
Assessing in vivo digestibility and effects on immune
system of sheep fed alfalfa hay supplemented with a fixed amount
of Ulva rigida and Gracilaria vermiculophylla

Ana R. J. Cabrita1 & Alexandra Correia2,3 & Ana R. Rodrigues1 & Paulo P. Cortez3 &

Manuel Vilanova2,3 & António J.M. Fonseca1

Received: 29 August 2016 /Revised and accepted: 26 October 2016 /Published online: 9 November 2016
# Springer Science+Business Media Dordrecht 2016

Abstract Ruminants could be the most suitable domestic an-
imals to be supplemented with seaweeds as the rumen ecosys-
tem might provide the animal the ability to use these feed
resources by breaking down the complex polysaccharides.
The objective of the present in vivo study was to determine
the digestibility and the effects on the immune system of one
green (Ulva rigida) and one red (Gracilaria vermiculophylla)
seaweed cultivated in an integrated multitrophic aquaculture
system (IMTA) and included in the diet of sheep at a
supplementing level up to 25%. Both seaweeds showed lower
dry matter digestibilitity than alfalfa hay, the organic matter
digestibility of U. rigida being higher than that of
G. vermiculophylla. The studied seaweeds had similar fiber
and energy digestibility. Seaweed supplementation did not
influence hematological parameters, reactive oxygen species
production by neutrophils, nor lymphocytic response to T and
B cells mitogens. The low fiber digestibility of selected sea-
weeds would be the major constraint to their use in high
amounts in ruminant diets. Dietary seaweed supplementation
has no deleterious effect on the immune function of cells me-
diating innate and acquired immunity.
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Introduction

Livestock production is increasing fast for feeding a
burgeoning human population. According to the FAO, it is
expected that global meat and dairy production will more than
double by 2050 (Steinfeld et al. 2006). This huge increase for
animal products will require increasing amounts of feed sup-
plies; thus, the identification of novel feeds is essential for the
development of the livestock sector.

Seaweeds have been used to feed livestock since immemo-
rial times in coastal regions, in times of feed scarcity (Balasse
et al. 2005), and animals will naturally consume some quantity
of seaweeds if they are available, such as on coastal farms.
Generally, seaweeds are markedly rich in organic minerals,
complex carbohydrates, proteins and low molecular weight
nitrogenous compounds, lipids, vitamins, volatile compounds,
and pigments (Makkar et al. 2016). Due to the chemical di-
versity and complexity of polysaccharides that may account to
25–75% of algal dry weight (Jiménez-Escrig and Sánchez-
Muniz 2000), herbivorous animals and especially ruminants
may be well suited to be fed on seaweeds as the rumen eco-
system might provide the animal the ability to use seaweeds
by breaking down the complex polysaccharides. Brown algae
have been the most intensively studied and exploited in ani-
mal feeding due to their large size, ease of harvesting, and
mineral profile (especially iodine) (Rey-Crespo et al. 2014),
but they have lower nutritional value than red and green algae
due to their lower protein content (Makkar et al. 2016).
Limited data are available on the in vivo digestibility of sea-
weeds for ruminants (Makkar et al. 2016), and their nutritive
value varies with the species, geographic area, season of the
year, environmental conditions (Ito and Hori 1989), and the
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nutrient content of the medium where they are cultivated
(Azevedo et al. 2015).

More recently, seaweeds have been also evaluated as a
prebiotic promoter (Ramnani et al. 2012) due to their
content on bioactive substances with broad biological
activities (Kumar et al. 2008; Santos et al. 2015). This
is particularly important, as the exponential growth of the
world population has contributed to the industrialization
of food animal production that promoted major increases
in livestock productivity largely due to the genetic prog-
ress and the development of diets tailored to specific
stages of production. However, animal selection for in-
creased production with little or no emphasis on health
traits has led to a declining breeding success, increasing
incidence of health problems, and declining longevity
(Oltenacu and Algers 2005).

The objectives of the present study were to determine
the in vivo digestibility of one green (Ulva rigida) and
one red (Gracilaria vermiculophylla) seaweed cultivated
in an integrated multitrophic aquaculture system (IMTA)
and included in the diet of sheep up to a level of 25%
(as fed), as well as to examine wether these algae may
have deleterious effects on immunity status of the animal
or if they could instead be considered immunity en-
hancers. Gracilaria is one of the most cultivated genera
of seaweeds around the world (Yarish and Pereira 2008),
G. vermiculophylla being a nonindigenous Asian red al-
ga, and a dominant Gracilaria species in the Ria de
Aveiro, Portugal, where it reproduces throughout the year
and attains high rates growth success under a wide range
of environmental conditions (Abreu et al. 2011b). The
green algae of the genus Ulva are a group of edible algae
widely distributed in a variety of habitats (Peña-
Rodríguez et al. 2011). Culture of seaweeds increasingly
contributes to supply the worldwide seaweed demand, as
natural stocks of seaweeds are insufficient. The integra-
tion of seaweed culture with existing aquaculture opera-
tions (IMTA) has been successfully achieved in land-
based-contained systems. These systems have potential
to decrease costs as the production of seaweeds can be
achieved by utilizing ammonia, phosphate, and CO2 from
aquatic animal waste water, converting them into poten-
tially valuable biomass. Effluents can recirculate back to
the fish ponds or be discharged into the environment
without negative impact (Neori et al. 2004). Many sea-
weed species may be suitable for bioremediation of
aquaculture effluents (Lawton et al. 2013). Gracilaria
species are efficient biofilters due to their capacity to
uptake N (Abreu et al. 2011a). Ulva species are also
ideal candidates for bioremediation of aquaculture efflu-
ents due to their high growth rates, broad environmental
tolerance, low susceptibility to epiphytism (de Paula
Silva et al. 2008; Mata et al. 2010), and high ability to

absorb inorganic phosphorous and nitrogen (Mata et al.
2010).

Seaweeds

Seaweeds used in the present experiment (U. rigida and
G. vermiculophylla) were cultivated in an IMTA system by
ALGAPlus (Ílhavo, Portugal) as described by Domingues
et al. (2015). After harvesting, seaweeds were rinsed with
freshwater to remove epiphytes, detritus, and sand, subse-
quently dried for 8–10 h in a drying tunnel at 25 °C, and
transported to the laboratory, where they were ground at
10 mm, and kept at the room temperature until usage.

In vivo digestibility

To estimate in vivo digestibility of the two seaweed species,
three male and three female cross Merino sheep weighing
46 ± 2.0 and 42 ± 4.6 kg body weight (BW), respectively, at
the start of the study were used. Animals were placed in indi-
vidual metabolism crates with head gates and a steel grid floor
beneath which there were sloped grids that allow the separa-
tion of urine from feces, respectively collected in scree-topped
plastic boxes and plastic boxes. Animals were randomly allo-
cated within sex to one of the three experimental diets (as fed)
in a replicated 3 × 3 Latin square design with 15 days per
period (10 days for diet adaptation and 5 days for total feces
collection): 100% ground (10 mm) alfalfa hay (AH), 75% AH
and 25% U. r i g i da (ULV) , a nd 75% AH and
25%G. vermicullophyla (GRA). All diets were supplemented
(30 g kg−1 diet) with a mineral-vitamin premix (all values per
kg of DM: vitamin A 226,660 IU, vitamin D3 33,330 IU,
vitamin E 1330 mg, Zn 1660 mg, Mn 1000 mg, Fe 333 g,
Co 3.5 mg) formulated according to the mineral composition
of the seaweeds (Cabrita et al. 2016). Amaximum objective of
daily diet DM intake allowed was set at 20 g per kg BW. After
weighing and sampling the leftovers of alfalfa hay from the
previous day, if present, seaweed was fed at 0900 hours and
hay at 0930 hours in order to guarantee the total consumption
of the seaweed. In the afternoon, seaweed was given at 1700
hours and hay at 1730 hours when the seaweed was already
eaten. Animals had free access to clean water. In the last 5 days
of each experimental period, total feces voided by each animal
were daily collected, dried at 65 °C in a forced air oven until
constant weight, bulked, subsampled, and ground to pass a 1-
mm sieve for subsequent laboratory analysis. Representative
samples of feeds and refusals, when present, were daily col-
lected and dried at 65 °C for later analysis. Animals were
weighed in the first and last days of each period at the same
hour.
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Analysis of immunological parameters

In the last day of each experimental period, blood samples
were collected from the jugular vein for hemogram and
pro te inogram analys i s and leukocyte iso la t ion .
Polymorphonuclear (PMN) and peripheral blood mononucle-
ar cells (PBMC) were isolated by a single-step density gradi-
ent separation procedure. Briefly, whole blood diluted (1:2) in
PBS was layered on a double gradient of Histopaque 1077
over histopaque 1119 (Sigma) and centrifuged at 400×g for
30 min at room temperature. Peripheral blood mononuclear
cells were recovered from the interface between Histopaque-
1077 and the plasma, and PMN were collected from the inter-
face between Histopaque-1119 and Histopaque-1077.
Platelets were removed by low-speed centrifugation during
cell washing. The success of PBMC and PMN isolation was
evaluated upon standard Hemacolor staining. Briefly,
cytospins of the isolated cells were methanol fixed, stained
with Hemacolor Solution 2 and 3 (Merck, Germany) washed
by running tap water, mounted in Entellan (Merck), and ob-
served through a microscope.

Production of reactive oxygen species

Purified PMN (1 × 106) cells were stimulated with 10 μM
phorbol-myristate acetate (PMA) for 5 min at 37 °C and
5% CO2. Cells without stimulus were used as controls of
basal reactive oxygen species (ROS) production. Reactive
oxygen species production was measured by using the
Superoxide Detection kit (Enzo Life Sciences) and ana-
lyzed in an EPICS XL flow cytometer (Beckman-
Coulter). Flow cytometry data were analyzed with
FlowJo software (version 10.1). Reactive oxygen species
production was evaluated by determining the mean fluo-
rescence intensity (MFI) of the orange fluorescence emit-
ted due to superoxide production within cells.

Proliferation assays

Isolated PBMC were labeled with carboxyfluorescein
diacetate succinimidyl ester (CFSE) using the CellTrace
CFSE Cell Proliferat ion Kit , for flow cytometry
(ThermoFischer Scientific). CFSE-labeled cells (5 × 104) were
cultured in RPMI complete medium (RPMI 1640 supplement-
ed with 50 U mL−1 penicillin, 50 μg mL−1 streptomycin, 1 %
HEPES buffer, 10 % FCS, and 5 μM 2-mercaptoethanol, all
from Sigma) in 96-well round-bottomed culture plates without
stimulus or stimulated with 2.5 μg mL−1 Lipopolysaccharide
(LPS; Sigma) or 2.5 μgmL−1 Concanavalin A (ConA; Sigma)
for 72 h at 37 °C and 5 % CO2 in a humidified atmosphere.
Cultured nonlabeled PBMC were used to define cell’s auto-
fluorescence. Cell proliferation was measured by flow cytom-
etry through successive halving of the fluorescence intensity

of CFSE. Two parameters were used to assess cell prolifera-
tion: the percentage of cells that divided at least once and the

proliferation index, defined by the equation ∑i
0Ni

∑i
0
Ni
2i
, where i is the

generation number (0 is the undivided population) and Ni
corresponds to the number of cells in generation i.

Interferon-γ measurement

The concentration of IFN-γ in 72 h-cell culture supernatants
from nonstimulated and LPS- or ConA-stimulated PBMCwas
determined by using the Bovine IFN-γ ELISA development
kit (Mabtech), according to the manufacturer’s instructions.
The monoclonal antibodies of the kit cross-react with IFN-γ
from sheep.

Analytical methods

Ground (1 mm) samples of feeds, refusals, and feces were
analyzed for DM by drying samples at 105 °C for 24 h in a
forced air oven (AOAC 1990). Representative samples of
each feed (bulked for period) and of feces (bulked by period
and animal) were subjected to analysis of ash (ID 942.05)
(AOAC 1990), ether extract (EE; ID 920.39) (AOAC 1990),
and neutral detergent fiber (NDF; withα-amylase and without
sodium sulfite) (Robertson and Van Soest 1981; Van Soest
et al. 1991). Samples of feeds were also analyzed for
Kjeldahl N (ID 954.01) (AOAC 1990), acid detergent fiber
(ADF), and acid detergent lignin (ADL) (Robertson and Van
Soest 1981; Van Soest et al. 1991). Crude protein (CP) was
determined as Kjeldahl N × 6.25 for hay and Kjeldahl N × 5.0
for seaweeds (Angell et al. 2016). Neutral detergent fiber and
ADL were expressed exclusive of residual ash. Gross energy
(GE) of feeds and feces was determined in an adiabatic bomb
calorimeter (Werke C2000, IKA, Germany). All chemical
analyses were run in duplicate.

Calculations and statistical analysis

The apparent digestibility (g kg−1) of dietary constituints
(DM; organic matter, OM; NDF; and GE) was calculated ac-
cording to the following equation (intake and output of nutri-
ents in kilograms): apparent nutrient digestibility = (1 − (fecal
nutrient / total nutrient intake)) × 1000. The apparent digest-
ibility (g kg−1) of the seaweeds was calculated by difference
and by animal, considering the apparent digestibility of the
alfalfa hay measured in each period.

Data were tested for normality using the Kolmogorov-
Smirnov test. Reactive oxygen species production in
nonstimulated cells and IFN-γ production under LPS stimu-
lation were subjected to inverse transformation and PMA-
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stimulated cells to square transformation to achieve a normal
distribution of the data.

The experimental design was a replicated 3 × 3 Latin
square. Data were analyzed using the general linear model
of SPSS (IBM SPSS statistics V22.0, USA). The model was:

Y ijkl ¼ μþ Si þ c j ið Þ þ pk þ Dl þ eijkl

where Yijkl = response variable, μ = mean, Si = the fixed
effect of square, cj(i) = the fixed effect of animal nested within
square, pk = the fixed effect of period, Dl = the fixed effect of
diet, and eijkl = the experimental error. Significance is declared
at P ≤ 0.05. Trends are discussed at 0.05 < P < 0.10.

Results

Chemical composition

The chemical composition of the experimental feeds is listed in
Table 1. Alfalfa hay presented 186 g kg−1 CP, 372 g kg−1 NDF,
and 73.0 g kg−1 ADL (DM basis). Gracilaria vermiculophylla
and U. rigida presented, respectively, 359 and 470 g kg−1 ash,
202 and 123 g kg−1 CP, 183 and 221 g kg−1 NDF, and 12.8 and
9.58 MJ kg−1 of GE (DM basis).

Feed intake and in vivo digestibility

Daily DM intake of total diet, alfalfa hay, and of each studied
seaweed is given in Table 2. Animals ingested 24 and 25%
more of the diet without seaweed than the diets supplemented
with G. vermiculophylla and U. rigida, respectively
(P < 0.001). With the control diet, animals achieved the max-
imum allowed level of intake of 20 g DM kg−1 of BW, but
when fed diets supplemented with G. vermiculophylla and
U. rigida, they were not beyond 17.6 to 17.2 g DM kg−1

BW, respectively. There were no differences between the in-
take of alfalfa hay or seaweed among diets GRA and ULV.

Table 3 presents the apparent digestibility coefficients of
DM, OM, NDF, and GE of total diets and of the studied
seaweeds. The DM digestibility of diets with 25% of
G. vermiculophylla and U. rigida was respectively 4 and 6%
lower than the control diet with no seaweed supplementation
(P = 0.009). The digestibility of OM and GE of the AH and
ULV diets were similar and higher than that of GRA diet

(more 5% for OM digestibility, P = 0.005, and 2.5 and 1%
for GE digestibility, respectively, for AH and ULV diets,
P = 0.006). Fiber digestibility of GRA and ULV diets were
respectively 6 and 9% lower than that of AH diet (P = 0.019).

The DM digestibility of G. vermiculophylla was 13%
higher than that of U. rigida, the values for these seaweeds
being, respectively, 15 and 25% lower than the DM digestibil-
ity of the alfalfa hay. Conversely, the OM digestibility of
U. rigidawas similar to that of the alfalfa hay, and 36% higher
than G. vermiculophylla. Neutral detergent fiber and GE di-
gestibility were not different between seaweeds and averaged,
respectively, 267.8 and 522.9 g kg−1 DM for U. rigida and
290.4 and 558.3 g kg−1 DM for G. vermiculophylla.

Analysis of immunological parameters

The values of all measured hematological parameters were
within the normal range for sheep. As it can be observed in
Table 4, experimental treatments had no significant effects
(P > 0.05) on the cell blood count parameters or on the con-
centration of serum proteins.

A putative influence of seaweed supplementation in
immunological parameters characteristic of both innate
and adaptive immunity was assessed using cells isolated
from the peripheral blood. As shown in Fig. 1, PMA-
stimulated PMN produced markedly higher amounts of
superoxide anion when compared to the nonstimulated
ones. Nevertheless, no differences could be observed in
this parameter among animals fed with any of the diets
(Table 4). Lymphocyte proliferative response to classic T
and B lymphocyte mitogens ConA and LPS was assessed
as a surrogate marker for adaptive immunity competence.
A marked proliferative response was induced in PBMC
upon stimulation with ConA. Nonetheless, it was not dif-
ferent among animals fed with AH, GRA, or ULV diets
either when proliferation was measured as the percentage
of cells that divided at least once or by the proliferation
index. Stimulation of PBMC with LPS resulted in a minor
proliferative effect that did not differ considerably from
controls and that was similar among diet groups (Table 5
and Fig. 2). The lack of significant differences in the
lymphocyte proliferative response to ConA could in part
be attributed to the high variability observed, which was
already reported in sheep (Wattegedera et al. 2004). The

Table 1 Chemical composition of the experimental feeds (average from three experimental periods)

DM
(g kg−1)

OM Ash EE
(g kg−1 DM)

CP NDF ADF ADL GE
(MJ kg−1 DM)

Alfalfa hay 881 892 108 14.8 186 372 265 73.0 18.1

Gracilaria vermiculophylla 867 625 359 2.3 202 183 95.3 31.0 12.8

Ulva rigida 845 530 470 3.2 123 221 189 71.3 9.6
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amounts of the pro-inflammatory cytokine IFN-γ mea-
sured in culture supernatants of nonstimulated control
cells were very low, as could be expected. Conversely,
ConA-stimulated cells produced significantly higher
amounts of IFN-γ than the nonst imulated cel ls
(P < 0.05). However, no differences could be observed
in IFN-γ production between PBMC isolated from control
diet-fed animals and seaweed-supplemented diet-fed
sheep, regardless of the seaweed used (Table 5). No effect
was observed upon LPS stimulation, as compared to con-
trols, and no significant differences were observed among
diet groups. Altogether, these results indicated that sea-
weed supplementation did not influence hematological pa-
rameters, ROS production by neutrophils, and the lym-
phocytic response to mitogens. This provides preliminary
evidence indicating that these seaweed diet supplementa-
tions have no deleterious or enhancing effects on basic
immune functions of cells mediating innate and acquired
immunity.

Discussion

Nutritive value

The chemical composition of the alfalfa hay used in the pres-
ent study agrees with the values reported by FEDNA (2010)
for a high quality alfalfa hay. Seaweeds drawn from the water
are a rich source of minerals, their content being higher than
those reported for edible land plants (Rupérez 2002). Ash,
which broadly represents mineral content (Cabrita et al.
2016), was the greatest constituent in both seaweeds, being
higher than the values observed in an earlier study (Cabrita

et al. 2016) with Ulva sp. and G. vermiculophylla originated
from the same IMTA system (25.0% DM for Ulva sp., and
27.8% DM for G. vermiculophylla).

Due to the high and more constant levels of nutrients in the
medium, IMTA systems can improve the productivity and
nutritional quality of the seaweeds, when compared to the
naturally harvested ones (Abreu et al. 2009). Ulva rigida pre-
sented lower CP content than G. vermiculophylla. However,
higher protein content (up to 34% in U. lactuca, and 49% in
Gracilaria) has been reported in seaweed produced in IMTA
systems (Schuenhoff et al. 2003; Shields and Lupatsch 2012;

Table 2 Dry matter (DM) intake
of the total diet, alfalfa hay, and
the seaweeds Gracilaria
vermiculophylla and Ulva sp.

AH GRA ULV SEM P (diet)

Total dieta

g DM day−1 944 a 763 b 758 b 38.8 0.016

g DM kg−1 body weight day−1 21.0 a 17.6 b 17.2 b 0.87 0.030

g DM kg−1 body weight0.75 day−1 54.3 a 45.0 b 44.3 b 2.23 0.024

Alfalfa hay intake

g DM day−1 912 a 563 b 559 b 25.1 <0.001

g DM kg−1 body weight day−1 20.3 a 13.0 b 12.7 b 0.58 <0.001

g DM kg−1 body weight0.75 day−1 52.5 a 33.3 b 32.7 b 1.46 <0.001

Seaweed intake

g DM day−1 – 183 174 6.6 0.448

g DM kg−1 body weight day−1 – 4.24 3.96 0.167 0.368

g DM kg−1 body weight0.75 day−1 – 10.9 10.2 0.41 0.377

Means with different lowercase letters are significantly different (P < 0.05)

AH 100% alfalfa hay, GRA 75% AH + 25% Gracilaria vermiculophylla, ULV 75% AH + 25% Ulva rigida, AH
alfalfa hay, GRA Gracilaria vermiculophylla, ULV Ulva rigida
b Including premix at 30 g kg−1

Table 3 Apparent digestibility coefficients of dry matter (DM), organic
matter (OM), neutral detergent fiber (NDF), and gross energy (GE) of
total diets and of the seaweeds Gracilaria vermiculophylla and Ulva
rigida

Digestibility coefficient SEM P (diet)

AH GRA ULV

Diet

DM, g kg−1 628 a 605 b 592 b 5.5 0.009

OM, g kg−1 DM 677 a 645 b 680 a 4.8 0.005

NDF, g kg−1 DM 413 a 390 b 379 b 6.0 0.019

GE, MJ kg−1 DM 646 a 630 b 641 a 2.0 0.006

Seaweed

DM, g kg−1 534 471 8.2 0.034

OM, g kg−1 DM 505 686 20.4 0.025

NDF, g kg−1 DM 268 290 20.7 0.527

GE, MJ kg−1 DM 523 558 9.8 0.128

Means with different lowercase letters are significantly different
(P < 0.05)

AH alfalfa hay, GRA Gracilaria vermiculophylla, ULV Ulva rigida
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Silva et al. 2015). Differences among studies could be ex-
plained by the culture conditions applied. For instance, bio-
mass production and nutrient removal from seaweeds are neg-
atively related to the cultivation densities in the system, tem-
perature, and light being the main environmental factors af-
fecting the growth and nutrient removal (Abreu et al. 2011a).

The low lipid content of both seaweeds is in agreement
with several studies (Khairy and El-Shafay 2013;
Mouritsen et al. 2013). The high ash and the low lipid
contents observed in the studied seaweeds were reflected
in their low GE content, supporting the work by Hind

et al. (2014) who referred that energy potential of
U. lactuca is limited by its high mineral content. Indeed,
earlier work observed higher energy content for
U. lactuca (15.2 MJ GE kg−1 DM, Felix and Brindo
2014; estimated digestible energy of 10.2 MJ kg−1 DM,
Ventura and Castañón 1998).

Ulva rigida had a higher fiber content than G.
vermiculophylla, but lower than alfalfa hay. Unlike terrestrial
plants, seaweeds have complex cell wall polysaccharides that
greatly differ among seaweed classes and species (Pereira
et al. 2009). Green algae are rich in soluble ulvans of the

Table 4 Blood parameters from
animals fed experimental diets AH GRA ULV SEM P (diet)

Leukocytes, ×103 μL−1 6.05 5.40 5.35 0.402 0.454

Total erythrocytes count, ×106 μL−1 11.35 12.03 11.45 0.289 0.310

Hemoglobin, g dL−1 12.72 13.22 12.75 0.294 0.486

Hematocrit, % 42.96 45.01 42.47 1.097 0.301

Mean corpuscular volume, fL 37.73 37.53 37.05 0.346 0.383

Mean corpuscular hemoglobin, pg 11.24 11.01 11.17 0.097 0.340

Mean corpuscular hemoglobin concentration, g dL−1 30.19 29.86 30.18 0.233 0.584

Erythrocytes distribution index, % 22.66 21.63 22.15 0.651 0.617

Platelets, ×103 μL−1 550 467 544 98.8 0.824

Mean platelets volume, fL 7.17 7.58 9.68 2.773 0.771

Neutrophils, ×103 μL−1 2.12 1.66 1.82 0.225 0.448

Eosinophils, ×103 μL−1 0.193 0.152 0.177 0.0207 0.478

Basophils, ×103 μL−1 0.017 0.018 0.020 0.0030 0.729

Monocytes, ×103 μL−1 0.073 0.163 0.078 0.0293 0.145

Lymphocytes, ×103 μL−1 3.64 3.39 3.24 0.224 0.472

Albumin, g dL−1 2.80 2.79 2.85 0.035 0.405

Alpha, g dL−1 1.68 1.53 1.62 0.117 0.730

Beta, g dL−1 1.51 1.54 1.61 0.030 0.129

Gamma, g dL−1 0.292 0.280 0.302 0.027 0.788

Total proteins, g dL−1 6.28 6.15 6.38 0.119 0.408

AH 100% alfalfa hay, GRA 75% AH + 25% Gracilaria vermiculophylla, ULV 75% AH + 25% Ulva rigida

Fig. 1 Representative dot plots and overlayed histograms corresponding to flow cytometry analysis of ROS production in nonstimulated (gray) and
PMA-stimulated (solid line) PMN cells. Example shown is from one animal fed with AH
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family of sulfated polysaccharides (Domozych et al. 2012),
while carrageenans (Michel et al. 2006), agars, and porphyran

(Correc et al. 2011) are the major matrix polysaccharides of
red algae.

Table 5 Immunological parameters from animals fed experimental diets

Immune function Parameter Stimulus Diet SEM P (diet)

AH GRA ULV

ROS production Mean fluorescence intensity Nonea 0.159 0.180 0.189 0.0208 0.577

PMAb 30,435 25,409 23,852 6023.5 0.714

Lymphocyte proliferation Percentage of dividing cells None 0.107 0.133 0.102 0.0172 0.473

LPS 14.61 14.51 13.64 2.467 0.952

ConA 46.46 46.86 42.72 4.812 0.798

Proliferation index LPS 1.155 1.162 1.119 0.0446 0.488

ConA 1.702 1.851 1.560 0.2048 0.339

IFN-γ production pg mL−1 None 0.670 0.333 0.410 0.2178 0.547

LPS2 2.849 1.964 2.506 0.5023 0.518

ConA 265.6 242.9 250.9 64.43 0.969

AH 100% alfalfa hay, GRA 75% AH + 25% Gracilaria vermiculophylla, ULV 75% AH + 25% Ulva rigida
a Inverse
b Square

Fig. 2 Flow cytometry analysis
of PBMC proliferation using
CFSE-labeling. a Representative
example showing gated CFSE-
positive PBMC cells
nonstimulated or stimulated with
LPS or ConA, obtained from an
AH diet-fed animal. bHistograms
showing the percentage of cells
that divided at least once. c
Histograms showing the number
of generations traced by CFSE
fluorescence dilution. Numbers
above the peaks represent the
number of times the respective
cell population divided. Red lines
correspond to the model sum of
the blue lines which correspond
top calculated generation peaks
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When fed the control diet, animals achieved the maximum
allowed level of intake of 20 g DM kg−1 BW, but when sup-
plemented with seaweeds, the DM intake decreased by around
20%. The lower seaweed palatability have been atributed to
the existence of secondary metabolites (Cronin and Hay 1996)
or to the high mineral content (Cabrita et al. 2016). This could
be overcome by decreasing the level of dietary inclusion of
seaweeds that in the present study was on average 24.5 and
23.7% (DM basis) respectively for G. vermiculophylla and
U. rigida. Indeed, the actual low supply of these seaweeds
makes lower levels of supplementation more realistic.

In the present study, in vivo digestibility was measured
after 10 days for animal adaptation to the diet. This adaptation
or preliminary period is designed to ensure that feed residues
of the previous diet are eliminated before starting the feces
collection, that a stable rumen population is established, and
that the animals are eating approximately the same daily
amount of feed and at the same time (Rymer 2000). The rec-
ommended length of time for the adaptation period varies
from 4 to 14 days (Rymer 2000), and it is expected that its
lengthening would improve the accuracy and precision of
measurements. However, due to animal welfare concerns, ef-
forts should be made to shorten the experimental periods as
much as possible. When animals are fed ad libitum, where
more variation in daily intake and excretion exists, the adap-
tation period should be at least 12 days long, but it could be
shortened if following the worldwide recommendations to
feed restrictively when measuring digestibility to decrease
the variability of digestion and excretion processes
(Farenzena et al. 2016), as done in the present study.

The digestibility values determined for alfalfa hay are in
close agreement with those reported earlier (Carvalho et al.
2005). Both seaweeds presented lower DM digestibility than
alfalfa hay, with the OM digestibility of U. rigida being sim-
ilar to that of the alfalfa hay and higher than that of
G. vermiculophylla, which was similar to the values reported
for meadow hay, rice, rye, and wheat straw (Fonseca et al.
1998). A direct comparison of the values herein obtained with
the literature is difficult because of the limited data regarding
in vivo digestibility, in sacco degradability, and energy values
of seaweeds for ruminants. A similar OM digestibility was
obtained by Ventura and Castañón (1998) for U. lactuca
(621 g kg−1 DM), but the values of OM digestibility reported
in the current study were lower than that referred for a
Laminaria digitata and Laminaria hyperborea mixture mea-
sured in vitro (78.3%) by Hansen et al. (2003). In the study by
Arieli et al. (1993) with young rams, the in vivo energy di-
gestibility ofU. lactuca (60%) was similar to the value obtain-
ed in the present study, but the digestible energy value
(9.1 MJ kg−1 DM) was higher. The results obtained suggest
that the main constraint to the use of these seaweeds at high
dietary inclusion rates is their low fiber digestibility and their
high mineral content. As far as we know, this is the first report

of seaweed in vivo fiber digestibility. Typically, seaweeds
have low amounts of cellulose (around 4%) and are rich in
specific polysaccharides. Despite ulvans from green algae be-
ing potentially hydrolysable to bioactive oligosaccharides
(Andrieux et al. 1998), ulvan lyases have only been isolated
in marine environments (Barbeyron et al. 2011) and in
Proteobacteria species found in soil (Collén et al. 2011).
Similarly, the hydrolysis of galactans from red algae requires
enzymes predominantly encoded in genomes of marine mi-
crobes, but less frequent or even absent in bacteria that hydro-
lyze polysaccharides from land plants (Hehemann et al. 2010).
These could be hydrolyzed by the rumenmicrobial population
producing methane and acetic acid (Williams et al. 2013).
However, differences on seaweed digestibility between stud-
ies could be explained not only by the composition of the
algae but also by the adaptation of the animal to this particular
feed (Makkar et al. 2016). Indeed, Orpin et al. (1985) found
that 13% of the culturable bacteria from seaweed-fed sheep
grew on alginate, 71% on laminarin, 13% on fucoidan, and
99% on mannitol, while the percentages obtained from
pasture-fed animals were significantly lower (2, 32, 0, and
0%, respectively). Differences in the ability to hydrolyze man-
nitol between seaweed-fed or grass-fed animals were also ob-
served in other studies (Ahmed et al. 2013). Seaweed feeding
seems to change rumen microflora substantially, not including
phycomycete fungi or cellulolytic bacteria, but ciliate proto-
zoa (e.g., Dasytricha ruminantium, Entodinium species) and
lactate-utilizing bacteria (e.g., Streptococcus bovis,
Selenomonas ruminantium, Butyrivibrio fibrisolvens) (Orpin
et al. 1985); thus, a stepwise increase in the levels of seaweeds
in the diet may enable rumen microbes to adapt and, thus,
enhance energy availability from these complex carbohy-
drates (Makkar et al. 2016).

Immunological parameters

Very little is known about putative effects of diet supplemen-
tation with seaweed or seaweed extracts on hematological or
immunological parameters. The results presented here are in
line with a previous report in which Ascophylum nodosum
extract inclusion in the diet of goats did not affect white blood
counts (Kannan et al. 2007). Evaluation of different immuno-
logical parameters also indicated that seaweed supplementa-
tion done in this study had no adverse or enhancing effects on
immunity. Reactive oxygen species production is a major im-
mune effector mechanism used by neutrophils (Amulic et al.
2012). Previous reports have shown a reduction in ROS pro-
duction after ex vivo stimulation of monocytes or neutrophils
with algae or their extracts (Jeon et al. 2012; Jeon et al. 2014).
However, when lambs subjected to heat stress were fed with a
diet supplemented with extracts of the brown alga
A. nodosum, there was an enhancement on the ability of
monocytes to produce ROS (Saker et al. 2004). Our results
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did not indicate that inclusion of seaweed in the sheep diet
could majorly affect ROS production by PMN. Nevertheless,
minor effects in this innate immune mechanism could have
been missed due to sample size limitations. Indeed, according
to the results obtained in the present study, a power analysis
suggested a minimum sample size per treatment group of eight
to 12 to ensure a minimum margin of error.

Here, the lymphocyte proliferative response to mitogens
was used as a surrogate marker of acquired immunity to eval-
uate whether seaweed inclusion could affect the ex vivo func-
tion of lymphocyte cells. Ciliberti et al. (2015) reported that
PBMC isolated from sheep fed with a diet supplemented with
A. nodosum had impaired T cell proliferation responses when
stimulated with the T cell mitogen phytohemagglutinin
(PHA). The authors attributed the effect to the high content
of eicosapentaenoic acid in that brown macroalga.
Contrastingly, we show here that supplementation with a
green and a red algae had no negative impact on the lympho-
cyte proliferation response to mitogens. The low levels of this
po l yun s a t u r a t e d f a t t y a c i d i n U. l a c t u ca and
G. vermiculophylla (van Ginneken et al. 2011; Imbs et al.
2012) could be accounting for these results.

Seaweeds are particularly rich in trace minerals like
zinc, copper, chromium, and selenium or in vitamins E
and β-carotenes (Mišurcová 2011). It was shown that zinc
diet supplementation in lambs increased lymphocyte pro-
liferation to ConA (Nagalakshmi et al. 2009), which was
in accordance with the reduced lymphocyte response to T
cell mitogens reported by Droke and Spears (1993) in a
zinc deficiency study. Although G. vermicullophylla has a
relatively high zinc content (Cabrita et al. 2016), diet sup-
plementation with this seaweed did not result in altered
lymphocyte proliferation. This might agree with another
study showing that in vitro lymphocyte proliferation upon
PHA stimulation in PBMC from steers fed control or zinc
supplemented diets was not different (Spears and Kegley
2002). Selenium (Turner and Finch 1990; Cao et al. 1992)
was shown to be important for adequate lymphoprolifer-
ative responses to T cell mitogens. The macroalgae used
here are enriched in selenium (Cabrita et al. 2016), yet no
improved lymphocyte proliferation was found. A putative
immune-enhancer effect of seaweed supplementation on
lymphocyte function would nevertheless be worth
assessing in a condition of selenium-poor diet.

The pro-inflammatory cytokine IFN-γ is a major effector
in cell-mediated immune responses to common intracellular
pathogens affecting sheep, like Chlamydophila abortus and
Toxoplasma gondii (Graham et al. 1995; Esteban-Redondo
and Innes 1997). Despite the importance of IFN-γ, very few
studies addressed the effect of the diet on the production of
this inflammatory cytokine. In accordance with the lack of
effect of seaweed supplementation observed in the present
study, two previous studies showed no effect of A. nodosum

supplementation on the IFN-γ production in either stimulated
or nonstimulated sheep PBMC (Ciliberti et al. 2015) and on
sheep Th1 responses (Caroprese et al. 2014).

The evidence reported here indicating that U. rigida and
G. vermiculophylla diet supplementation have no deleterious
effect on the immune function of cells mediating innate and
acquired immunity further supports the potential of seaweed
as feed ingredients for ruminant feeding. Exploring the stud-
ied and other immune parameters in longer feeding periods, in
different physiological conditions or environmental chal-
lenges, such as infection, would be important to more accu-
rately ascertain the safety or potential beneficial effects of the
seaweed diet supplementation.

Conclusions

Digestibility of U. rigida and G. vermiculophylla was lower
than that of alfalfa hay, the results suggesting that the main
constraint to use these seaweeds as feed ingredients for rumi-
nant animals being the low fiber digestibility. On the other
hand, dietary supplementation with these seaweeds at 25%
(as fed) did not affect the immune function of cells mediating
innate and acquired immunity, which suggests that these two
species are safe ingredients for ruminant nutrition.
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