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Abstract Microalgae represent a potential sustainable alter-
native for the enhancement and protection of agricultural
crops. Cellular extracts and dry biomass of the green alga
Acutodesmus dimorphus were applied as a seed primer, foliar
spray, and biofertilizer, to evaluate seed germination, plant
growth, and fruit production in Roma tomato plants.
A. dimorphus culture, culture growth medium, and different
concentrations (0, 1, 5, 10, 25, 50, 75, and 100 %) of aqueous
cell extracts in distilled water were used as seed primers to
determine effects on germination. Seeds treated with
A. dimorphus culture and with extract concentrations higher
than 50 % (0.75 g mL ") triggered faster seed germination—
2 days earlier than the control group. The aqueous extracts
were also applied as foliar fertilizers at various concentrations
(0, 10, 25, 50, 75, and 100 %) on tomato plants. Extract foliar
application at 50 % (3.75 g mL™") concentration resulted in
increased plant height and greater numbers of flowers and
branches per plant. Two dry biomass treatments (50 and
100 g) were applied 22 days prior to seedling transplant and
at the time of transplant to assess whether the timing of the
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biofertilizer application influenced the effectiveness of the
biofertilizer. Biofertilizer treatments applied 22 days prior to
seedling transplant enhanced plant growth, including greater
numbers of branches and flowers, compared to the control
group and the biofertilizer treatments applied at the time of
transplant. The 4. dimorphus culture, cellular extract, and dry
biomass applied as a biostimulant, foliar spray, and
biofertilizer, respectively, were able to trigger faster germina-
tion and enhance plant growth and floral production in Roma
tomato plants.

Keywords Biostimulant - Biofertilizer - Foliar spray -
Microalgae - Seed primer - Acutodesmus dimorphus

Introduction

In the coming decades, a crucial challenge will be meeting
future food demands without causing further environmental
degradation (Godfray, ef al. 2010; Odegard and van der Voet
2014). The expanding global population, and their antici-
pated adoption of calorie-rich diets heavily comprised of
dairy and meat products, represent added pressure to the
Earth’s resources. Society faces a challenge not only to
increase agricultural production amidst global climate
change, which threatens to diminish harvests in many
areas of the world, but also to develop innovative tech-
nologies that increase agricultural yields, minimize inputs,
and deter further environmental pollution (Tilman, et al.
2002; Foley, et al. 2011).

The overuse of synthetic agrochemicals has resulted in
massive ecological degradation throughout the world, leading
to ocean dead zones, eutrophication, soil infertility, and biodi-
versity loss (Kohler and Triebskorn 2013; Chagnon et al.
2014; Hallmann, et al. 2014; van der Sluijs et al. 2014). The
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use of microalgae as biofertilizers provides a possible solu-
tion. Biofertilizers are considered to be an environmentally
friendly, cost-effective, sustainable alternative to synthetic fer-
tilizers, for they not only enhance agricultural production but
also diminish environmental pollution (Kawalekar 2013).
Biofertilizers are products that contain living microorganisms
or natural compounds derived from organisms such as bacte-
ria, fungi, and algae that improve soil chemical and biological
properties, stimulate plant growth, and restore soil fertility
(Abdel-Raouf, et al. 2012).

Microalgae are multifunctional. They are capable of pro-
ducing biomass that can be utilized for fuel, food, animal feed,
and fertilizers (Metting 1990). Microalgae possess the poten-
tial to have a major influence on essential ecosystem services
since they (i) can be cultivated in wastewater and agricultural
runoff, recovering excess nutrients and reclaiming water for
further use, and (ii) can sequester carbon dioxide and nitrous
oxides from industrial sources, reducing greenhouse gas emis-
sions (Brennan and Owende 2010). However, microalgae pro-
duction must overcome several barriers in order for them to
become economically viable, especially for production of
biofuels (Brennan and Owende 2010; Mata, et al. 2010;
Wijffels and Barbosa 2010; Borowitzka 2013; Pragya, et al.
2013).

One way to make microalgae biomass production more
economically feasible, given current technologies, is to find
potential applications for microalgae biomass or its by-
products that enable producers to offset production costs.
Given that microalgae contain high levels of micronutrients
and macronutrients essential for plant growth, they have po-
tential application as biofertilizers. Several studies have
established an association between greater nutrient uptake,
higher biomass accumulation, and greater crop yields to the
incorporation of microalgae biofertilizers (Shaaban 2001;
Faheed and Abd-El Fattah 2008).

A study investigating the effects of algae extracts on seed
germination has observed faster germination and greater
growth of rice seeds (Shukla and Gupta 1967). Other more
recent studies obtained similar results utilizing seaweed ex-
tracts on tomato and wheat seeds, although they have also
observed growth inhibition with increasing extract concentra-
tions (Kumar and Sahoo 2011; Kumari, et al. 2011;
Hernandez-Herrera, et al. 2013).

The cellular extracts and growth medium of several
microalgae species have been shown to contain phytohor-
mones (gibberellins, auxin, and cytokinin), which are known
to play crucial roles in plant development (Tarakhovskaya,
et al. 2007). Studies utilizing both the application of growth
medium and cellular extracts from various algal species have
shown a clear effect on plant development with the application
of the algal extracts and the algal growth media (Burkiewicz
1987; Zhang, et al. 1989; Tarakhovskaya, et al. 2007; Stirk
et al. 2013; Grzesik and Romanowska-duda 2014). Similar
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studies utilizing seaweed extracts as foliar applied sprays have
observed an increase in plant biomass accumulation and great-
er crop yields (Kumari ef al. 2011; Hernandez-Herrera et al.
2013).

The USA is the second largest tomato producer in the
world, producing over 13 million tonnes in 2012 (FAOSTAT
2014), and utilizes vast quantities of fertilizers to maintain
annual production rates. The objectives of this study were to
investigate the potential agricultural applications of the robust
green microalga Acutodesmus dimorphus as a seed primer, a
foliar fertilizer, and a soil amendment or biofertilizer and as-
sess its effects on seed germination and plant growth of Roma
tomatoes (Solanum lycopersicum var. Roma) under green-
house conditions.

Materials and methods

Cultivation and harvesting The microalga
Acutodesmus dimorphus (LARB-0414), isolated from the
Phoenix, AZ, USA, metropolitan area, was cultivated out-
doors in seven 1.22 mx14.63 m production row panel
photobioreactors using standard BG-11 algae culture medium
(Stanier, et al. 1971), bubbled with air mixed with 1 % carbon
dioxide, at the Arizona State University, Arizona Center for
Algae Technology and Innovation (AzCATI). The biomass
was harvested by centrifugation at day 14 of cultivation and
was then frozen until used.

The frozen biomass was thawed in a cold room at 4 °C for
24 h. Once thawed, the biomass was spread onto ten metal
trays at a thickness of 1.5 cm and placed inside a freeze-dryer
at —40 °C to freeze-dry for approximately 48 h. The dried
biomass was then collected and stored in a cold room at 4 °C.

Cell extracts One kilogram of the freeze-dried biomass was
suspended in distilled (DI) water at a concentration of
150 g L™". The suspension was stirred on a stirring plate for
10 min to allow the biomass to dissociate. The suspension was
then processed through a Microfluidizer (M-110EH-30)—a
mobile high-shear fluid processor at a flow rate of
450 mL min' at 172 mPa to disrupt the cell wall and obtain
the intracellular extracts. The resulting extract was then cen-
trifuged at 8983xg for 10 min at 22 °C to separate the cell
extracts from the biomass residue. To minimize potential deg-
radation, the resulting extract supernatant was collected in a
flask covered with aluminum foil and stored in a cold room at
4 °C. The biomass residue was also stored in the cold room for
potential future use.

Seed primer experiment The cellular extracts, growth medi-
um, and culture of A. dimorphus were screened to assess their
ability to stimulate faster seed germination. The growth medi-
um was obtained from a 14-day-old culture. A. dimorphus was
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cultivated indoors in a glass column photobioreactor (250 mL)
using standard BG-11 algae culture medium (Stanier et al.
1971), bubbled with air mixed with 1 % carbon dioxide.
Two 50-mL culture samples were obtained by collecting the
supernatant after centrifugation at 3724xg for 10 min.

Each treatment was replicated three times with ten seeds
per replicate. The seeds were surface sterilized with 10 mL of
5 % solution of sodium hypochlorite for 10 min, rinsed twice
with DI water, transferred to sterile Petri plates, and soaked in
10 mL of the respective treatment solutions for 24 h.
Following the 24-h priming (soaking) period, the seeds were
placed between two 42.5-mm Whatman no. 1 filter papers and
allowed to dry for 24 h at room temperature (21 °C).
Preceding the drying period, the seeds were transferred to a
sterile 100-mm Petri plate containing a moist 75-mm
Whatman no. 1 filter, which was soaked with 3 mL of DI
water. The plates were incubated at room temperature at
21 °C under a 16-h light/8-h dark cycle.

Seed germination was checked at 24-h intervals over a
period of 10 days and counted as germinated if at least
2 mm of the radicle had emerged. The filter paper for all
treatments was saturated as needed with 3 mL of DI water to
maintain moisture. Using a caliper, root, shoot, and leaf
lengths (mm) were measured. Other measured variables in-
cluded number of lateral roots, germination percentage (GP),
and germination energy (GE). Germination percentage is an
estimate of the viability of a population of seeds and was
calculated as GP=(number of germinated seeds/total number
of seeds)* 100. Germination energy, a measure of the speed of
germination and assumed to be a measure of the vigor of the
seedling produced, was calculated according to Hernandez-
Herrera et al. (2013), where GE=(number of germinating
seeds/number of total seeds per treatment after germination
for 3 days)*100.

Treatments were as follows:

Control, 0 % extract (10 mL of DI water)

S1, 1 % concentration (0.1 mL extract in 9.9 mL DI water)
S,, 5 % concentration (0.5 mL extract in 9.5 mL DI water)
S3, 10 % concentration (1 mL extract in 9 mL DI water)
S4, 25 % concentration (2.5 mL extract in 7.5 mL DI water)
Ss, 50 % concentration (5 mL extract in 5 mL DI water)
Se, 75 % concentration (7.5 mL extract in 2.5 mL DI
water)

8. S7, 100 % concentration (10 mL)

9. Sg, Acutodesmus growth medium (10 mL)

10. Sy, Acutodesmus culture (10 mL)

Nk W=

Foliar spray experiment The experiment was performed un-
der greenhouse conditions at approximately 28+2 °C and
85 % relative humidity; treatments were arranged in a com-
plete randomized block design. The experiment consisted of
five treatments at various extract concentrations (0, 10, 25, 50,

75, and 100 %) diluted in distilled water (DI). Each treatment
consisted of three replicates, one seedling per replicate. Each
plant received two foliar applications; the first, at 50 mL, was
applied at the time of transplant and the second, at 100 mL,
4 weeks later.

During foliar treatment applications, the soil surface was
covered with aluminum foil to prevent spray runoff from
coming in contact with the potting soil and being potential-
ly available to be taken up by the roots. The sprays were
conducted in the morning when the stomata were open due
to water pressure, thus enabling greater foliar penetration.
All plants were watered as needed throughout the experi-
ment, except after foliar application when they were not
watered for 24 h.

Treatments were as follows:

*For 50-mL spray treatments, the concentrations below
were reduced in half to total 50 mL volume

Control, 0 % extract, 100 mL DI water

Ty, 10 % (v/v) 10 mL extract in 90 mL DI water
T, 25 % (v/v) 25 mL extract in 75 mL DI water
T, 50 % (v/v) 50 mL extract in 50 mL DI water
T4, 75 % (v/v) 75 mL extract in 25 mL DI water
Ts, 100 % (v/v) 100 mL extract

A e

Biofertilizer experiment The biofertilizer experiment was
conducted under greenhouse conditions at approximately 28
+2 °C, in 85 % relative humidity, from August through
October 2014. Roma tomato (S. lycopersicum var. Roma)
seeds were grown in sterilized potting soil, a mixture of ver-
miculite and peat moss. The seedlings were then transplanted
after 22 days to 28-cm pots (one seedling per pot). Two
biofertilizer treatments of 50 and 100 g of dry algal biomass
were applied 22 days prior to seedling transplant, into pots
containing potting soil (peat moss:vermiculite:perlite), mixed
thoroughly, and watered once a week for 3 weeks prior to
seedling transplant. The other two 50- and 100-g biofertilizer
treatments were applied at the time of seedling transplant.
Each treatment had three replicates and was set up in a
completely randomized block design. Plants were grown for
a total of 8 weeks and were hand watered as needed. Plant
height (cm), number of flowers, number of branches, and ear-
ly fruit development were recorded for all treatments. One
sample per treatment was chosen at random to measure total
fresh plant weight (g).
Treatments were as follows:

1. Control (no biofertilizer)

2. By, 50 g of biofertilizer applied 22 days prior to transplant

3. B,, 100 g of biofertilizer applied 22 days prior to
transplant

4. Bs, 50 g of biofertilizer applied at the time of transplant

5. By, 100 g of biofertilizer applied at the time of transplant
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Statistical analysis Statistical analyses were conducted using
StatPlus:mac LE programming (AnalystSoft Inc. 2009). All
experiments were analyzed using a one-way analysis of vari-
ance (ANOVA), to test difference among the means. Post hoc ¢
test was used for analysis of significant difference between
treatments: the level of significance was set at P<0.05.

Results
Biostimulant

The live A. dimorphus culture (Sy), the filtered growth medi-
um (Sg), and 50 % (Ss) and 100 % (S;) extract concentration
treatments triggered faster seed germination—2 days earlier
than the control group. The A. dimorphus culture treatment
(So) was the only treatment to have at least half of the seeds
germinate by the third day. On the fifth day, most treatments
had reached full germination percentage (Fig. 1). Almost all
treatments, with the exception of the growth medium (Sg) and
the 25 % (0.375 g mL ") extract concentration (S4), had seeds
that did not germinate. Because the majority of the seeds
within these treatments did germinate, it was concluded that
some of the seeds were not viable.

Germination energy calculations demonstrated a positive
relationship between increasing extract concentrations and in-
creasing speed of germination (germination energy). The
greatest seed germination speed obtained with an extract treat-
ment was with the 100 % (1.5 g mL™") concentration (S) at
40 %, slightly surpassed by the growth medium (Sg) with
47 % germination energy. However, the fastest germination
speed at 63 % was observed on seeds that were treated with
A. dimorphus living culture (So) (Fig. 2).

Fig. 1 Seed germination 120 1

percentage: seeds treated with
Acutodesmus culture (S9), growth

The tomato seeds inoculated with 4. dimorphus culture
had greater lateral root development (Fig. 3)
outperforming all other treatments. The number of lateral
roots was somewhat variable across the extract concentra-
tion range. However, there was a general trend of more
lateral roots with increasing extract concentration. The
higher the number of lateral roots, the greater the plants’
ability to acquire water and nutrients: hence, seeds inoc-
ulated with Acutodesmus culture would potentially accu-
mulate greater plant biomass and result in greater crop
yields.

Foliar spray

All foliar treatments resulted in greater plant growth com-
pared to the control group. The 50 % or 3.75 g mL™"'
extract concentration (T;) foliar spray (7.5 g mL™' for
100 mL second application) led to greater flower devel-
opment (Fig. 4a), a higher number of branches (Fig. 4b),
and the greatest plant height (Fig. 4c). Foliar sprays of
higher concentrations (75 % (T4) and 100 % (Ts)) result-
ed in less flower development, a lower number of
branches, and a slight decrease in plant height compared
to the 50 % extract concentration foliar treatment
(Table 1).

One plant sample per foliar treatment was chosen at ran-
dom in order to measure the impact of foliar spray on total
fresh plant weight (g). The 50 % or 3.75 g mL ™' treatment
(Ts), 75 % or 5.625 g mL ™" treatment (Ty), and 100 % or
7.5 g mL™! treatment (Ts) extract concentrations led to ca.
five times greater total plant fresh weight (Fig. 5). However,
additional spray concentrations beyond the 50 %
(3.75 g mL™") did not show much additional increase in
plant weight.

medium (S8), and cell extracts: S7 100 1 — SR
1 % extract concentration, S2 5 % —= i - -
extract concentration, S3 10 %
extract concentration, S4 25 % 80 1
extract concentration, S5 50 % 2
extract concentration, S6 75 % _g
extract concentration, and S7 'g 60 1 - ?‘m"c'
100 % extract concentration. All E —h= §2
extract dilutions were with DI g —Ss3
water 40 1 :;
S6
s7
s8
20 7 S9
0
0 1 2 3 4 5 6 7 8 9 10 1
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Fig. 2 Germination energy of 0

seeds treated with Acutodesmus
culture (S9), growth medium
(S8), and cell extracts: S1 1 %
extract concentration, S2 5 %
extract concentration, S3 10 %
extract concentration, S4 25 %
extract concentration, S5 50 %
extract concentration, S6 75 %
extract concentration, and S7
100 % extract concentration. All
extract dilutions were with DI
water

60

50

40

30

20

Number of germinating seeds/total seeds x 100

Biofertilizer

The results showed a significant difference between the
biofertilizer treatments that were applied 22 days prior to seed-
ling transplant (B;, B,) compared to those applied at the time
of transplant (B3, B,). Differences in several important growth
parameters, such as the number of branches (Fig. 6a), number
of flowers (Fig. 6b), and early fruit development (Fig. 6¢),
were observed. There were significant differences when the
biofertilizer treatments were applied 22 days prior to trans-
plant as compared to the control group and the biofertilizer
treatments applied at the time of transplant.

Focusing only on the biofertilizer treatments applied
22 days prior to transplant, it was apparent that the 50- and
100-g treatments or amendments (B;, B,) yielded a greater
average number of branches and flowers than the control
group. However, the lower amendment concentration gave

Fig. 3 Effects of Acutodesmus 6
culture (S9), growth medium

(S8), and extract concentrations

(S1-S7) on lateral root 5 1
development of tomato seedlings.
S11 % extract concentration, S2
5 % extract concentration, S3

10 % extract concentration, S4
25 % extract concentration, S5
50 % extract concentration, S6
75 % extract concentration, and
S7 100 % extract concentration.
All extract dilutions were with DI
water. Columns denoted by a
different letter are significantly
different at P<0.05. Values
represent average (n=10); bars 1
represent standard error

Average number of lateral roots
w

Treatments

greater numbers of fruit set. The opposite was observed when
the biofertilizer treatments were applied during seedling trans-
plant, with the 100-g biofertilizer treatment (B4) generating
plants with a slightly greater number of branches and flowers
than the 50-g treatment (B3) (Fig. 6a, b).

When comparing the biofertilizer treatments applied during
seedling transplant (B;, B4) with the control group, we ob-
served that for branch development (Fig. 6a) and flower de-
velopment (Fig. 6b), the 100-g treatment exceeded the control
group, but did not reach the levels observed with the
biofertilizer treatments applied 22 days in advance. With flow-
er development (Fig. 6b), the biofertilizer treatments gave
results similar to those of the control group. The results on
early fruit setting indicated that application of the biofertilizer
22 days in advance increased early fruit set with both 50- and
100-g treatments, and with the 100-g treatment showing the
greater early fruit set. A very low fruit set (less than that of the

Treatments
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Fig.4 a Effects of cell extracts as a
foliar treatments on flower 60 1
development, b effects of foliar
treatments on average number of
branches, ¢ effects of foliar sprays 50 1
on average shoot length per
treatment on tomato plants: 7'/
10 % extract concentration, 72

40 1
25 % extract concentration, 73
50 % concentration, 74 75 %
concentration, and 75 100 % 30
extract concentration. All extract
dilutions were with DI water.
Columns denoted by a different 2]
letter are significantly different at
P<0.05. Values represent average

10 1
(n=3); bars represent standard
error J

04

Control -10% T2-25% T3-50 % T4-75% T5-100 %

Average number of flower buds

Cell extract concentrations

c
b
14
a
12
10
0 ]

Control T1-10% T2-25% T3-50% T4-75% T5-100 %

be
be

Average number of branches
(<] -

I

N

Cell extract concentrations

100
90

80

¢ ¢
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a
70
60
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20
10
0

Control T1-10% T2-25% T3-50 % T4-75% T5-100 %

Average shoot length {cm)

Cell extract concentrations
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Table 1 Effects of extract foliar

sprays on growth parameters of Treatments ~ Concentrations (in DI water) ~ Growth parameters

tomato plants (gmL™)

Number of flowers ~ Number of branches ~ Plant height (cm)

Control 0 10.67+0.882 9.33+£0.333 66.68+0.367
T,—10 % 0.75 20.00+0.000 12+0.577 70.06+0.923
T—25% 1.875 29.33+8.838 14£1.732 76.62+2.986
T5—50 % 3.75 49.67+5.457 17+0.577 89.75+1.388
T,—75% 5.625 33.33+£2.404 15£2.000 88.48+1.845
Ts—100% 7.5 35.67+7.311 14.67+1.667 88.90+1.270

Values are average+standard error (n=3)

control) occurred with the biofertilizer application (B5, By4) at
the time of seedling transplant (Fig. 6¢). This could possibly
be due to nutrient imbalance, caused by microbial nutrient
immobilization. It is also important to note that due to the
early termination of the experiment, total fruit yields were
not obtained. Nevertheless, given the early fruit setting data,
we can presume that both biofertilizer treatments applied
22 days prior to seedling transplant would have yielded great-
er fruit numbers, with the 100-g biofertilizer treatment likely
resulting in the highest yields.

General observations of the growing plants indicated dif-
ferences in plant mass with the biofertilizer treatments. The
results indicated that the biofertilizer treatments applied
22 days prior to seedling transplant (B, B,) yielded signifi-
cantly more biomass, having greater shoot and root fresh
weights (Fig. 7). All biofertilized treatments led to higher total
fresh weight compared to the control group. The two
biofertilizer treatments applied 22 days prior to seedling trans-
plant greatly exceeded the control group in biomass (400+g

Fig. 5 Effects of Acutodesmus 450
dimorphus extracts as foliar

sprays on total fresh plant weight 400
(one sample per treatment chosen

at random)

350

300

250

200

150

Average shoot+root fresh weight (g)

100

50

Control

difference) and weighed approximately 350 g more than the
biofertilizer treatments applied at the time of seedling trans-
plant. There was little difference in biomass between the two
biofertilizer treatments applied 22 days prior to transplant,
with the 100-g treatment (B,) showing a slightly greater total
fresh plant weight than the 50-g treatment (B,), a difference of
approximately 15 g.

Discussion

The vast majority of research on the agricultural applications
of algae has focused on the use of cyanobacteria (blue-green
algae) on rice fields for various reasons, the most important
being their ability to fix atmospheric nitrogen to plant-
available forms (Irisarri, et al. 2001; Jha and Prasad 2006;
Pereira et al. 2008; Sharma, ef al. 2010), or on macroalgae
(seaweeds), since they can be harvested from coastal areas and

T1-10% T2-25% T3-50 % T4-75% T5-100 %

Cell extract concentrations
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Fig. 6 a Effects of biofertilizer
on branch development—number
of branches per plant (P=0.0002),
b effects on number of flowers
(P=0.0001), and ¢ effects on early
fruit setting—number of fruits
(P=0.0129): B1 50 g 22 days
prior to transplant, B2 100 g

22 days prior to transplant, B3

50 g at the time of transplant, and
B4 100 g at the time of transplant.
Columns denoted by a different
letter are significantly different at
P<0.05. Values represent average
(n=3); bars represent standard
error
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Fig. 7 Total fresh plant (shoot+ 600
root) weight of samples selected

at random from treatments: B/

50 g 22 days prior to transplant, 500
B2 100 g 22 days prior to
transplant, B3 50 g at the time of
transplant, and B4 100 g at the

time of transplant 400

300 1

200

Average Shoot+Root weight (g)

100

are easier to process compared to microalgae (Verkleij 1992;
Zodape 2001).

The renewed interest in developing biofuels from
microalgae has led to an increase in research for potential
product and/or by-product applications that can make cultiva-
tion and production more economically feasible at mass
scales. Most of the research on the potential by-product appli-
cations of microalgae has concentrated on bioactive com-
pounds (nutraceuticals, antioxidants, and food active ingredi-
ents) due to their high retail values (Herrero, et al. 2006;
Mendiola et al. 2007; Plaza et al. 2010; Rodriguez-Meizoso
et al. 2010). We believe that there is a larger untapped market
for the application of microalgae biomass or by-products as
agrochemicals.

There is limited evidence on the application of live
microalgae culture, cell extracts, and dry biomass as potential
agrochemicals. To increase our knowledge about the agricul-
tural applications of microalgae, the goal of this study was to
evaluate whether the microalga A. dimorphus living culture,
cell extracts, and dry biomass could be applied to tomato
plants as a biostimulant, foliar spray, and biofertilizer.

Previous studies have shown that certain microalgal ex-
tracts enhance the growth of agricultural crops, which has
been attributed to plant growth regulators (auxins, gibberel-
lins, and cytokinins) and to high levels of macro- and
micronutrients (Tarakhovskaya, et al. 2007). This study dem-
onstrated that the application of 4. dimorphus aqueous ex-
tracts, live culture, and dry biomass enhanced the germination,
growth, and potential yield of tomato plants. Our study
showed that the application of live 4. dimorphus culture and
aqueous cell extracts increased seed germination percentage in
all treatments compared to the control group. The seeds

1l

Control

B2 B3 B4

Biofertilizer Treatments

B1

treated with live 4. dimorphus culture germinated faster,
meaning the seedlings had the greatest vigor. Studies conduct-
ed on tomato seeds utilizing seaweed extracts at varying con-
centrations gave similar results. Hernandez-Herrera et al.
(2013) noticed that an extract concentration of 0.009 g mL ™"
resulted in the highest germination percentage and the greatest
plant growth, and that higher extract concentrations exhibited
a negative effect on seed germination. Similarly, Kumar and
Sahoo (2011) observed that seaweed extract concentrations
greater than 20 % resulted in smaller root lengths, a lower
number of lateral roots, and shorter shoot length.

Foliar application of the aqueous cell extracts of
A. dimorphus increased plant growth compared to the control
group, with the 50 % (3.75 g mL™") extract concentration
yielding the highest results. Foliar sprays of greater extract
concentrations 75 and 100 % led to a decrease in growth
compared to the 50 % spray. Our results are comparable to
those obtained by Hernandez-Herrera et al. (2013), who ob-
served smaller shoot lengths on foliar sprays of seaweed ex-
tracts at concentrations greater than 0.18 g mL™" (0.4 %),
while Kumari et al. (2011) observed the opposite with greater
plant growth with increasing seaweed extract concentrations.

Foliar sprays provide a more rapid nutrient utilization and
enable faster correction of nutrient deficiencies compared to
soil fertilizer applications. The greatest difficulty in supplying
nutrients via foliar fertilization is in adequately applying the
right quantity without damaging the leaves. Generally, the
results have indicated a positive correlation between foliar
extract applications and greater plant growth. Nevertheless,
for foliar sprays to gain a greater acceptance for application
in crop production, further studies need to be conducted since
there are a plethora of factors (temperature, humidity, light
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intensity, nutrient concentration, surfactants, application rate,
etc.) that may play a role in the efficiency of foliar applications
(Haynes and Goh 1977; Kannan and Charnel 1986; Fernandez
and Eichert 2009).

In this study, tomato seedlings treated with dry
A. dimorphus biomass (biofertilizer) clearly led to higher
number of flowers and branches and early fruit development.
There was a significant difference when the biomass was ap-
plied weeks prior to transplant, meaning that the biomass
needs to be broken down in order to be readily available for
plant uptake. Seedlings that received biofertilizer applications
22 days prior to transplant resulted in the greatest plant
growth, the highest number of floral development, and early
fruit setting, which could theoretically mean a greater crop
yield. However, due to the early termination of our experi-
ment, total crop yield data was not collected. Further studies
should be conducted on utilizing whole and residual biomass
(after oil extraction) to study whether it has the same stimu-
lating growth effects, regardless of whether it is applied at the
time of transplant or whether it needs to be applied earlier as
seen with dry unprocessed (no oil extraction) biomass.

The application of live microalgae culture, aqueous cellular
extracts, and dry biomass may not only increase plant growth
but also make algae production systems more economically
feasible. With increasing climate change, new innovations
will be needed in order to enhance and protect agricultural
crops throughout the world. The challenge to produce more
food with limited resources makes microalgae a suitable alter-
native for enhancing and protecting agricultural production
and delivering economic and environmental benefits to
farmers and algae producers.

In conclusion, seed and foliar application of 4. dimorphus
aqueous extracts and growth medium had a major positive
effect on seed germination and plant growth. However, as
with synthetic agrochemicals, there appears to be a cutoff
concentration at which higher extract concentrations lead to
a decrease in the overall growth and development of tomato
plants, compared to lower extract concentrations. Seed inocu-
lation with living 4. dimorphus culture had the greatest effect
on seed germination and seedling growth compared to other
treatments. Further studies on the applications of microalgae
culture, growth medium, and cell extracts on different plant
species are needed. This study demonstrated that there are
positive correlations between aqueous foliar sprays and
growth of tomato plants.

Application of dry 4. dimorphus biomass as a biofertilizer
for tomato plants led to an increase in plant growth. Earlier
biofertilizer application (22 days prior to transplant) signifi-
cantly enhanced plant growth, suggesting that earlier applica-
tion is necessary for the biomass to be broken down in order
for nutrients to become available for plant uptake. An appli-
cation of 50 g of biofertilizer per plant was sufficient to be
both productive and to be potentially feasible from an

@ Springer

economic standpoint. Further studies should be conducted to
observe how the A. dimorphus biomass will react under actual
field conditions.

Additional studies on floral crops should be conducted
since foliar sprays are commonly utilized within the floricul-
ture industry. Microalgae are an enormous untapped resource
with great potential in the agriculture sector, and additional
research should be conducted to discover and exploit their
potential.
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