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Abstract Nowadays, modern approaches in tissue engineer-
ing include the combination of therapeutic relevant cells with
high quality, biocompatible biomaterials. The resulting
cellularized scaffolds are of great interest for several pharma-
ceutical applications such as drug screening/discovery, disease
modeling, and toxicity testing. In addition, the introduction of
human-induced pluripotent stem cells (hiPSCs) further in-
creased the importance and the potential of tissue engineering
not only for the pharmaceutical industry, but also for future
therapeutic applications. Artificial microenvironments of
hiPSCs comprise combinations of adhesive proteins and are
particularly influenced by mechanical properties of the growth
surface. The increasing focus on mechanical properties and
the ability to adjust them propose alginate hydrogels as suit-
able candidates for engineered scaffolds. Ultra-pure alginates,
however, are bioinert and require modifications for
bioactivation. In this study, we present two modifications of
alginate hydrogels based on direct covalent coupling of colla-
gen I and coupling of a special linker molecule with subse-
quent Matrigel coating. We were able to demonstrate the suc-
cessful adhesion and proliferation of hiPSCs on these linker-
modified alginates. The developed modifications are particu-
larly applicable for planar as well as spherical hydrogel
surfaces. In this context, a scalable adherent suspension
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culture on alginate microcarriers could be established. Our
data further indicate that larger alginate microcarriers modi-
fied with collagen I is less susceptible for agglomeration com-
pared to small microcarriers. The obtained results indicate
these modifications as suitable for both adhesion and cultiva-
tion of human stem cells such as human mesenchymal stem
cells or hiPSCs.
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Introduction

The combination of promising therapeutically relevant cell
lines with natural or synthetic biomaterials in the rapidly de-
veloping field of tissue engineering serves a common strategy
for the generation of high valuable cell-based models (Fig. 1a)
for both disease modeling (Prestwich 2007) and drug
screening/discovery (Kimlin et al. 2013). In particular, knowl-
edge gained from the cell-matrix interaction can be transferred
to novel approaches in regenerative medicine such as cartilage
repair (Re’em et al. 2010).

The used biomaterial represents more than a supporting
“scaffold”: it provides tissue- or cell-specific signals for prop-
er functionality of the whole construct concerning, e.g., adhe-
sion sites, cavities, chemical gradients, or elastic surfaces
(Ghaemi et al. 2013; Gattazzo et al. 2014) and simultaneously
influences the fate (see Fig. 1b) of human stem cells (Watt and
Huck 2013). Due to this complexity, a rational design in a
screening-like manner has not been conducted in the past,
except for empirical “tissue try this” approaches (Kaplan
et al. 2005; Ingber et al. 2006). Furthermore, surfaces coated
by combinatorial proteins as well as the inclusion of compliant
properties play key roles during the design of artificial cellular

@ Springer


http://orcid.org/0000-0001-8595-1304
http://crossmark.crossref.org/dialog/?doi=10.1007/s10811-017-1130-6&domain=pdf

2452

J Appl Phycol (2017) 29:2451-2461

a
| Stem cells |+| Biomaterials |

Cellularized
scaffolds (2D or 3D)

e ol

b —— Cellfate
Differentiation
Apoptosis
Migration

—_—
Survival
Adhesion

AProIiferation

ZAS

Cell membrane

yis nin
-

Cell membrane

Fig. 1 Principles of tissue engineering: cells and materials. a
Fundamental principle of tissue engineering. Therapeutic relevant cells
are combined with biocompatible materials (natural or synthetic) to form
cellularized artificial microenvironments. b Depending on the surface
properties, signals from the outside (extracellular matrix) are
“translated” by integrin-mediated interaction to the inner of the cell.
Specific signals influence the general cell fate in terms of proliferation,
survival, or adhesion. ¢ Brown algae Lessonia nigrescens (left) and
Lessonia trabeculata (right) used in biomaterial production for applica-
tion in tissue engineering. d Raw product of Lessonia nigrescens (leff)
and Lessonia trabeculata (right) after initial cleaning and drying imme-
diately after harvest. e Final purified alginate

environments (Discher et al. 2005; Buxboim et al. 2010). The
direct influence of the elastic modulus of the surface has been
demonstrated in several studies by both changes in morphol-
ogy and the analysis of comprehensive gene expression stud-
ies (Engler et al. 2006). After decades of cell cultivation on
stiff polystyrene surfaces, new scientific questions conse-
quently arise concerning the interaction of cells with their
mechanical surrounding, and thus, the complexity in
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designing artificial cellular environments increases. Since the
introduction of human-induced pluripotent stem cells
(hiPSCs), the demand for novel innovative, bioactive, and
xeno-free surfaces for cultivation and differentiation
workflows is continuously growing (Saha et al. 2011; de
Peppo and Marolt 2013; Fan et al. 2014).

After the first description and generation of these cells
(Takahashi and Yamanaka 2006; Takahashi et al. 2007), the
scientific community is confronted with entirely new possibil-
ities. Derived from somatic cells, such as fibroblasts from skin
biopsies, hiPSCs can be reprogrammed by a defined set of
genetic factors. Since these cells have a similar potential as
human embryonic stem cells with less ethical concerns
(Murphy et al. 2013), they can virtually be differentiated into
each specialized cell of the human body (Lee et al. 2010;
Lancaster and Knoblich 2014; Kempf et al. 2015).
Furthermore, hiPSCs can be generated from patients with ge-
netic disorders, and thus, the corresponding cells can be used
for patient-specific drug testing (Gunaseeli et al. 2010; Ebert
etal. 2012). In this context, compliant bioactive hydrogels can
enhance both the current workflows during differentiation and
the subsequent generated cell models.

One of the most promising candidates for engineering com-
pliant in vivo-like surfaces are alginate hydrogels (Fig. lc—e).
Alginates can be isolated from brown algae and are un-
branched polymers consisting of homogeneous or heteroge-
neous blocks of (3-D-mannuronic or «-L-guluronic acids
(Draget et al. 2005). Protocols for the extraction of xeno-free,
ultra-pure, high molecular weight alginates are available
(Zimmermann et al. 2005; Fertah et al. 2014). The composi-
tion of the polymers, however, depends on the choice of algae
species (Smidsred and Skjak-Brak 1990), environmental con-
ditions (Storz et al. 2009), or individual parts of the algae
(stipe, leaf) (Dalheim et al. 2016). The gelation of alginate
solutions occurs by ionotropic gelation under gentle condi-
tions (Malpique et al. 2010) using divalent cations like Ca®*
or Ba®* (Smidsred and Skjak-Brak 1990). Since the alginate
gelation can be conducted at physiological pH and tempera-
tures, it is therefore particularly suited for applications in re-
generative medicine and tissue engineering (Mettler et al.
2013). So far, alginates have been studied intensively in the
context of immunoisolation of therapeutically relevant cells
owing to development of novel approaches for treatment of
diabetes mellitus (Duvivier-Kali et al. 2001; Schneider et al.
2005; Neufeld et al. 2013). Here, cells are encapsulated in a
protective alginate shell, which can be implanted for therapeu-
tic approaches. Due to the porosity of the alginate hydrogel, a
bidirectional mass transfer of, ¢.g., oxygen, nutrients, metab-
olites, and active compounds from the inner of the
alginate-capsule and vice versa, is still possible. For such an
application, a bioinert material for the encapsulation is crucial
to support long-term survival of the enclosed cells (Ponce
et al. 2006). Crude alginates can lead to an immune response
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or to fibrosis, potentially inducing a loss of the transplant (van
Schilfgaarde and de Vos 1999).

At the same time, such purified alginates are not suitable in
terms of adherent cultivation of anchorage-dependent cells
(Jeong et al. 2010) and only irregular surface characteristics
(scratches) can lead to an cell adhesion of (rather simple) cell
types such as fibroblasts (Zimmermann et al. 2007b).
Machida-Sano et al. studied cell adhesion of alginates cross-
linked with different cations and concluded that the protein
adsorption on the hydrogel surface is one crucial factor for cell
adhesion (Machida-Sano et al. 2009, 2014). Due to the
hydrophilic properties of alginate hydrogels, low protein
adsorption is expected. In this context, the usage of alginate
surfaces for multipotent and especially for pluripotent stem
cells is highly challenging. Pluripotent stem cells require a
specialized cellular environment for adhesion guaranteeing
survival (Chen et al. 2010; Kurosawa 2012) and
maintaining/losing their identity (Sheridan et al. 2012).
Bioactivation of alginate hydrogels by mixing proteins and
polysaccharides is challenging due to complex chemical inter-
actions of these macromolecules (Rodriguez Patino and
Pilosof 2011). In addition, a transfer to spherical hydrogels
is difficult regarding a proper presentation of the proteins at
the surface (Terazono et al. 2012). Non-covalent mixing of
these components for bioactivation represents a more suitable
strategy for complete cell encapsulation in hydrogels (Sang
et al. 2011). Furthermore, defined stem cell culture media do
not provide any proteins that can adsorb on the alginate’s
surface and trigger cell adhesion (Fadeev and Melkoumian
2011). In order to cultivate human stem cells successfully on
alginate hydrogels, it is essential to modify the polymers for
engineering suitable stem cell environments.

Advanced specialized cultivation surfaces represent so-
called microcarriers. Microcarriers are a valuable tool for cul-
tivation of anchorage-dependent cells in static hanging droplet
cultures or suspension cultures like stirred bioreactors. This
cultivation method is increasingly important, since the pro-
duction of the required high cell amounts is not possible using
2D cultivation systems. There is a high demand for novel
innovative cell expansion substrates in large biorepositories
such as the European Bank for induced pluripotent Stem
Cells (EBiSC, www.ebisc.org). Thereby, the advantages of
homogeneous cultivation conditions (e.g., no chemical
gradients) can be applied to adherent cell lines with an
excellent surface-to-volume ratio.

Microcarriers, introduced for the first time in 1967 (Van
Wezel 1967), can be described as solid, porous, or
macroporous with densities between 0.9 and 1.32 g mL™
(Chen et al. 2013). The diameters of microcarriers vary from
120 to 300 um (Kong et al. 1999; Chen et al. 2013; Goh et al.
2013). In addition, microcarriers are functionalized with dif-
ferent surface features like charge or protein coatings.
Common materials used for commercial microcarrier

production are DEAE-dextran, cellulose, polystyrene, algi-
nate, glass, or gelatin and allow the efficient cultivation with
extremely high surface-to-volume ratio (Kong et al. 1999;
Asthana and Kisaalita 2012; Chen et al. 2013; Goh et al.
2013). Despite the great success of these microcarriers, there
is still a high demand for adoptable microcarrier systems in
terms of mechanical properties, size, and biochemical
functionalization. In our opinion, microcarriers based on
ultra-high-viscosity (UHV)-alginate hydrogels can provide
several of the posed demands due to their unique and partially
adjustable properties. They can be adjusted concerning diam-
eter, stiffness, porosity, surface properties, and the
functionalization of the microcarrier’s core by bioactive mol-
ecules such as growth factors. The functionalization of the
surface accessible for the attachment of cells can be induced
with proteins like collagen, fibronectin, or vitronectin.

In this study, we investigated the specific functionalization
of cross-linked alginate surfaces in order to immobilize pro-
teins with bioactive, cell-recognizable motifs triggering cell
adhesion. We studied two different ways of bioactivation:
one direct method by coupling proteins and one universal,
indirect approach for adsorption of complex protein mixtures
on the alginate’s surface. The generated surfaces have been
evaluated with two promising human stem cell types/lines:
human mesenchymal stem cells (hMSCs) and hiPSCs. In con-
sequence, our study provides a basis for future research on
sophisticated cell models or transplants for regenerative med-
icine, disease modeling, or drug screening/discovery.

Materials and methods
Seaweed-derived alginates

In this study, we used alginates from the brown algae Lessonia
nigrescens (LN) and Lessonia trabeculata (LT) procured in
dry state from Alginatec GmbH, Riedenheim, Germany. The
two species differ in chemical composition (mannuronic/
guluronic acid ratio) and thus in the final mechanical proper-
ties of the hydrogel after cross-linking. Raw materials were
cleaned, peeled, chopped, and dried under controlled condi-
tions immediately after harvest to minimize contamination.
The extraction of alginates was conducted under sterile con-
ditions. Purification of the alginate extract was by sterile fil-
tration and a series of subsequent precipitations in ethanol and
re-solution in potassium chloride solution. The final purified
alginate was dried and stored at +4 °C until usage. A detailed
description of the production of purified ultra-high viscous
alginates is given by Zimmermann et al. ( 2005). The purified
alginate is suitable for long-term cultivation of human cells
(Schneider et al. 2005). For hydrogel formation, alginate gran-
ulates were dissolved in isotonic sodium chloride solution
(Sigma) and mixed until complete solvation. Both alginate
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types were prepared separately as 0.7% (w%/v%) solutions
and mixed in equal parts before usage.

Cell culture of hMSCs

Human mesenchymal stem cells (hMSCs, PromoCell GmbH,
Heidelberg, Germany) were cultured and expanded in
DMEM/F-12 (Gibco) containing 10% fetal bovine serum,
100 U mL ™" penicillin/streptomycin (Gibco), and 1 ng mL™"
basic fibroblast growth factor (bFGF, Gibco). Cells were pas-
saged using trypsin/EDTA (0.05%, Gibco) once a week or ata
confluency of 80%.

Cell culture of hiPSC

hiPSCs AXAi (Axiogenesis AG, Germany) were delivered by
the manufacturer in cell culture flasks with a growth area of
175 ecm? and cultured until usage. Cells were expanded in
“AX-IP-N8” cell culture medium provided by the manufac-
turer and exchanged at regular intervals. For experiments,
cells were washed with DMEM/F-12 (Gibco), detached using
TrypLE (Gibco), and dispersed in cell culture medium. The
resulting single cell suspension was supplemented with
ROCK inhibitor (Cayman Chemical) in order to avoid
apoptosis.

Alginate membrane modified with collagen I

Cell culture dishes (Corning, cell culture treated, diameter
35 mm) were treated with poly-L-lysine (Sigma, 1:10 dilution
(v%/v%) in phosphate-buffered saline) for 30 min at 37 °C. In
order to provide positive charges to mediate alginate adhesion
on the polystyrene surface, the solution was aspirated and the
surface air-dried. Subsequently, 1 mL of alginate solution
(0.7%, w%/v%) was poured into the Petri dish and cross-
linked for 15 min with 1 mL BaCl, solution (20 mM) at room
temperature. The cross-linking of alginate solution was con-
ducted using a 20 mM BaCl, solution with 115 mM NaCl
and 5 mM L-histidine (all chemicals from Sigma). Next,
cross-linking solution was aspirated and alginate surfaces were
washed three times to remove excessive barium. Afterwards,
the alginate membranes were activated (see Fig. 2a) by aqueous
carbodiimide chemistry (adopted from (Rowley et al. 1999)),
containing N-(3-dimethylaminopropyl)-V'-ethylcarbodiimide
hydrochloride (EDC, 200 mM, Sigma) and N-
hydroxysuccinimide (NHS, 50 mM, Sigma) in aqua bidest for
30 min at room temperature. Subsequently, the beads were
washed twice with aqua bidest. After activation, the membranes
were incubated in different dilutions of collagen I (0, 7.5, 37.5,
and 75 ug mL !, from rat tail, Gibco, diluted in 1 mL 0.1 M
HEPES, pH 5.2, 0.1 osmol) overnight at room temperature (see
Fig. 2b). The membranes were washed twice in 0.9% NaCl.
hMSCs (6250 cells per cm?) were inoculated in 2 mL culture
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Fig. 2 Chemical treatment of alginate hydrogels for the production of
bioactive surfaces. a Carboxyl groups of alginates are involved in the
cross-linking of the hydrogel but can also be used for activation via
aqueous carbodiimide chemistry (EDC and NHS). b Proteins or other
bioactive compounds can directly be coupled on the alginate’s surface.
¢ Coupling of a linker molecule to alginate polymers for subsequent
universal protein coating on alginate surfaces by adsorption. EDC 3-
dimethylaminopropyl)-N'-ethylcarbodiimide hydrochloride, NHS N-
hydroxysuccinimide

medium, observed, and cultivated for 8 h in automated micro-
scopes (Biostation IM, Nikon). The number of attached cells
(% of total cells seeded) was quantified manually 1 h after
inoculation.

Alginate microcarriers modified with collagen I

For the production of alginate microcarriers, alginate beads
were produced by coaxial air jet technology (Zimmermann
et al. 2005, 2007a). A 1:1 (v%/v%) mixture of LN and LT
alginate was prepared, and alginate spheres were generated by
dropping the alginate into a barium chloride gelation bath (con-
taining 20 mM BaCl,, 115 mM NaCl, and 5 mM L-histidine).
In addition, small alginate spheres (approx. 200 pm diameter)
and large alginate spheres (approx. 600—700 um) were pro-
duced. To remove excessive gelating agents, the spheres were
washed in NaCl (0.9%, w%/v%). In this form, alginate
hydrogels are bioinert and no integrin-mediated adhesion of
cells is triggered by physicochemical properties of the alginate
spheres’ surface. Hence, the alginate beads were activated by
aqueous carbodiimide chemistry (adopted from (Rowley et al.
1999)) according to the former paragraph (see Fig. 2a, b).
Subsequently, the beads were washed twice with aqua bidest.
After activation, the beads were incubated in a 10 mL solution
with 7.5 pg mL ™" collagen I (from rat tail, Gibco, diluted in



J Appl Phycol (2017) 29:2451-2461

2455

0.1 M HEPES, pH 5.2, 0.1 osmol) overnight at room tempera-
ture. The produced alginate microcarriers were washed twice in
0.9% NaCl and stored at 4 °C until usage and before cell
seeding.

Stirred microcarrier culture of hMSCs in mini-bioreactors

For the cultivation of hMSCs, we used a suspension bioreactor
system (BioLevitator, Hamilton Bonaduz AG, Switzerland)
with four parallelized bioreactors (Levitubes, Hamilton
Bonaduz AG, Switzerland). The parameters used for inocula-
tion were 50-rpm rotation speed, 5-s rotation period, 2-s rota-
tion pause, 2-min agitation period, and 10-min agitation pause
for an overall duration of 4 h. After inoculation, the cultivation
was started with 60-rpm rotation speed, 5-s rotation period,
and 3-s rotation pause for an overall duration of 7 days. We
cultivated hMSCs on four different microcarrier systems:
Cytodex 1 precoated with collagen I, Cytodex 3 (Sigma-
Aldrich, Germany), and our two developed alginate
microcarrier systems with different sizes as described earlier.
The total growth area per condition was adjusted to 72 cm®.
Suspensions of cells and microcarriers were inoculated at a
density of 4000 cells per square centimeter in 40 mL culture
medium. This proportion was the same for all types of
microcarriers in the used suspension bioreactors. Half of the
culture medium was exchanged once a week. For subsequent
analysis, microscopic images were captured during the inoc-
ulation phase (1, 2, and 3 h) as well as after 1, 3, 6, and 7 days.
The distribution of the cells during the inoculation phase and
the distribution of cell-microcarrier aggregates were deter-
mined manually. The confluent cell areas on microcarriers
were determined manually after day 6.

Alginate membranes modified with a linker and coated
with Matrigel

Two alginate membranes in 60-mm Petri dishes (Nunc) were
produced as described earlier. Alginate membranes were acti-
vated for 30 min at room temperature using 200 mM EDC and
50 mM NHS (see above, Fig. 2a). A solution of extracellular
matrix proteins was prepared solving 1 mg Matrigel (Corning)
in 12 mL DMEM/F-12 (Beers et al. 2012) and poured onto the
activated alginate surface. In addition, a sterile solution of
0.1 g mL™" of the solution with the linker molecule was pre-
pared with 0.1 mM HEPES (Sigma, 0.1 mM, pH 5.2) and
poured onto the second activated alginate surface. Both prep-
arations were incubated overnight at room temperature.
Subsequently, samples were thoroughly rinsed with isotonic
NaCl solution and DMEM/F-12. The alginate surface with
directly coupled Matrigel (A-MG) was stored at 37 °C until
usage (Fig. 2c). Again, a solution of 1 mg in 12 mL
DMEM/F-12 was prepared and poured onto a standard tissue
culture polystyrene surface (Nunc) (T-MG) and on alginate

surfaces modified with the linker (A-LKR-MG). Both prepa-
rations were incubated overnight at 37 °C. Before cell inocu-
lation, the preparations were washed with DMEM/F-12 and
sterilized for 15 min with UV light.

hiPSC culture on bioactive alginate surfaces

hiPSCs AXAi were inoculated (12,000 cells cm %) and culti-
vated over 6 days. After 24 h the medium was exchanged and
adherent cells were quantified (Millipore Scepter). After
6 days the cells were harvested and the cell number was
determined.

Statistics

The data are presented as mean + standard deviation (SD)
from three independent biological experiments. Data analysis
was performed using OriginPro 2015b (OriginLab) for
Microsoft Windows.

Results
Production of bioactive alginate surfaces

After long-time experience with the production of ultra-pure
“clinical-grade” alginates (Jork et al. 2000; Zimmermann
et al. 2005) and extensive studies on alginate hydrogels in
the context of immunoisolation of pancreatic cells, we focused
on the specific bioactivation of alginate hydrogels for applica-
tions in tissue engineering. Early approaches with ultra-high
viscous alginate surfaces were conducted with highly concen-
trated collagen I solution and used a pH shift for non-covalent
coating (Grohn et al. 1997). These approaches could approve
cell adhesion, but only in such cell systems with minimal
requirements to their immediate microenvironment attached
and spread (Grohn et al. 1997). In this study, we investigated
the specific modification of alginate hydrogels towards a bio-
active surface for attachment and cultivation of human stem
cells. We analyzed two principles of cell culture: adherent
cultivation on planar hydrogels, as well as adherent suspen-
sion culture on spherical hydrogels that are in strong demand
by industrial biotechnology, e.g., for large-scale production of
therapeutics (Liu et al. 2007). The proposed protocol for algi-
nate hydrogel modification is compatible with both systems
and can be finalized within 1 or 2 days. During the modifica-
tion steps, changed wettability of planar surfaces or increased
“stickiness” of the spherical hydrogels on the reaction tubes
was observed indicating changed chemical properties. The
successful modification was evaluated by assessing cellular
response in subsequent adhesion experiments with human
stem cells.
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Cultivation and expansion of hMSCs on planar bioactive
alginate surfaces

The initial experiments with collagen I bioactive alginate sur-
faces revealed, on the one hand, the functionality of the mod-
ification protocol for ultra-high viscous alginates and, on the
other hand, the relatively fast cell reaction in terms of adhesion
and spreading of cells. We coupled several amounts of colla-
gen I onto the alginate’s surface and measured the attached
cell number (% of cells seeded) after 1 h (Fig. 3a). The un-
modified, native alginate surface allowed no cell adhesion;
cells remained round and without membrane extrusions in
suspension (Fig. 3b). After coupling of 7.5 pig to the alginate’s
surface, first positive reactions could be observed (Fig. 3c).
Cells start to attach and achieved an overall attachment rate of
56.7% (£42.8%). The relatively high standard deviation re-
sults from one experiment with no cell adhesion. In summary,
the reproducibility of this small protein concentration is criti-
cal in terms of stable modification workflows. At higher

Q

[% of cells seeded]
3
1 I

=]
|

Attached cell number

0 75 375 75
Collagen I [ug mL™]

Fig.3 a Attached hMSCs 1 h after inoculation on a bioactivated alginate
surface with different collagen I moieties expressed as mean + SD (n =3
independent experiments, cells in five fields of view were analyzed per
experiment). b Mainly round cells are present on native alginate surfaces
indicating no cell-matrix interactions. ¢ Increased interactions were ob-
served using alginates bioactivated with 7.5 pg mL™" or higher. Number
sign marks a bioactivated alginate surface, the white dashed circle en-
closes a non-attached cell, and the black dashed circle encloses an at-
tached and spread cell. Most adherent cells were observed ond 37.5 and e
75 ug mL™', respectively. Scale bar b—e 200 um
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concentrations, we observed both excellent cell adhesion be-
havior after 1 h and excellent reproducibility. At 37.5 ug
(Fig. 3d), 95.5% (£3.3%) cells attached and spread. At
75 ug (Fig. 3e), 91.4% (£8.5%) of the cells attached and
spread. Overall, our data demonstrate the possibility of both
stable bioactivation and a very fast cell attachment. Especially
for non-static applications, such as an adherent suspension
culture on microcarriers, a fast interaction is necessary for
efficient cell inoculation of microcarriers. The fast cell adhe-
sion on spherical alginate microcarrier is illustrated in Fig. 4a.

Cultivation and expansion of hMSCs on spherical
bioactive alginate surfaces

The cultivation of multipotent hMSCs on different
microcarrier systems revealed the ability to use novel UHV-
based alginate microcarriers for cultivation and expansion of
cells in both static hanging droplet cultures and in suspension
bioreactor systems. While Cytodex 1, Cytodex 3, and small
UH V-alginate microcarriers showed a tendency to build large
cell-microcarrier agglomerates (Fig. 4c), large UHV-alginate
microcarriers remained mainly as single microcarrier systems
(see Fig. 4b). The cell attachment on microcarriers was quan-
tified during the inoculation phase, since the attachment of
cells during this phase is crucial for further efficient cultivation
and expansion (Frauenschuh et al. 2007). The mean cell num-
ber on Cytodex 1 was3.3+1.5,3.6+1.4,and4.2+ 1.7 after 1,
2 and 3 h, respectively. The mean cell number on Cytodex 3
was 2.7 £ 1.4,3.6 £ 19, and 3.6 = 2.0 after 1, 2 and 3 h.
respectively. Small UHV-alginate microcarriers revealed a
mean cell number of 4.0 £2.6, 6.0 £ 4.0, and 7.7 = 5.3 after
1, 2, and 3 h, respectively. Large UHV-alginate microcarriers
demonstrated the highest cell numbers per microcarrier with
7.8+3.8,9.0£4.6,and 10.5 £ 4.5 after 1, 2, and 3 h, respec-
tively (Fig. 4d).

The populated microcarriers cultivated in a rotating biore-
actor were analyzed after 1 week concerning their tendency of
agglomeration (Fig. 4¢). According to the number of involved
microcarriers, we divided the agglomerated microcarriers into
five classes (1, 2, 3, 4, and more than four agglomerated
microcarriers). The distribution was as follows (order 1, 2, 3,
4, and more = SD): 98.3+2.9,1.7+2.9,0.0+0.0,0.0 £0.0,
and 0.0 + 0.0% for big alginate microcarriers. The distribution
of small alginate microcarriers was 35.0 + 21.8, 11.7 £ 2.9,
11.7+7.6,10.0 £ 10.0, and 31.7 £ 12.6%. In comparison, the
distribution of Cytodex 1 microcarriers referred to 31.7 +33.3,
16.7+2.9, 183 £ 12.6, 8.3 £ 5.8, and 25.0 + 17.3% and for
Cytodex 3 20.0 = 15.0, 16.7 £ 12.6, 20.0 + 8.7, 8.3 £2.9, and
35.0 = 30.4%. The distribution revealed a comparable
behavior of agglomeration of small alginate, Cytodex 1,
and Cytodex 3 microcarriers, if cultivated in a rotating
bioreactor. In consequence, our data indicate that the
large alginate microcarriers show a completely different
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Fig.4 a Time-lapse sequence of the attachment process of an hMSC cell
(white arrow tip) on spherical alginates (number sign) modified with
collagen 1. b Large alginate microcarriers with collagen I, 7 days after
cultivation in a rotating bioreactor. A complete coverage of the
microcarriers with hMSC could be observed (black asterisks). The
microcarrier encircled by a dashed line shows minor coverage by adher-
ent hMSCs (black arrows). Inset: the corresponding image using a fluo-
rescence microscope. hMSCs stained with fluorescein diacetate verify
coverage of the microcarriers with hMSCs. ¢ Small alginate microcarrier
with collagen I after 7-day cultivation in a rotating bioreactor. h(MSCs and
microcarriers form complex agglomerates (black arrows). The black
asterisks mark alginate microcarriers with minor cell coverage. The black
dashed circle indicates an area of high cell density, and the white dashed
circle indicates cell bridges of adjacent microcarriers. /nset:

behavior according to agglomeration with the used pa-
rameters. The vast majority of populated microcarriers
did not agglomerate. After day 6, the expansion
(proliferation) of hMSCs was investigated by measuring
the confluency (proportion of surface covered with
cells). The confluency was used as a parameter for cell
proliferation (Curl et al. 2004) since we were also
confronted with low yields using enzymatic detachment

Il A9 [big] 30 5 Il ~LG [big]
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- 7] e
=50] Bl c3
< 15
O 104
5
0

3 4 >4
Microcarrier per aggregate [-]

100-75 75-50 50-10 10-0
Confluency [%]

Corresponding image using a fluorescence microscope. hMSCs stained
with fluorescein diacetate verify coverage of the microcarriers with
hMSCs. d Attachment of hMSCs on microcarriers after 1-, 2- and 3-h
inoculation phase in a rotating bioreactor expressed as cells per
microcarrier (mean + SD, n = 3 independent experiments, 30 microcarrier
per experiment). e Quantified agglomeration of cellularized microcarriers
after 7-day cultivation in a rotating bioreactor (mean + SD, n = 3 inde-
pendent experiments, 20 analyzed aggregates per experiment). f
Confluency of hMSCs on microcarriers after 7-day cultivation
(mean + SD, n = 3 independent experiments, >25 microcarriers analyzed
per experiment). C/ Cytodex 1, C3 Cytodex 3, ALG [big] alginate
microcarriers 500-um diameter, ALG [small] alginate microcarriers
200-pum diameter. Scale bar in a indicates 20 um; scale bar in b, ¢
indicates 500 pm

of cells as it is reported by other research groups (Weber et al.
2007; Rafiq et al. 2013; Nienow et al. 2016). The analysis of
optimal cell detachment protocols from alginate microcarriers
will consequently be part of subsequent studies. The most
microcarriers, however, were overgrown in the range of 75—
100% (Fig. 4f) independent from the type of microcarrier.
Overall, comparable confluency results were observed for all
microcarrier types.
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Cultivation and expansion of hiPSCs on planar bioactive
alginate surfaces

After inoculating a single cell suspension of hiPSCs on TCPS-
coated Matrigel (T-MG, Fig. 5a), alginate directly modified
with Matrigel (A-MG, Fig. 5b), and alginate modified with the
linker molecule and coated with Matrigel (A-LKR-MG,
Fig. 5c¢), a fast cell response was observed on T-MG and A-
LKR-MG surfaces. Cells attached and spread within 1 h.
Since longer resting time in suspension might trigger apopto-
sis (Krawetz et al. 2009), this fact is essential. Furthermore,
cells started to form colonies with close cell-cell contacts, the
typical arrangement of these cells. On alginate, cells barely
attach on the alginate’s surface and remain still in suspension.
After 24 h, the lowest number of attached cells was measured
on A-MG (58.0 + 15.6%), whereas the number of attached
cells was comparable between T-MG (81.7 £ 13.9%) and A-
LKR-MG (77.1 £15.0%, Fig. 5d). A continuous proliferation
of cells was observed during the experiments on T-MG as well
as on A-LKR-MG surfaces. The end-point analysis (Fig. 5¢)
showed 38.3-fold (+5.8) increase on T-MG surfaces and 11.2-
fold (£9.0) increase on T-LKR-MG surfaces. In contrast, cells
on A-MG obtained a 0.9-fold (+0.7) decrease.
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Fig. 5 Microscopic images of cell adhesion on a T-MG, b A-MG, and ¢
A-LKR-MG. d Attached cells after 24 h on T-MG, A-MG, and A-LKR-
MG. Comparable numbers of adherent cells were observed on T-MG
(standard cultivation surface) and A-LKR-MG. e Expansion of hMSCs
after 6 days on different surfaces expressed x-fold expansion (mean = SD,
n = 3 independent experiments). A 10-fold increase of hiPSCs was ob-
served on alginate surfaces modified with the linker and coated with
Matrigel. 7-MG TCPS coated with Matrigel, A-MG Matrigel directly
coupled on alginate, A-LKR-MG alginate modified with the linker and
coated with Matrigel. Scale bar in a—¢ 200 pum
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Discussion
Chemical modification of alginate hydrogels

In this study, we established a stable protocol for covalent
coupling of amide-containing molecules onto carboxyl groups
of barium cross-linked alginates. Although introduced by
Rowley et al. (1999) more than 15 years ago, an approach that
utilizes a linker molecule for universal coating of alginates
was still missing. Our ongoing experimental work also re-
vealed that further therapeutically relevant cell types such as
hiPSCs-derived cardiomyocytes are able to adhere and con-
tract on these bioactive hydrogels (data not shown). First in-
dications of mechanical interaction in terms of compression or
deformation of hMSCs with the alginate have been observed
during our experiments. In consequence, our future experi-
ments will focus on cell-matrix interactions concerning, for
example, cardiomyocytes.

Adhesion of hMSCs and hiPSCs on bioactive alginates

The conducted experiments with hMSCs demonstrated the
ability to produce bioactive alginate surfaces for adult stem
cells. Whereas hMSCs are per definition plastic-adherent
(Dominici et al. 2006) or attach and spread on collagen I
surfaces, a more sophisticated extracellular matrix (ECM)
composition is necessary for the adhesion of hiPSCs. The
protein mixture Matrigel consists of many different proteins,
and hence, direct immobilization is challenging. We were able
to verify our hypothesis that the introduction of protein-
interaction groups in alginate hydrogels is an elegant and uni-
versal technique for protein coating as used in human stem
cell biology (Beers et al. 2012). After coupling of a linker
molecule, the alginate surface can be coated similar to stan-
dard petri dishes. To the best of our knowledge, the covalent
coupling of a linker with subsequent Matrigel coating for cul-
tivation of hiPSCs was never performed before our study. In
addition, data from our most recent experiments (data not
shown) revealed that hMSCs are in fact able to interact direct-
ly with alginates modified with the linker molecule most like-
ly via increased adsorption of proteins, such as fibronectin
present in serum-containing culture media (Grinnell and
Feld 1982; Wilson et al. 2005).

In our experiments, hiPSCs revealed excellent attachment
and adhesion on linker-modified alginates coated with
Matrigel (see Fig. 5c, d). In contrast, direct coupling of
Matrigel did not lead to reliable bioactive planar alginates
(see Fig. 5b, d). The chemical composition of this protein
mixture may serve as one explanation for this finding.
Matrigel consists of more than 1000 different proteins
(Hughes et al. 2010). Since the activation of the hydrogel’s
surface is conducted at low pH, a precipitation/denaturation of
proteins might be possible. The overall efficiency of the
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modification process might be affected. Despite the excellent
adhesion of the cells, the proliferation on A-LKR-MG (see
Fig. 5¢) is reduced compared to the standard polystyrene petri
dish coated with Matrigel (T-MG). The reduced different pro-
liferation rates can arise due to different mechanical properties
of the studied surfaces. While polystyrene is stiff, alginate
provides a soft surface. Since cells are sensitive to the stiffness
of their underlying substrate (Discher et al. 2005) until a depth
of roughly 5 um (Buxboim et al. 2010), a direct influence on
proliferation can be expected.

Furthermore, our data confirm our hypothesis that alginate
hydrogels modified with the linker can be coated with
Matrigel and, in consequence, mediate cell-matrix interac-
tions. In our opinion, the prevalent molecular mechanisms
refer to the increased adsorption of proteins from the
Matrigel solution. We conclude that the modification of algi-
nate hydrogels with a linker leads to chemical properties of the
surface, which are similar to standard tissue culture-treated
polystyrene (concerning wettability and protein adsorption),
and thus can easily integrated in standard monolayer cell
culture.

Adherent suspension culture of hMSCs on microcarriers

The variations in the cell attachment of small UHV-alginate
microcarriers can be explained by variations in the
microcarrier diameter caused by the production procedure.
The formation of small alginate microcarriers was achieved
by adjusting an alginate spray with large and small droplets.
Though this heterogeneous distribution is not optimal for
technical processes, it can serve as an interesting tool for the
cultivation of cells on microcarriers, since this randomness is
an increased degree of freedom in a macroscopic scale similar
to the random organization of ECM fibers in cellular environ-
ments (van Loon et al. 2013).

The differences concerning the agglomeration behavior be-
tween the large and small alginate microcarriers as well as
Cytodex 1 and 3 microcarriers can be explained by the culti-
vation setup in the used suspension bioreactor. The complex
process of microcarrier-cell aggregation depends on the agita-
tion rate or the inoculated cell density; however, this process is
not yet completely understood (Ferrari et al. 2012). For cell-
based models, agglomerated cell-microcarrier systems can be
disadvantageous for long-term cultivation of anchorage-
dependent cell lines. In large agglomerated systems, the sup-
ply of cells with nutrients and oxygen can be limited, and in
consequence, a decrease of viability can be expected. In bio-
reactors, the area of adjacent microcarriers, interacting over
cell-cell contacts, is critical, since the exposition to high shear
stress during cultivation causes cell death. Furthermore, the
increasing agglomeration of microcarriers causes an adoption
of agitation speed to avoid sedimentation of agglomerates
(Cherry and Papoutsakis 1988).

The large alginate microcarriers reveal the potential ability
to serve as an excellent system for cultivation of hMSCs in
rotating bioreactors, since their dimension allows adhesion
and spreading of larger cells like hMSCs. Obviously, on large
alginate microcarriers, a larger amount of cells is able to grow,
which can be crucial if a certain number of cell-cell contacts
are required for efficient expansion or functionality. In con-
trast to rigid commercial available microcarrier systems,
UHV-alginate microcarriers can be compressed by cellular
tension and thus are more cell-responsible and comparable
to in vivo environments. In conclusion, our experiments
proved that covalent binding of individual proteins to alginate
and subsequent cultivation of multipotent stem cells are
possible.

This method is not only applicable for the different 2D and
3D cultivation methods of multipotent stem cells, but poten-
tially likewise transferable to the newly developed xeno-free
cultivation of pluripotent stem cells on vitronectin or laminin.
The development of novel biomimetic cellular environments
for differentiation and/or disease modeling indicates the
greatest potential using both our alginate technology and the
presented bioactivation procedure.
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