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Abstract Efficient production of algal biofuels could reduce
dependence on foreign oil by providing a domestic renewable
energy source. Moreover, algae-based biofuels are attractive
for their large oil yield potential despite decreased land use
and natural resource (e.g., water and nutrients) requirements
compared to terrestrial energy crops. Important factors con-
trolling algal lipid productivity include temperature, nutrient
availability, salinity, pH, and the light-to-biomass conversion
rate. Computational approaches allow for inexpensive predic-
tions of algae growth kinetics for various bioreactor sizes and
geometries without the need for multiple, expensive measure-
ment systems. Parametric studies of algal species include
serial experiments that use off-line monitoring of growth and
lipid levels. Such approaches are time consuming and usually
incomplete, and studies on the effect of the interaction be-
tween various parameters on algal growth are currently lack-
ing. However, these are the necessary precursors for compu-
tational models, which currently lack the data necessary to
accurately simulate and predict algae growth. In this work, we
conduct a lab-scale parametric study of the marine alga
Nannochloropsis salina and apply the findings to our

physics-based computational algae growth model. We then
compare results from the model with experiments conducted
in a greenhouse tank and an outdoor, open-channel raceway
pond. Results show that the computational model effectively
predicts algae growth in systems across varying scale and
identifies the causes for reductions in algal productivities.
Applying the model facilitates optimization of pond designs
and improvements in strain selection.
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Introduction

The high oil yield potential of algal biofuels (Chisti 2007;
Mata et al. 2010) supports their development into commer-
cialization as a renewable, carbon-neutral energy source
(Singh and Gu 2010). Recent, techno-economic analyses
show that algal biofuel is currently too expensive (US$
3.06 L−1 TAG) to replace transportation fuels, but improve-
ments in algae productivity and lipid yield could greatly
reduce the cost (Sun et al. 2011). For a competitive algal
biofuel, algae cultivation must be optimized.

Many factors contribute to the productivity of algae culti-
vation. Algal photoautotrophic growth is dependent on light
intensity, temperature, salinity, pH, and availability of nutri-
ents (US-DOE 2009; James and Boriah 2010; James et al.
2013). At low irradiance levels, light is limiting and insuffi-
cient energy (for photosynthesis) hinders growth rates. Con-
versely, irradiance above the optimal level may lead to oxida-
tive stress (Li et al. 2009). Further, essential nutrients (carbon
dioxide (CO2), phosphate, sulfate, and nitrate) are critical to
ensure that resources are available for growth and lipid
production.
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The temperature and pH ranges for optimal growth can be
highly species/strain dependent and can vary from the low
temperatures of the arctic to the high temperatures of the
equatorial deserts (Lewis and Lewis 2005; Mayo 1997;
Remias et al. 2005). When temperatures deviate from ideal,
growth rates diminish (Eppley 1972). Salinity variations from
optimal also decrease growth rates (Kirst 1989; Brock 1975;
Auken and McNulty 1973; García et al. 2007; Fabregas et al.
1984; Batterton and Baalen 1971).

Large-scale bioreactor systems needed for commercial-
scale biofuel production, open raceway ponds, and closed-
photobioreactor systems often experience large spatiotempo-
ral variations in environmental conditions over the course of a
day, month, and year. Light conditions vary due to diurnal and
annual cycles, fluctuations in cloud cover, the angle of the sun
in the sky, and algae self-shading. The temperature of the
bioreactor media depends on the reactor design, solar
radiation, wind speed, air temperature, and evaporation.
Nutrients vary due to varied consumption and delivery
rates while pH depends on both extracellular (CO2

concentration) and intracellular (species-dependent H+)
regulatory mechanisms (Katz et al. 1991). Salinity can
vary due to evaporation and rainfall. These complex
variations make it difficult to identify which parameters
most affect the productivity of the culture.

A computational model that can predict the variations in
the parameters affecting growth could aid in identifying which
are most limiting for algae growth. Quinn et al. (2011) devel-
oped an algae growth and lipid production model of
Nannochloropsis oculata for a specific design of an outdoor
photobioreactor. Their model accounts for growth limitation
due to light, temperature, and nitrogen. However, their model
has only been validated for a single system and has not yet
been applied to other bioreactor designs. Huesemann et al.
(2013) developed a screening model specifically for raceway
ponds. Their model accounts for light and temperature limi-
tation but does not account for the variations in temperature
within the pond nor does it predict the temperature based on
meteorological data. James and Boriah (2010) developed a
proof-of-concept model for algae growth in an open-channel
raceway. Subsequently, James et al. (2013) verified the model
against an analytical solution and then compared to experi-
mental data. A simulation that is able to model multiple types
of bioreactor systems and predict the cultivation pond condi-
tions for locations around the globe is needed to properly
optimize and design cultivation systems. Liffman et al.
(2013) proposed new raceway pond geometries that reduced
energy losses at the bends by 87 %.

In this work, we investigated the halophilic microalga,
Nannochloropsis, that is a promising biofuel candidate (Pal
et al. 2011; Boussiba et al. 1987). As with most algae strains,
no complete parametric data have been published. Therefore,
we must produce the data necessary to appropriately

parameterize our model for the algae strain of interest. To
accomplish this, we grew the algae strain at various environ-
mental conditions in laboratory test tubes and measured
growth during the exponential growth phase. With this meth-
od, we were able to vary multiple parameters (i.e., light and
salinity) simultaneously to reduce the time to complete the
parametric study. In addition, the small size ensured that
environmental conditions were constant across the sample
and reduced the amount of algae mass needed to be grown.

The numerical simulations in this work used a modified
version of the US Army Corp of Engineers water quality code
(CE-QUAL) (Cerco and Cole 1995; James and Boriah 2010;
James et al. 2013) to simulate algal growth kinetics in well-
mixed photobioreactor-type systems. The model allows the
flexibility to manipulate a host of variables associated with
algal growth such as temperature, pH, light intensity, and
nutrient availability. Salinity of the medium is another impor-
tant operational parameter governing algal growth; the effects
of salinity were added to the model to expand its capabilities
to marine algae. To populate the model’s empirical parame-
ters, we conducted a parametric growth rate measurement of
Nannochloropsis salina at different temperatures, light inten-
sities, and salinities. The effect of pH was not investigated in
this study due to the desire to have consistent CO2 levels for
each of the conditions. The computational fluid dynamics
code ANSYS FLUENT (Fluent 2012) was used to model
the heat transfer and algae transport. The model was then
validated by comparing predictions from the lab-scale param-
eterized model to experimental results from both a greenhouse
pond and outdoor, open-channel raceway.We showed that our
model has excellent agreement for multiple bioreactor systems
and can effectively predict the pond temperature based on
meteorological data.

Materials and methods

We cultivated two similar strains of Nannochloropsis:
Nannochloropsis salina CCMP 1776 and Nannochloropsis
granulata LRB-MP-0209. Both were grown in f/2 medium
(Guillard and Ryther 1962). We grew N. salina at Sandia
National Laboratories in a 25×115 mm2 quartz test tube at
the Livermore, California, USA site to parameterize the model
and in greenhouse tanks at the Albuquerque, New Mexico
site. N. granulata was grown in an outdoor raceway at the
Arizona Center for Algae Technology and Innovation at
Arizona State University in Mesa, Arizona.

Light absorptivity

Light utilization by algae depends on the optical properties of
photosynthetic pigment within the cell. While the absorptivity
of pigments is generally known in select organic solvents,
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light extinction is undoubtedly different in vivo. Therefore, we
developed a quantitative relationship between pigment optical
depth from the fluid surface (as a function of wavelength) and
dry cell weight for N. salina, thus, identifying the absorptivity
at all wavelengths.

In brief, duplicate scatter-free absorbance measurements
across six different sample concentrations of N. salina were
obtained using a 60-mm integrating sphere attached to a
PerkinElmer, Lambda 950 spectrophotometer. An integrating
sphere was used to remove the contribution of scatter
from the algal and detritus in the sample. In parallel,
cell counts were used to determine the concentrations of
these samples (concentrations ranged from 3.75×106 to
7.5×107 cells mL−1). Classical least squares (CLS) was
used to project these concentrations onto the spectral
data to obtain the pure component spectral estimate that
represents the absorptivity of Nannochloropsis. This cal-
culation was conducted with MATLAB (2013) and
consisted of multiplying the pseudo-inverse of the con-
centrations by the measured spectra to obtain this pure
component estimate. Further details of this CLS method
can be found elsewhere (Haaland et al. 1985).

Lab-scale model parameterization

N. salina was grown in f/2 media in a laboratory incubator
with a diurnal cycle of 16:8 (light/dark). We adapted the
cultures to light conditions, NaCl concentrations, and temper-
atures. Algae were grown in 25-mm test tubes with air bub-
bled through a plastic tube submerged to the bottom of the test
tube to provide CO2 and mixing. The pH was monitored daily
for each sample with a submersible, calibrated meter (Omega
Engineering, Inc/PHB21) and was consistently between 7.5
and 8.0. This range iswithin the optimal pH range forN. salina
between 7.5 and 9.0 (Bartley et al. 2013; Boussiba et al.
1987). Changes in cell concentration were estimated using a
calibrated digital fluorometer (Turner Designs/10-AU) to
measure the chlorophyll a fluorescence in vivo. The fluorom-
eter transmits an excitation beam of light in the 440-nm range
and detects light emitted from the sample in the 680-nm range.
The measurements were calibrated to initial culture cell counts
at each light intensity and the fluorescence was measured
daily to produce growth curves for each offset of experimental
conditions. To compare with the model, the fluorescence
measurements are converted to cell counts based on the initial
calibration and then converted to biomass concentration based
on the measured cell mass of 2.7 pg cell−1. Although chloro-
phyll fluorescence is not an appropriate method for measuring
a quantitative biomass concentration, the change in fluores-
cence over time of a given sample during the exponential
growth phase estimates the rate of change of the sample
concentration or growth rate (Mayer et al. 1997; Serôdio
et al. 2001; Torzillo et al. 1996; Samuelsson and Öquist

2006; Sukenik et al. 2009; Masojidek et al. 2010; Vyhnalek
et al. 1993). Growth rates were calculated from data measured
in triplicate at three light conditions (10.5, 27, and 58Wm−2),
four NaCl concentrations (0.35, 0.5, 0.75, and 1 M), and four
temperatures (18, 22, 26, 30 °C). The concentration over time
during the exponential growth phase is represented by
the equation Cchla(t)=C0exp(μt), where Cchla is the chlo-
rophyll a concentration, C0 is the initial chlorophyll a
concentration, t is the time, and μ is the exponential
growth rate. The growth rates are calculated by linear
curve fits to data from the exponential growth phase to
ln(Cchla)=μt+ln(C0) and averaged over the triplicate
samples for each growth condition.

Greenhouse tanks experiment

A 40-L culture of laboratory-grownN. salina in f/2 media was
used to inoculate two circular tanks continuously mixed by a
jet system enclosed in a greenhouse located in Albuquerque,
NM. Each vessel had a radius of 0.9 m and a medium depth of
0.211 m. The initial nitrate and phosphate concentrations were
54.7 and 3.1 g m−3. The two tanks were operated at different
CO2 levels. The first tank was bubbled with CO2 levels
elevated at 85 L h−1 with the other tank at ambient CO2 levels.
Temperature and pH were monitored with a submersible,
calibrated meter (YSI Inc.). The pH remained between 8.0
and 8.5 for the ambient tank and between 7.4 and 7.8 for the
elevated CO2 tank during the course of the measurements. The
pH was only briefly below 7.5 during the first days of the
elevated-CO2 tank measurement. Again, these values are
within the range for ideal growth. Irradiance was mon-
itored with a calibrated spectroradiometer (Ocean Op-
tics). Biomass was estimated by comparing the optical
density at 750 nm of each cultivation condition to a
standard curve of biomass versus optical density gener-
ated for N. salina.

Open-channel raceway experiment

A 12-m3 open raceway pond with a 20-cm culture depth was
inoculated with nutrients ten times the standard f/2 media. A
filtered ambient air/CO2 mixture (1.5–2.0 % CO2) is bubbled
intermittently into the raceway pond through an airstone
sparger to provide CO2 to the algae culture for the purpose
of maintaining a fairly constant pH between 7.8 and 7.9. To
determine the algae concentration, dry weight and ash-
free dry weight values were measured daily (Laurens
et al. 2012). The pond temperature was measured and
recorded at 15-min intervals using a Yellow Springs
Instruments YSI 5200A-DC Multiparameter Water Qual-
ity Monitoring Unit approximately 10 cm below the
surface. Light intensity was measured with the same
calibrated spectroradiometer described above.
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Algae growth model

The governing equation for algal biomass growth in CE-
QUAL is (Cerco and Cole 1995):

∂B
∂t

¼ P−BM−PRð ÞBþ ∂
∂z

wsBð Þ þ BL

V
ð1Þ

where B is the biomass, t is time, P is the production (growth)
rate, BM is the basal metabolic rate, PR is the predation
rate, ws is the settling velocity, BL represent external
loads such as deposition or sources, and V is the model
cell volume. Biomass production rates are determined
by the availability of nutrients (including CO2), the
intensity of light, local temperature, pH, and salinity.
For this work, the effects of salinity are considered
while the effects of pH are neglected. The effect of
each is considered to be multiplicative and decoupled
(Cerco and Cole 1995):

P ¼ PM f νð Þg Ið Þh Tð Þi Sð Þ j pHð Þ ð2Þ

Here, PM is the maximum instantaneous growth rate under
optimal conditions; f(ν) is the effect of non-optimal nutrients,
which includes CO2 limitation (0≤f(ν)≤1); g(I) is the effect of
non-optimal illumination (0≤g(I)≤1); h(T) is the effect of
non-optimal temperature (0≤h(T)≤1); i(S) is the effect of
non-optimal salinity (0≤i(S)≤1); and j(pH) is the effect of
non-optimal pH (0≤ j(pH)≤1). All of these functions
are spatially dependent, and their values vary from cell
to cell in the model according to local nutrient concen-
trations (including CO2), incident solar radiation, salin-
ity, and temperature.

For the lab-scale parameterization of the algae growth
model, algae were grown in well-mixed lab conditions and
the effects of predation, settling, pH, and CO2 limitation can
be neglected. In addition, for the initial validation study, the
larger scale systems are assumed to obey the same conditions
defined at the lab scale. It is acknowledged that this may not
hold true and future studies will address these components of
the model. The basal metabolism rate varies with temperature
according to:

BM Tð Þ ¼ BM T0ð Þexp KTB T−T0ð Þ½ � ð3Þ

where T0 is 20ºC and BM(T0) is set to 0.01 day
−1, and KTB is

the effect of temperature on the metabolism and is set to
0.069ºC−1 (Cerco and Cole 1994). This results in the basal
metabolic rate increasing to 0.03 day−1 at 36ºC. These are
general values for algae due to a lack of published data
available for specific strains. While this parameter is uncer-
tain, the fitted growth rate will largely account for error in the
basal metabolism rate, δBM. The algae growth model is
implemented in the commercial computational fluid

dynamics code ANSYS FLUENT (Fluent 2012) to al-
low for fluid flow and heat transfer calculations in a
wide variety of systems.

Two types of domains are used for the current study. First is
a simplified single-cell rectangular domain with dimensions
representative of the experiment, which assumes the
culture is well-mixed and conditions such as light in-
tensity and temperature are uniform within the culture.
However, the light intensity changes as the culture den-
sity increases (which the model accounts for), while the
temperature remains constant. We determine at which
scale and conditions it is no longer appropriate to use
the simplified domain and expand the complexity of the
domain to account for the spatial variations in the light
and temperature conditions. The second domain is a 2D
rectangular representation of the raceway pond. Both
domains are shown in Fig. 1.

Model parameterization

Model parameterization occurs in two steps. First, limitation
functions (described below) are fit individually to the
normalized measured growth rate versus the growth
variable (light intensity, temperature, and salinity) using
CLS. Second, the maximum ideal productivity is fit to the
growth data (described in the “Results and Discussion” sec-
tion). To assess the agreement, the R2 value is calculated
according to:

R2 ¼ 1−

X
Cdata−Cprediction

� �2
X

Cdata−Cdata

� �2 ð4Þ

where Cdata is the concentration value of the data point,
Cprediction is the concentration predicted by the model at the
same time, and Cdata is the average concentration for all the
data points.

Fig. 1 Two solver domains used in study: (a) simplified single-cell
rectangular domain and (b) meshed 2D rectangular representation of
raceway pond
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Nutrients

Growth limitation due to nutrient availability is based on the
Monod equation (Monod 1949):

f νð Þ ¼ ν

Kh
X þ ν

ð5Þ

where ν is the nutrient concentration and KX
h is the half-

saturation constant. For example, the nutrient function for
green algae can be nutrient limited by dissolved ammonium,
nitrate, phosphate, or CO2, yielding:

f νð Þ ¼ min
NH4 þ NO3

Kh
N þ NH4 þ NO3

;
PO4

Kh
P þ PO4

;
CO2

Kh
C þ CO2

� �

ð6Þ

Here, NH4 is the ammonium concentration, NO3 is the
nitrate concentration, PO4 is the dissolved phosphate concen-
tration, CO2 is the dissolved carbon dioxide concentration,
and KN

h , KP
h, and KC

h are the corresponding half-saturation
constants.

Half-saturation constants are typically defined for the
low concentrations of nutrients common in environmen-
tal systems and are on the order of 0.01 g m−3. The
half-saturation constants used in this model are
0.01 g m−3 (Cerco and Cole 1994), 0.002 g m−3

(Cerco and Cole 1994), and 0.028 g m−3 (Hecky et al.
1993) for nitrogen, phosphorous, and CO2, respectively.
For algal growth systems (raceways), nutrients are often
added in excess and the nutrient limiting function is
close to unity. However, CO2 is often difficult to main-
tain at sufficient concentrations particularly during high-
growth periods, in large reactors, and at high algae
concentrations. Also, when algae are nutrient deprived
(e.g., to trigger lipid production (Hu et al. 2008)), the
value of the half-saturation constant will play a more
important role in algae growth.

To properly model the effect of nutrients, we must
ensure appropriate amounts of nutrients are removed
from the simulation with increased algae concentration.
Algae atomic composition ratio was measured at the end
of the greenhouse experiment on day 7 yielding a C/N/
P ratio of 358:38:1. For reference, the Redfield ratio for
marine plankton in open oceans is 106:16:1 (Redfield
1934). Significant variability of elemental composition
exists across strains and even within strains due to
environmental stressors and adaptations. Nutrients recy-
cle in the system as algae metabolize the inorganic
forms of nitrate and phosphate into their dissolved or-
ganic forms. These dissolved organic nitrates and phos-
phates are mineralized back into their inorganic forms at
rates of 0.015 and 0.1 day−1 (Cerco and Cole 1995). All

of these water quality variables are tracked in the
model.

Light

The growth of algae is a strong function of irradiance,
which is a function of average daylight, light extinction,
light intensity at the water surface, optimal light inten-
sity, and depth of the algae below the water surface.
Algae grow as the light intensity increases to some
saturation (optimum) intensity (Is), beyond which
growth rates decline due to photo inhibition. The func-
tion for non-optimal illumination is derived from
Steele’s equation (DiToro et al. 1971; DiToro and
O'Connor 1975):

g Ið Þ ¼ I zð Þ
I s

e1−
I zð Þ
Is ð7Þ

where I(z) is the instantaneous light intensity at depth z and Is
is the optimal light intensity. If the growth medium is
not well-mixed, then the rate of change of light inten-
sity I(z) changes with depth (or model layer) due to
non-uniform growth of algae. If, on the other hand, the
system is well-mixed, then the biomass concentration
will be homogeneous (constant light extinction). For
such a system (i.e., the single-layer model studied in
this work), the growth limitation is:

g Ið Þ ¼ e

Ked
e−α1−e−α0ð Þ ð8Þ

where d is the water-layer depth, Ke is the light extinction
coefficient, α0 is the light intensity ratio at the top of the water
surface:

α0 ¼ I0
I s

ð9Þ

and α1, the ratio at the bottom (of the layer), is:

α1 ¼ I0
I s
e−Ked ð10Þ

Note that recursive calculations are necessary for multilay-
er models.

The light extinction coefficient, Ke, in a single-layer
model and within a particular layer in a multilayer
hydrodynamics model is considered to be a constant
and formulated as

Ke ¼ kb þ kcB ð11Þ

where kb is the constant background light extinction coeffi-
cient due to water and other suspended particulates and kc is
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the constant light extinction due to suspended carbon (or
biomass) concentration in the layer. A standard value of
0.1 m−1 is used for kb (Cerco and Cole 1995).

The absorptivity curve that yields the light extinction coef-
ficient, kc, was generated forN. salina grown in the laboratory.
Because the majority of light is absorbed by the chlo-
rophyll and the light absorbed by chlorophyll contrib-
utes greatest to the growth, the light extinction coeffi-
cient was calculated for the wavelength of peak chloro-
phyll absorption. At 678 nm, the light extinction value
was calcu la ted to be 0 .3501 m2 g−1 C. The
concentration-dependent absorptivity is calculated from
measured values in terms of cell count (4.19×10−9 mL
cell−1 cm−1), the measured cell mass of 2.7 pg cell−1,
which is similar to reported values for Nannochloropsis
(Briassoulis et al. 2010), and the estimated fraction of
carbon in biomass as 0.45 g C g−1 B.

The optimal light intensity was fit to the lab-scale growth
rate data to determine Is=20Wm−2. Although the growth rate
continued to increase slightly at higher light levels, the health
of the algae appeared to deteriorate in the higher light condi-
tions as the algae pigment changed from green to yellow.

Temperature

Algal growth rate increases with temperature up to an optimal
and decreases at temperatures beyond the optimal (Cossins
and Bowler 1987). Temperature effects are defined by an
exponential function of water temperature, the optimal tem-
perature for growth, and the temperature effect coefficients
below and above the optimal temperatures:

h Tð Þ ¼
exp −KT

1 T−T1ð Þ2
h i

for T ≤T1

1 for T1 < T ≤T 2

exp −KT
2 T2−Tð Þ2

h i
for T > T2

8>><
>>:

ð12Þ

where T is the local temperature from the hydrodynamic
model, T1 is the lower optimal growth temperature, T2
is the upper optimal growth temperature, K1

T is the
temperature effect below the optimal growth tempera-
ture, and K2

T is the temperature effect above the optimal
growth temperature.

The fitted lower and upper optimal growth tempera-
tures are 21.5 and 23.5 °C, respectively. These values
are lower than the 26–28 °C values reported by others
for this strain, but are consistent with other measure-
ments made on our lab’s version of the strain (James
et al. 2013; Huesemann et al. 2013; Boussiba et al.
1987). The fitted temperature effects below and above
optimal are 0.015 and 0.01 °C−2, respectively. The resulting
R2 for the temperature parameter fitting was 0.8.

Salinity

Marine algae growth rates have an optimum salinity above
and below which the growth rate decreases (Brock 1975;
Auken and McNulty 1973; García et al. 2007; Fabregas
et al. 1984; Batterton and Baalen 1971). The salinity of the
media is limited to a range between zero for a completely non-
saline solution to its maximum solubility in water. The effect
of salinity on algae growth has yet to be formulated into a
general equation that can be applied to a variety of
halotolerant/halophilic algae species. Given the similarity in
curve shape to temperature, we propose an exponential func-
tion for salinity:

i Sð Þ ¼
exp −ks1 S−Sopt

� �2h i
forS≤Sopt

exp −ks2 S−Sopt
� �2h i

forS > Sopt

8<
: ð13Þ

where S is the salinity, Sopt is the optimal salinity, ks1 is the
salinity effect below the optimal salinity, and ks2 is the salinity
effect above the optimal salinity.

The fitted optimal NaCl concentration is 20 ppt or 0.35 M
and the fitted salinity effect above optimal is 9×10−4 ppt−2,
salinities below the optimal value were not studied so the sub-
optimal-effect parameter is assumed equal to the super-
optimal. The resulting R2 for the salinity parameter fitting
was 0.9. The optimal salinity measured is less than that
previously measured for a similar strain, but given the long
period that our strain was grown in f/2 and the other differ-
ences between strains, this is not unexpected (Boussiba et al.
1987).

To determine the parameters for the growth model de-
scribed above, lab-scale experiments were conducted and the
parameters were fit to the data. In the following section, we
describe how we verified the parameter fitting by simulating
the lab-scale experiments and ensuring that we predict the
growth appropriately. Subsequently, we validated the model
scale-up by comparing it to both the modeled and the exper-
imental results of larger scale systems.

Results and discussion

Lab scale

The developed empirical fits were supplied to the model and
compared with the lab-scale measurements and ensure that the
model is appropriately parameterized. The model was set up
in the simplified well-mixed domain with dimensions of 15×
2.2×2.2 cm3 for the representative rectangular culture volume
of the test tubes used in the experiments (equivalent volume
and depth). The modeled test tube is exposed to light from one
side at the specified intensities. The initial nutrient
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concentrations for the f/2 medium were 2.3 mM NO3

(32.2 g m−3) and 0.067 mM PO4 (2.075 g m−3). The initial
CO2 concentration was 0.9 g m

−3 (Burkhardt et al. 1999). The
absorption of CO2 into the media from the bubbling of air is
assumed to be sufficient to sustain this amount of CO2

(2.31 μg s−1). The initial algae concentrations were set to the
initial measured concentrations.

The resulting parameters for the ideal growth conductions
for N. salina are a NaCl concentration of Sopt=0.35MNaCl, a
light intensity of Is=20Wm−2, and temperatures between T1=
21.5 and T2=23.5 °C. The theoretical maximum growth rate at
ideal conditions, PM, from Eq. (2) was used to fit the model to
the measurements and was determined to be 2.5 day−1. Using
this value, the model generally replicates the data well. The
resulting R2 value is 0.79. Figure 2 shows the algae concen-
trations from measurements and simulations over time at
temperatures of 18, 22, 26, and 30 °C, respectively, for various
light intensities and NaCl concentrations.

The maximum measured daily average growth rate in the
lab-scale study was 0.55 day−1, which when divided by 2/3 for

the fraction of the day with light gives P−BM ¼ 0:825 day−1

the maximum average daily growth rate observed, which
includes reductions due to non-ideal conditions and basal
metabolism. The expected trends were observed; growth rates
decreased at temperatures and salinities above and below the
optimal values. Growth rates also diminished at light intensi-
ties below the optimal intensity and leveled out at higher
intensities. Although pigment change was observed at the
highest light intensity (green to yellow), no decrease in growth
rate was observed. The maximum instantaneous growth rate
found in the simulation was P−δBM=1.3 day−1, which in-
cludes reductions due to non-ideal conditions and uncertainty
in basal metabolism, δBM.

Greenhouse tanks

To validate the model and show its potential to predict larger
scale systems, it must be compared with a larger scale

measurement that is completely independent of the growth
rate function parameterization. As a first step in validation of
the model and its scalability, the parameter values obtained
from the laboratory measurements are applied to the green-
house setup. Two tanks are simulated as fully mixed 1.67×
1.5 m2 rectangular tanks with a 0.211-m depth consisting of
approximately 0.53 m3 of medium. The light and water tem-
perature measured in the tank cultures over the course of the 7-
day experiment are shown in Fig. 3. The CO2 absorbed into
the medium from the bubbling is calculated using the same
method as James et al. (2013).

The results from the measurements and the model are
plotted in Fig. 4. The model reasonably predicts the algae
concentration for each tank operating with different CO2

sources. The resulting R2 values were 0.91 for the tank bub-
bled at 85 L h−1 CO2 and 0.83 for the tank bubbled with air
only.

The three most significant parameters limiting algal growth
are light, temperature, and CO2 concentration. The limitation
factors for each of these are plotted in Fig. 5. For this case, the
ideal light and temperature are well aligned due to diurnal
fluctuations. However, the CO2 concentration becomes limit-
ing during high-growth periods under ideal light and temper-
ature conditions, both of which limited growth even during
high-CO2 concentration bubbling. The maximum simulated
instantaneous growth rate for the conditions of the experiment
was P−δBM=1.2 day−1.

Open-channel raceway

Given that the model with the simplified domain reasonably
simulated the greenhouse tanks, it was extended to an open-
channel raceway system. The optimal parameter values from
the laboratory experiment (Is, Sopt, T1, and T2) were again
applied to the experimental open-channel raceway. The race-
way was simulated as well-mixed with simplified domain
24.3×2.44 m2 rectangular pond with a 0.20-m depth and
11.9 m3 of medium. Sufficient CO2 is assumed because the
growth in the pond is greatly limited by the temperature, pH

Fig. 2 Plot of the predicted
(curves) and measured (symbols)
algae concentration over time
comparison at 18, 22, 26, and
30 °C for various representative
light intensity and salinity
conditions at the lab scale
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remained relatively constant, and CO2 is introduced to the
culture through an air stone sparger and paddle wheel mixing.

The model greatly under predicts the algae growth for this
case. The resulting R2 value for this case is only 0.63, which
suggests that at least one of the model assumptions was not
valid. The question is: to what degree are differences in algae
strains, scale up, and the fully mixed assumption the source of
disagreement? The two largest contributors to limiting algal
growth for this case are light and water temperature with
measured data shown in Fig. 6. The limitation factors for each
of these are plotted in Fig. 7. For this case, the ideal light and
temperature are not well aligned. When the light is sufficient,
the temperature of the pond is above its optimal value. When
the light is limiting, the temperature reduces to more optimal
values. This causes most of the growth to occur in the morning
and evening periods, while at mid-day and at night the growth
is limited and zero, respectively.

Recent research has shown that the mixing in these large
raceway ponds is much less than in the laboratory test tubes or
the jet mixed greenhouse tanks (Mendoza et al. 2013; Singh
et al. 2012; Bernard et al. 2013). Mendoza et al. (2013) found
mixing times ranging between 1.4 and 6 h (nearly half of the
daylight). Singh et al. (2012) found that the vertical mixing
rates were only 0.5 % of the longitudinal mixing times.

Bernard et al. (2013) showed that except for at the paddle
wheel, very little vertical mixing occurs. The algae concentra-
tions were much higher in the raceway than in either the lab or
the greenhouse ponds. The resulting self-shading becomes
more important, while the reduced mixing causes a non-
uniform algae concentration. This nonlinear effect can-
not be appropriately accounted for by a simple well-
mixed model. The light intensity and environmental
effects, however, were much higher for the raceway
measurement than either the lab or greenhouse, which
may result in large temperature variations with depth.
Given the high concentration of algae and high variabil-
ity of light and temperature with depth, the algae con-
centration will also vary with depth and the fully mixed
assumption is not appropriate for this system.

To relax the fully mixed assumption, the temperature var-
iation with depth is calculated. This requires heat transfer
calculations within the pond and between the pond and its
surroundings including the effects produced by convection
with the air, evaporation, conduction through the bottom of
the raceway, and radiation to the atmosphere and from the sun.

The temperature is calculated by performing an energy
balance at the surface of the pond. Given the small penetration
depth of infrared light in water compared to the depth of the

Fig. 6 Plot of the measured temperature (dashed) and light intensity
(solid) experienced by the open-channel raceway over the course of the
measurement

Fig. 5 Plot of the limitation factors over time for the greenhouse ponds
for light (dotted), temperature (dash-dot), and CO2 at 5 % (solid) and
ambient (dashed) bubbling concentrations

Fig. 4 Plot of the measured (symbols) and modeled (curves) algae
concentrations over time for the greenhouse tanks at 5 % (solid/triangle)
and ambient (dash-dot/square) CO2 bubbling concentrations

Fig. 3 Plot of the measured temperature for the 5 % CO2 (solid) and
ambient CO2 (dashed) and light intensity (dash-dot) experienced by the
greenhouse tanks over the course of the measurement
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pond (majority of IR radiation is absorbed in the first 1-2 cm
(Hale and Querry 1973; Kou et al. 1993)), the heat flux from
radiation can simply be applied to the surface. Two
types of radiation must be accounted for, the shortwave
radiation, which is essentially the measured solar radia-
tion obtained from a weather station, and the longwave
radiation, which is typically not detected by the sensors
and must be calculated. The heat flux due to longwave
radiation, q″lw, is given by:

q00lw ¼ εsσ T4
sky−T

4
s

� �
ð14Þ

where σ is the Stefan Boltzmann constant, εs is the emissivity
of water, Ts is the temperature of the water surface, and Tsky is
the temperature of the sky, which can be estimated from
experimental data or empirical relationships (Martin and
Berdahl 1984).

Heat flux due to convection, q″conv, between the pond
surface and the surrounding air is given by:

q00conv ¼ h T∞−T sð Þ ð15Þ

where h is the average convective heat transfer coefficient,
and T∞ is the temperature of the surrounding air. The average

convective heat transfer coefficient depends on the system
geometry and the turbulent nature of the air flow (Incropera
2007). For laminar flow, it is given by:

h ¼ ka
L

0:644Re1=2L Pr1=3
� �

ð16Þ

where ka is the thermal conductivity of the air, L is the
length of the pond surface, Re is the Reynolds number,
and Pr is the Prandtl number. For turbulent flow, it is
given by:

h ¼ ka
L

0:037Re4=5L −871
� �

Pr1=3 ð17Þ

Heat flux due to evaporation, q″evap, depends on the latent
heat of vaporization, hfg, and the amount of water being
evaporated and is given by:

q00evap ¼ hfghm csat−c∞ð Þ ð18Þ

where hm is the mass transfer coefficient, csat is the saturation
value for the water vapor concentration, and c∞ is the
value of the water vapor concentration in the surround-
ing air. The mass transfer coefficient is related to the

Fig. 9 Plot of the modeled temperatures versus depth at representative
times during the day: mid-day (solid), mid-night (dashed), evening/dusk
(dash-dot), and morning/dawn (dotted)

Fig. 10 Plot of the measured (circle) and predicted (solid curve) algae
concentrations over time for the open-channel raceway accounting for
variation of light and temperature with depth

Fig. 7 Plot of the limitation factors for light (dash-dot), temperature
(dashed), and their combined limitation (solid) over time for the open-
channel raceway

Fig. 8 Plot of the measured (dashed) and modeled (solid) temperatures
10 cm below the water surface
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convective heat transfer coefficient by the heat and mass
transfer analogy:

h

hm
¼ ρCpLe

1−n ð19Þ

where ρ is the air density, Cp is the air specific heat, Le is the
Lewis number, and n is a constant approximated as 1/3
(Incropera 2007).

Finally, the conductive heat flux, q″cond, occurs between
the ground and pond and is given by:

q00cond ¼ kg
Lg

Tbot−Tg

� � ð20Þ

where Tbot is the temperature of the bottom of the pond, Tg is
the temperature of ground, Lg is the distance into the ground
the measurement is made, and kg is the thermal conductivity of
the ground, which can be determined based on experimental
data and will depend on soil type and moisture content. These
heat fluxes are then applied to the model as boundary condi-
tions on the appropriate surfaces to determine the spatiotem-
poral variation of temperature within the pond.

Weather data for Mesa, Arizona, was acquired from the
Arizona Meteorological Network and included air and ground
temperatures, solar radiation, relative humidity, and wind speed.
Figure 8 is a comparison between the predicted and measured
temperature during cultivation 10 cm from the water surface.
The model reasonably matches the measured temperature
values. On day 7, flocculation was observed on the surface of
the pond, which affected the pond temperature and caused a
deviation between the measured and predicted temperatures.

The temperature calculation allows us to estimate the tem-
perature as a function of depth with the assumption of non-
ideal pond mixing. Figure 9 shows the predicted temperature
variation with depth at different representative times of the
day. At mid-day, for instance, the solar radiation and air
temperature are relatively high in an outdoor pond and the
radiation and convection occur at the surface; consequently,
the surface temperature of the water rises much faster than the
deeper water of the raceway. Likewise, in the evening, heat
escapes from the surface causing the temperature of the water
near the surface to decrease more rapidly. The temperature
variation on the surface closely resembles that measured by
(Reichardt et al. 2013) at a similar raceway with a
spectroradiometer that also gives an in situ measurement of
biomass and pigment optical activity. Consequently, because
the light intensity is attenuated with depth, the interplay be-
tween the light and temperature over the course of the day is
important for estimating algae growth.

Accounting for variations in light and temperature with
depth yields a much better agreement between the model
and the measurements. Figure 10 compares modeled and
measured values. The resulting R2 value is 0.97.

Conclusions

Multifactorial measurements of N. salina were conducted to
populate the empiricisms for an algae growth kinetics model.
The effect of salinity on growth was added to the base CE-
QUAL model to simulate marine algal species. The
laboratory-parameterized model for N. salina was scaled up
to simulate two larger, outdoor experimental studies. The
model accurately predicted the growth trends in greenhouse
tanks using a simplified well-mixed domain and an open-
channel raceway using a more complex domain accounting
for spatial variations in temperature and light intensity. The
model (using parameters derived from the lab-scale experi-
ment) was used to determine which environmental factors are
most limiting to growth (light and temperature). This model
could also be used to study the scale-up effect through com-
parisons of the lab-scale kinetics and a larger scale system
including the effects of predation, depth-decay of light (light
extinction), and optimized nutrient and CO2 delivery. The
model could be expanded to study growth in production-
scale photobioreactors and open-channel raceways, thus elim-
inating the need for expensive large-scale experiments. As
more multifactorial data are accumulated for a variety of algal
strains, the model could be used to select appropriate algal
species for various geographic and climatic locations.
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