al. 2016).

Phototrophic biofilms negatively impact monumental
buildings, as they are responsible for their degradation and
the colourful growth reduces their aesthetic value (Scheerer
et al. 2009). These structures are often dwelled by species of
algae (Chlorophyta and Bacillariophyta), and cyanobacteria
which represent both coccoid (Chroococcus spp.,
Gloeocapsa spp.) and filamentous forms (Calothrix spp.,
Leptolyngbya spp., Nostoc spp. and Phormidium spp.), be-
sides heterotrophs such as black mould (Alternaria spp.,
Aspergillus spp. and Phoma spp.). SABs in the atmosphere
act as bioindicators for changing climate (Gorbushina 2007),
as they absorb gas and particulate matter present in
atmosphere.

Extreme environments

Cyanobacterial mats exhibit a ubiquitous presence, and their
taxonomic composition and physiological activities in
streams, ponds, lakes and melt-waters at different places in
continental Antarctica are well-documented (Jungblut et al.
2005). Cyanobacteria are known to be the primary colonizers
of ice sheets with the genera Nostoc, Oscillatoria,
Phormidium and Leptolyngbya forming pigmented mats and
surviving in fissures and interstitial spaces of Arctic and
Antarctic rocks, making these ecosystems productive
(Vincent 2000). These phototrophic mats are responsible for
primary productivity in ice-covered regions such as polar ice
valleys (Antarctica) and ice capped lakes.

In the desert ecosystem, most of the productivity is facili-
tated through biological soil crust formation mediated by
phototrophic biofilm communities, such as cyanobacteria in
association with lichens, mosses and other heterotrophic mi-
crobes (Pointing and Belnap 2012). Biological soil crusts
(BSCs), formed in soil horizons of arid and semi-arid environ-
ments, provide most of the nitrogen (Belnap 2002) to the
vegetation. Biofilms in soil crusts bring improvement in var-
ious soil attributes and are involved in Bgreening of degraded
lands/deserts^. These crusts improve soil attributes such as
organic matter, aggregation, porosity, structure and rehabilita-
tion of desert ecosystems (Mazor et al. 1996; Zhao et al.
2014). BSCs simulate multifunctional communities, mediat-
ing hydrological and nutrient cycling processes and providing
erosion resistance, and thereby influence the establishment
and performance of vascular plants (Belnap et al. 2001).
Coilica et al. (2014) undertook an interesting study on the
significance of induced biological soil crusts, which illustrated
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the important role of the EPS in these crusts, facilitating not
only the trapping and moisture retention, but indirectly reduc-
ing water infiltration and soil erosion.

Nostoc commune is among the most investigated stress-
tolerant organisms, produces a distinct extracellular sheath,
which contains UV-absorbing pigments, osmo-protecting
sugars and enzymes such as superoxide dismutase (SOD),
and exhibits a mechanical strength associated with high fluid-
ity, resistance to desiccation and ability to absorb and hold
water (Potts and Bowman 1985; Potts 1994). The EPS of
N. commune possess the ability to resist extreme desiccation
and to restore metabolic activity upon rehydration leading to
stabilization of the cells in the matrix. Phototrophic biofilms
are responsible for altering the hydrobiological properties of
sand dunes and retaining moisture in the crust in most months
of year, where morning dew is the only moisture available
(Mazor et al. 1996). Hu et al. (2002) demonstrated the indis-
pensable role of algae in the crust formation and maintaining
cohesion of sand in greenhouse experiments, using four fila-
mentous cyanobacteria and one single celled green alga. They
demonstrated the critical role of algae in the initial stages of
crust formation and observed that fungi, lichens and mosses
influenced the soil structural and physico-chemical properties
to a greater extent thereafter.

Dryland agriculture, particularly in arid and semi-arid re-
gions, has minimal productivity due to low nutrient status,
sodicity, low moisture content, instability of organic matter
and low microbial diversity. Phototrophic biofilms, as biolog-
ical crusts, generate favourable conditions for the growth and
proliferation of flora in these ecosystems. These crusts, pre-
dominated by cyanobacteria, green and brown algae, mosses,
lichens, fungi, bacteria and liverworts, show successional
changes in different stages of crust development (Zhang
et al. 2009) and provide nutrients and moisture for the rest
of the community. The filamentous nature of cyanobacteria,
fungal hyphae, rhizines/rhizoids of lichens and mosses in con-
jugation with other heterotrophic bacteria facilitates binding
of soil particles (Belnap 1995) which become encased in the
biofilm matrix. Biological crusts benefit desert ecosystems in
many ways. Being diazotrophic, cyanobacteria and their
biofilms provide basic carbon and nitrogen through
phototrophic metabolism and withstand stress conditions due
to desiccation, high temperature, salinity and low water
availability.

Cyanobacteria confer structural stability and productivity
in desert soils (Manchanda and Kaushik 2000; Nisha et al.
2007). Some plants benefited by crust include Festuca
octoflora, Mentzelia multiflora (Belnap 1994; Belnap and
Harper 1995), Linum perenne and Sphaeralcea coccinea
(Harper and St Clair 1985). Filamentous cyanobacteria and
green algae create surface topography in crusts. Stable aggre-
gates improve resistance to wind and water erosion in desert
ecosystems. Crusts being dark coloured increase the soil

temperature (Weber et al. 2014), conducive for germination
of seeds. Xu et al. (2013) demonstrated the significance of
cyanobacterial polysaccharides in promoting the growth of
the shrubCaragana korshinskii. Their investigation illustrated
that these polysaccharides not only enhanced germination rate
but also eliminated reactive oxygen species, thereby stimulat-
ing photosynthetic and other metabolic activities of the plants.
Desertification and degradation of soil due to the high use of
agricultural chemicals reduce arable lands; in this context,
such studies on BSCs have immense ecological and economic
significance in arid and semi-arid ecosystems to provide fertile
niche for greater cropping density and productivity.

Acidic ecosystems are often associated with phototrophic
biofilms and their mats, composed of Chlorophyta
(Chlamydomonas, Chlorella) and Euglena, besides genera
Klebsormidium and Zygnemopsis (Aguilera et al. 2006).
Phototrophic mats of cyanobacteria, Synechococcus and
anoxygenic phototrophic green non-sulphur bacterium
Chloroflexus have been well documented in extreme environ-
ment of North American hot springs with maximum temper-
ature limit of 72 °C (Papke et al. 2003). In extraterrestrial
environments, the survival capacity of cyanobacteria in bio-
film state has been analysed, and Chroococcidiopsis sp. strain
CCMEE 057 tolerated UV polychromatic radiation of
5 × 105 kJ m−2 with space vacuum of 780 Pa (Baqué et al.
2013). These experimental clues give further impetus for re-
search in space microbiology and astrobiology for the possi-
bility of enriching oxygen and biomass production.

Phototrophic biofilm formation: signaling
and molecular insights

The sequential development of phototrophic biofilm involves
cell attachment, colony formation, maturation and finally the
dispersal of cells to form new biofilm which are mediated by
different signaling mechanisms (Figs. 2 and 3). Although pub-
lished reports on molecular mechanisms involved in biofilm
formation and their dispersal in bacteria are available
(Rendueles and Ghigo 2012), information on the genetic basis
and the processes involved in cyanobacteria or microalgae is
limited (Roeselers et al. 2007; Egan et al. 2008). Some of the
reports available on molecular mechanisms and genes in-
volved in growth, functioning and biofilm formation in
cyanobacteria are given in Table 2.

Biofilms communicate through signal transduction path-
ways (quorum sensing) by secreting diffusing molecules such
as oligopeptides in gram-posit ive bacteria and γ
butyrolactones in Streptomyces species or acyl homoserine
lactone in gram-negative bacteria, including cyanobacteria
(Cuzman 2009). Cyanobacteria dominated biofilms from pre-
historic caves produce AHL autoinducers (Laiz et al. 1999).
Based on the data from controlled environment studies,
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Roeselers et al. (2007) reported that phototrophic biofilm de-
velopment involves a series of successional community
changes, wherein the growth rate of biofilm and community
composition is highly influenced by the light during the initial
phase of biofilm growth. Moreover, the development of

phototrophic biofilms was faster in surfaces, which were
precolonized by heterotrophic bacteria, marking the impor-
tance of associated heterotrophic bacteria in the initial estab-
lishment and development of phototrophic biofilms
(Roeselers et al. 2007). Cyanobacterial biofilms incubated un-
der different light regimes (light and dark) are observed to use
altered metabolic functions in relation to the reuse of organic
matter. Under photosynthetic conditions, increased excretion
of EPS and proteins involved in micronutrient transport were
observed, indicating the micronutrient requirements for extra-
cellular organic matter incorporation in light (Stuart et al.
2016). Moreover, cyanobacteria-associated heterotrophic bac-
teria were reported to upregulate transport proteins during
dark conditions, as compared to daylight.

In biofilms, metabolites are transported by diffusion as well
as through advection by interconnected channels (Bishop
1997). Algal cells possess organically rich zones called
phycosphere (Bell and Mitchell 1972); this attracts bacteria
as their food, leading to biofilm formation. Small non-
coding RNAs (sRNAs) may play an important role in regulat-
ing whether the bacteria remain sessile and form biofilms or
exist as planktonic (free-floating) cells (Chambers and Sauer
2013). Cyanobacterial genomes are reported to contain groEL
genes (groEL1 and groEL2), which play a role in adaptation
to hot environments; in Thermosynechococcus elongatus, al-
though both the groEL genes were heat-induced, groEL2 was
also cold-induced, as illustrated through primer extension and
gel mobility shift analyses (Satoa et al. 2008).

In the recent past, studies have focused on understanding
the genetics of EPS biosynthesis in bacteria (Whitfield 2006).
The putative genes involved in exopolysaccharide production
are mostly clustered and found scattered throughout different

Fig. 2 Steps in formation of
phototrophic biofilms

Fig. 3 Schematic illustration of phototrophic biofilm formation. Initiation of
biofilm formation in presence of light, oxygen and carbon dioxide gradients
(1). Surface adsorption by heterotrophic bacteria (2). Microcolony formation
surrounded by polysaccharide matrix (3). Maturation and expansion of
biofilmwithmore EPS production (4). Dislodging/dispersion of cells towards

new substrates (5). Cyanobacteria (coccus and filamentous) ;

Green algae ; Diatoms ; Bacteria (rod and coccus) ; Fungi

;Protozoa ; Signal molecules
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regions of the genome in multiple copies, as revealed by in
silico analysis of the cyanobacterial genomes (Pereira et al.
2009, 2013; Rossi and De Philippis 2015, 2016).
Information related to EPS synthesis in cyanobacteria is lim-
ited (Yoshimura et al. 2007); however, the biosynthetic path-
way for EPS formation has been studied in many gram-
positive and gram-negative bacterial species (Wingender
et al. 1999; O’Toole et al. 2000; Sutherland 2001), and rfb
genes are known to be involved in the assembly of
cyanobacterial surface polysaccharides (rhamnose sugar),
which is biosynthesized by rml genes (Reeves et al. 1996).
The presence of acidic or neutral monosaccharides in
cyanobacterial EPS shows the possibility of even more com-
plex biosynthetic pathways (Sutherland 2001; Li et al. 2002;
Pereira et al. 2009). These polysaccharides are also known to
show hydroxyl radical/reactive oxygen scavenging activity,
and antioxidant activities and structural characterization re-
vealed alkali-extractable heteroglycan (Wang et al. 2008).
The sulphated sugars of EPS from several microalgae are in-
volved in cell recognition and cell adhesion, and thereby find
use in anti-adhesive therapies for controlling bacterial infec-
tions (Guzman-Murillo and Ascencio 2000). The c-di-GMP
signaling is suggested to mediate cell aggregation and biofilm
formation in cyanobacteria (Thermosynechococcus) via acti-
vation of a PilZ domain of a cellulose synthase, which pro-
duces cellulose or related extracellular polysaccharide
(Enomoto et al. 2014). Involvement of extracellular matrix

protein (WspA) has been reported in cyanobacterium,
N. commune, wherein WspA helps to bind with the UV-
absorbing pigment, scytonemin, allowing N. commune to sur-
vive in adverse environments (Wright et al. 2005).
Cyanobacteria code for proteins involved in the ABC-
dependent pathway and subsequent EPS synthesis, which
are identified as KpsC and KpsS (Pereira et al. 2013). A
glycoprotein-mediated cell-cell interaction in Microcystis
aeruginosa was identified by Zilliges et al. (2008) which
provides information regarding cell aggregation in
cyanobacteria. Capsular polysaccharides (CPSs) are report-
ed to be a representative of a large portion of the cell dry
weight (De Philippis et al. 2001; Rossi and De Philippis
2015, 2016), and most of the reports found no qualitative
differences between the composition of CPSs and RPSs
(Vincenzini et al. 1990; Freire-Nordi et al. 2006; Di
Pippo et al. 2013).

Schatz et al. (2013) reported that the components of a type
II protein secretion system (T2S)/type IV pilus assembly sys-
tem are essential for biofilm formation in Synechococcus
elongatus. Two genes (pcc7942_1133 and pcc7942_1134) re-
quired for biofilm formation in S. elongatus were also identi-
fied. Similar Bcommunity escape response^ was reported in
the photosynthetic bacterium Rhodobacter sphaeroides
(Puskas et al. 1997). The gene hesF (heterocyst-specific
attachment factor) was found to play a crucial role in main-
taining the heterocyst cell wall structure (Oliveira et al. 2015).

Table 2 Genes involved in modulating growth, function and biofilm formation in cyanobacteria

Cyanobacteria Genes Functions References

Calothrix sp. apcC, cpcL, cpcM Synthesis of linker polypeptides Füglistaller et al. (1984, 1985, 1986);
Lomax et al. (1987)

Calothrix sp. gvpA1, gvpA2 Structural gas-vesicle protein De Marsac et al. (1985);
Damerval et al. (1987)

Calothrix sp. cpcB2, and cpcA2 Phycobilisome (Phycobiliprotein) synthesis and
hormogonia differentiation

Conley et al. (1985);
Capuano et al. (1988)

Calothrix sp. cpeB and cpeA Phycobilisome (Phycobiliprotein) synthesis and
hormogonia differentiation

Mazel et al. (1986)

Nostoc commune wspA Important for the structure and/or the function of the
extracellular matrix and involved in conferring
tolerance to adverse environmental conditions

Wright et al. (2005);
Morsy et al. (2008)

Synechococcus elongates pcc7942_1133,
pcc7942_1134

Biofilm formation Schatz et al. (2013)

Synechococcus elongates pteB Peptidase transporter essential for biofilm formation Parnasa et al. (2016)
ebfG1-4 Enable biofilm formation with a GG-motif (ebfG), a

mediator in biofilm development

Synechocystis sp. Cph2 A cyanobacterial phytochrome2 play a
physiological role in biofilm formation

Schwarzkopf et al. (2014)

Synechocystis gumB, gumC EPS synthesis and aggregation Fisher et al. (2013)

Anabaena sp. hesF Maintenance of heterocyst cell wall structure and
facilitation of filament adhesion and culture
aggregation

Oliveira et al. (2015)

Several genera rfb Involved in assembly of cyanobacterial surface
polysaccharides (rhamnose)

Pereira et al. (2009)
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This interacts with heterocyst-specific polysaccharides and
was responsible for filament adhesion and culture aggregation
in Anabaena sp. Genes (cpeB, cpeA, cpcB2 and cpcA2).
Involved in phycobilisome (phycobiliprotein) synthesis and
hormogonia differentiation (Conley et al. 1985; Mazel et al.
1986; Capuano et al. 1988) are also reported. Reports also
illustrated the involvement of linker polypeptides synthesis
(apcC, cpcL, cpcM) (Füglistaller et al. 1984, 1985, 1986,
Lomax et al. 1987) and genes encoding structural gas-
vesicle protein in Calothrix 7601(gvpA1 and gvpA2) (De
Marsac et al. 1985, Damerval et al. 1987). Enomoto et al.
(2014) identified a Cyanobacteriochrome (CBCR) SesA
(sessility-A), which acts as a diguanylate cyclase (via c-di-
GMP) and regulates sessile (cell aggregation) or planktonic
form transition along with chromatic acclimation and motility
in a thermophilic cyanobacterium Thermosynechococcus un-
der blue light and low temperature. Cell aggregation is report-
ed to provide an effective mechanism to protect against
photoinhibition by self-shading in a thermophilic cyanobacte-
rium Synechococcus vulcanus (Hirano et al. 1997). A signal
molecule (2E, 4E/Z-decadienal) from a diatom was proposed
to be a part of defence mechanism(s) against grazers in
biofilms (Ianora et al. 2004).

Phototrophic biofilms and their role in agriculture

Agriculture in the current scenario depends heavily on agro-
chemicals for crop production and protection, which con-
sumes a large part of resources such as fertilizers, pesticides,
herbicides and growth hormones, for enhancing quality and
quantity of food basket. A more environment friendly ap-
proach involves the use of biofertilizers, which augment nat-
ural microflora to promote plant growth and development. In
the last few years, a novel concept of development and for-
mulation of plant growth promoting microorganisms, includ-
ing cyanobacteria as matrices, and developed as phototrophic
biofilms has been envisaged.

As root colonizer and plant growth promoting agents

Cyanobacteria are a major component of phototrophic
biofilms and are well-known for their root colonization ability
(Nilsson et al. 2002) and plant growth promotion under ad-
verse conditions (Zahran 1999). Most cyanobacteria being
phototrophs and nitrogen-fixers can meet the carbon and ni-
trogen requirements through CO2 and N2 fixation, respective-
ly (Fay 1992; Gibson and Tabita 1996), thus supplying carbon
and nitrogen in fixed and available forms to the plants.
Phototrophic biofilms excrete excess of carbon (Ramanan
et al. 2016) in nutrient-rich environment, often utilized by
other neighbouring microbial species. Cyanobacterial inocu-
lants are reported to enhance crop growth and yield (Mandal

et al. 1999), besides their nitrogen-fixing potential, several
genera such as Anabaena, Nostoc, Cylindrospermum,
Calothrix and Plectonema produce phytohormones such as
indole acetic acid (Sergeeva et al. 2002; Prasanna et al.
2009) and other bioactive secondary metabolites that induce
systemic response in plants to protect them from pests and
diseases. Extracellular products from cyanobacterial biofilms
stimulate the increased production of phytoregulators in
Lupinus termis (Haroun and Hussein 2003), involved in rice
calli organogenesis and replaced the artificial phytoregulators
(De Cano et al. 2003). Extracellular fractions of cyanobacteria
are also reported to enhance bulblet production in Lilium
alexandrae (Zaccaro et al. 2006) and increase oil content in
Mentha piperita (Shariatmadari et al. 2015). Cyanobacterial
biofilms on rock surfaces of mountainous peaks promote veg-
etation by supplying nitrogen through leaching process
(Dojani et al. 2007). Cyanobacterial EPS provide effective
protection from widely applied pesticides and herbicides in
fields that may be toxic to non-target organisms including
plant growth promoting rhizobacteria. Nostoc muscorum,
which produces extensive EPS, could tolerate and retain ni-
trogenase activity in the presence of Goltix (50 and 100 ppm)
and Sencor at 10, 20, 50 and 100 ppm (Gadkari 1987).

The cyanobacterial mucilage is a nutrient-rich niche for
several heterotrophs, and based on this feature, agriculturally
important bacteria such as Azotobacter, Rhizobium and
Pseudomonas, as also fungi such as Trichoderma, were used
as partners. Such laboratory-developed biofilms have been
evaluated successfully in pot and field experiments for their
growth promoting attributes in cereals (rice and wheat)
(Prasanna et al. 2015a; Swarnalakshmi et al. 2013a, 2013b),
legumes (mungbean, soybean, chickpea) (Prasanna et al.
2014; Bidyarani et al. 2016), vegetables (okra, tomato)
(Manjunath et al. 2016; Prasanna et al. 2013) and cash crops
(cotton and maize) (Prasanna et al. 2015b, 2015c). Biofilm of
Microcoleus sp. showed increased nitrogenase activity and
growth in young mangrove seedling (Toledo et al. 1995).
Application of cyanobacterial biofilmed biofertilizers or
wastewater-grown algal biofilms is also reported to improve
micronutrient content (Zn, Fe, Cu and Mn) of soil and grains
of rice and maize (Adak et al. 2016; Prasanna et al. 2015b;
Renuka et al. 2016). These investigations illustrated the
promise of cyanobacterial biofilms as effective matrices for
beneficial microbes and their utilization as environment-
friendly multispecies inoculants in integrated practices in
agriculture.

Biocontrol agents

Biofilm formation is an important trait among biocontrol
agents, which not only helps in colonizing the roots but also
aids in persisting and antagonizing other predators/grazers or
pathogens. Besides the biofilm-forming ability, many
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cyanobacteria produce cytotoxic, antifungal, antibacterial and
antiviral metabolites (Dahms et al. 2006), including hydrolytic
enzymes and secondary metabolites, and thus induce or elicit
defence responses in plants. Among cyanobacteria, Nostoc
muscorum and strains of Anabaena and Calothrix exhibit fun-
gicidal activity against Pythium, Fusarium and Rhizoctonia
(Moon et al. 1992; Prasanna et al. 2008; Radhakrishnan
et al. 2009; Manjunath et al. 2010). Methanol extracts of
Nostoc linckia and Phormidium autumnale have showed bio-
control properties against Fusarium wilt in tomato
(Alwathnani and Perveen 2012). Oscillatoria chlorina could
suppress root knot nematode in tomato under potted field soil
in greenhouse (Khan et al. 2007). Co-inoculation of agricul-
turally important bacteria and fungi such as Bacillus spp.,
Pseudomonas spp. and Trichoderma spp. led to the develop-
ment of novel cyanobacterial biofilms, with anti-grazer traits
against microfauna/pathogenic fungi. Several reports on the
effectiveness of Anabaena biofilms in controlling root rot of
cotton and diseases in okra are published (Babu et al. 2015;
Prasanna et al. 2013, 2015c; Manjunath et al. 2016).

Nutrient accretion and soil structure

Microbes have been utilized for soil improvement programs
worldwide, as they sequester nutrient and mobilize them,
making it available to plants (Madigan et al. 2003).
Phototrophic biofilms represent novel microbial inoculants,
which are multitrophic, and their synergistic activities work
in coordination to colonize soil particles, which bring about
physico-chemical, structural and biological changes in soil.

A large number of filamentous bacteria, cyanobacteria and
fungi that form an integral part of phototrophic biofilms can
easily associate with soil particles through EPS and enzymes
or organic acids. Higher biomass density in biofilms optimizes
the conditions such as pH, solute concentrations and redox
potential, thereby facilitating the soil mineralization processes
(Singh et al. 2006). Therefore, phototrophic biofilms are
favoured in technologies to engineer soil physical properties
(Mitchell and Santamarina 2005) such as permeability, hy-
draulic conductivity, shear strength, compressibility, stiffness
and texture which in turn improve fertility, structure and better
water conductivity. These properties are used commercially to
minimize environmental hazards, due to chemicals and mech-
anization involved in soil amendments.

Microbial mineral precipitation technologies have com-
mercial importance in improving durability of construction
materials such as limestone (Achal et al. 2010), bricks
(Dhamia et al. 2012) and cementitious materials such as sand
consolidation (Gurbuz et al. 2011). The biofilms of
Phormidium-Calothrix-Pleurocapsa were able to precipitate
calcium in the aquatic ecosystems under supersaturated con-
ditions (Arp et al. 2003). Stromatolites (Logan et al. 1964)
well known for CaCO3 deposition are linked to cyanobacteria

or cyanobacterial mats (Dupraz and Visscher 2005), as the
acidic exopolysaccharide of biofilms alters the factors respon-
sible for calcium precipitation, such as concentration of calci-
um and dissolved inorganic carbon, pH and availability of
nucleat ion si tes (Hammes and Verstraete 2002) .
Biocementing (Adolphe et al. 1990) by phototrophic biofilm
promotes the strength of construction buildings that reduces
its long-term maintenance costs. Decrease in hydraulic con-
ductivity is related with groundwater recharge (Gette-
Bouvarot et al. 2015) and in situ bioremediation of organic
contaminants in the subsurface environment. The biofilms of
cyanobacteria (Oscillatoria, Phormidium and Aphanocapsa)
mediate calcite precipitation (Arp et al. 2003). The property of
calcite formation by species of Bacillus and Micrococcus has
been exploited for improving construction materials
(limestone) by decreasing porosity (Tiano et al. 1999).

Aquaculture

Seafood forms an important food component for human con-
sumption due to their nutritional value. The role of microbial
biofilms in enhancing fish production through periphyton pro-
liferation on available substrates has been reported (Shankar
et al. 1998). The beneficial attributes of phototrophic biofilms
in terms of EPS or as nutraceuticals and feed are being
exploited in aquaculture. Dissolved organic carbon from sea-
water (∼10−3 g L−1) is 100 times more diluted than the carbon
from EPSwhich is nearly 10 g L−1 (Verdugo 2012). The larval
stages of metazoans directly feed on large EPS aggregates in
marine ecosystems (Alldredge et al. 1993). Phototrophic
biofilms can be an alternative quality feed material in aqua-
culture, optimizing the yield efficiency in hatcheries for fish
production. However, these biofilms are studied mainly for
waste buildup and recirculation of culture through removal
of suspended solids. Since these aggregates represent the pri-
mary trophic level in marine food webs, further research in
elucidating their potential as fish feeds is needed.

Bioremediation

Bioremediation through microbes or their consortia are useful
strategies to combat pollutants responsible for contamination
of water bodies and aquifers. Bioremediation potential of
cyanobacteria and their mats have been reported for hydrocar-
bon degradation by liberating oxygen, organics and nitrogen
to aerobic heterotrophic degraders (El-Bestawy et al. 2007).
Microbial assimilation of carbon from oil can be stimulated by
the addition of nitrogen supplements (Coffin et al. 1997). Mat
surfaces carry out both aerobic and anaerobic degradation by
diurnal shift from anaerobic sulphide-rich habitat in the dark
to oxic conditions in light (Cohen 2002). Use of microalgal
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biomass from wastewater as biofertilizers is reported in wheat
(Renuka et al. 2016). This biomass can also be converted to
Biochar (a form of charcoal) that acts as slow release of nutri-
ents in the soil, improves its water retention capacity and helps
in land reclamation.

Cyanobacterial growth as biofilms has been studied for
oxidizing oil components, pesticides and herbicides.
Microcoleus chthonoplastes and Phormidium corium were
able to degrade n-alkanes (Al-Hasan et al. 1998),
Agmenellum quadruplicatum oxidized naphthalene to 1-
naphthol (Cerniglia et al. 1979) andOscillatoria sp., and strain
JCM oxidized biphenyl to 4-hydroxybiphenyl (Cerniglia et al.
1980). Cyanobacterial biofilms are reported to accumulate
high concentration of insecticides in aquatic bodies. Methyl
parathion has been degraded by Nostoc linckia and Nostoc
muscorum (Megharaj et al. 1994), atrazine by Selenastrum
sp. (Zablotowicz et al. 1998), Dichlorprop-methyl (2,4-
DCPPM) by Chlorella vulgaris and Scenedesmus obliquus
(Li et al. 2008). Heavy metal decontamination is reported by
several cyanobacterial species that brings out reduction in
metal load by means of intracellular uptake through EPS, sur-
face adsorption or precipitates of sulphides or phosphates me-
diated by EPS. Mucilaginous sheaths of cyanobacteria,
Microcystis aeruginosa and Aphanothece halophytica have
strong affinity for copper, lead and zinc ions (Parker et al.
2000). Immobilized cyanobacteria as Anabaena doliolum, se-
creting mucilage, possess the potential for metal removal
through biosorption (Rai and Mallick 1992). Biofilm of
Chlorococcum sp. and Phormidium sp. immobilizes metals,
under mixed metal exposure condition (Garcia-Meza et al.
2005). Pollutants such as nitrogenous and phosphorous com-
pounds present in wastewater along with pernicious metal
ions can be easily removed using phototrophic biofilms,
which proliferate in such waters (Posadas et al. 2013; Boelee
et al. 2011).

Wastewater treatment and biofuel generation

Phototrophic biofilms are being utilized in tertiary wastewater
treatment units for their ability to form aggregates compared
to suspended growth of other microalgae (Sandefur et al.
2014). During treatment, the algal biomass proliferates, by
using inorganic substrates such as nitrogenous compounds.
The ease of harvesting of aggregative/flocculating biomass
make them reliable, energy-saving and economical options
for cleaning water and providing value-added products as
clean energy fuels (Cho et al. 2011), nutraceuticals (Pyle
et al. 2008), fertilizers (Chan et al. 2008), etc. An exhaustive
review on the molecular aspects and the use of EPS producing
cyanobacteria in the removal of heavy metals from water il-
lustrated the promise and drawbacks, besides complexities
involved in their practical applications (De Philippis et al.

2011). They pointed out that though the process is specific
to each alga, the costs involved are a major hurdle.
Engineering of specific genes related to structural aspects or
composition can lead to cyanobacterial strains with greater
specificity and higher metal sorption capacity; these can be
integrated into industrial processes.

Cyanobacterial and microalgal biofilms are also used in
treating water from agricultural effluents (pesticide and chem-
ical fertilizer residues), industrial waste/metal polluted water
bodies or improving nutrient mobilization and uptake by
plants using the wastewater-grown biomass (Gadd 2009;
Abdel-Raouf et al. 2012; Olguin 2012; Renuka et al. 2013,
2016). Recently, microcystin, a toxin from a cyanobacterial
bloom, was eliminated by phototrophic biofilms (Babica et al.
2005). Phototrophic biofilms apart from treating wastewater
also act as an efficient biological source of carbon sequestra-
tion (CO2 fixation from both atmosphere and water bodies).
By-products as biofuels are economical and environment
friendly, generated from waste biomass. These biofuels have
been utilized in running engines/vehicles, and recently, a hy-
drogen fuel-based tractor has been developed (New Holland
2009) as an alternative to non-renewable energy source (fossil
fuels). More concerted efforts are needed in this niche area.

Future prospects and conclusion

Biofilms represent structured natural communities, omni-
present in air, land and water bodies. Often considered as
a nuisance due to their pervasive and persistent nature,
recently, biofilms have evolved as promising options in
agriculture in the form of multifaceted inoculants in var-
ious crop plants, including cereals, vegetables, flowers
and medicinal plants. Association and colonization of
rhizospheric bacteria with green algae and other
cyanobacteria reveal the possibility of their coevolution
(Goecke et al. 2013; Ramanan et al. 2015; Cooper and
Smith 2015). The biofilm communities have often been
found in association with plant growth promoting bacte-
ria, where cyanobacteria provides carbon and fixed nitro-
gen input and improve soil structure and function through
their proliferation. Molecular insights into phototrophic
biofilm formation have illustrated the extensive diversity,
genes involved, survival mechanisms and interaction
among species in biofilms. EPS of biofilms are being
looked as fish feed for aquaculture and hatcheries.
Phototrophic biofilms can pay back indirectly to farming
system, by managing pollutants in wastewater and biore-
mediation (oil clean-up, desalination and pesticide remov-
al). Additionally, phototrophic biofilms act as carbon
sinks and counterbalance methane emission in rice culti-
vation fields, thereby mitigating greenhouse gas effects
through oxygenation and other biochemical activities.
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Focussed work on the intricacies of nutrient dynamics in
the soil/water and phototrophic biofilms interface and de-
velopment of protocols for their metabolic and genetic
modulation can be interesting areas for future research.
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