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Abstract In southern Brazil, mixotrophic dinoflagellates be-
longing to the Dinophysis acuminata complex have recently
been involved in diarrheic shellfish poisoning episodes
through the production of lipophilic toxins such as okadaic
acid (OA) and dinophysistoxin-1 (DTX-1). The present inves-
tigation used a combination of laboratory cultures and field
surveys at three large estuarine systems in that region to
examine toxin retention in Dinophysis spp. cells under opti-
mum or growth-limiting conditions. This study represents the
first successful culture of a Dinophysis isolate from the
Atlantic South America region. Starved D. acuminata com-
plex cells reached 5.6-fold higher cellular OA quotas (up to
18 pg cell−1) than Mesodinium rubrum-fed cultures 20 days
after inoculation in the laboratory. Moreover, in field samples,
light-limited cells at the bottom of a stratified water column
were less abundant, yet 6.6- to 11-fold more toxic (up to
26.4 pg OA and 1.7 pg DTX-1 cell−1) than those located at
the illuminated surface. This phenomenon of toxin retention
by slow-dividing cells may partially explain the enormous
variation in cell toxin quota found within Dinophysis spp.
populations from a single location, and it may have serious
implications for cell count-based monitoring program in bi-
valve aquaculture areas. In fact, only low to moderate OA
levels were detected in the digestive glands of oysters
Crassostrea spp. (up to 17.8 ng g−1) and the guts and livers
of filter-feeding fish (44.7 ng g−1) during the present study,
despite the relatively high Dinophysis cell densities (up to
19,500 cells L−1) found in the field.
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Introduction

More than 100 species have been assigned to the dinoflagel-
late genus Dinophysis (Gómez 2005), but only 12 are known
to produce the diarrheic toxins okadaic acid (OA) and
dinophysistoxins (DTXs), as well as other lipophilic toxins,
such as pectenotoxins (PTXs) (revised in Reguera et al.
2012b). To date, seven of these 12 species have been found
to be associated with diarrheic shellfish poisoning (DSP)
outbreaks: Dinophysis acuminata, Dinophysis acuta,
Dinophysis caudata, Dinophysis fortii, Dinophysis miles,
Dinophysis ovum, and Dinophysis sacculus . Additionally,
DTX-1 has been found in a single sample of Dinophysis
ro tundata , Dinophys i s t r ipos , and Dinophys is
(=Phalacroma )mitra cells collected with a micropipette from
field samples (Lee 1989), but no DSP cases have been
assigned to these species in other occasions when they were
the only potentially toxic species present in the water
(Caroppo et al. 1999; Pazos et al. 2010). Furthermore,
Dinophysis infundibulus produces toxins, but only in labora-
tory cultures (Johansen 2008; Suzuki et al. 2009), and
Dinophysis norvegica has been found to be related to toxic
events in eastern Canada (Subba Rao et al. 1993), although it
is not considered a threat in Japan and Scandinavia. Overall,
the D. acuminata complex—D. acuminata, D. ovum, D.
sacculus—is the most widespread group in coastal areas with
freshwater inputs (Zingone and Larsen 2011) and is responsi-
ble for most intoxication episodes.

Okadaic acid and its derivatives, the DTXs, are acidic
polyethers that may inhibit protein phosphatase, causing diar-
rhea and other gastrointestinal symptoms in humans
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(Yasumoto et al. 1985). The toxicity of PTXs to humans is
uncertain because these polyether-lactones are hepatotoxic to
mice by intra-peritoneal injection but not by oral administra-
tion (Miles et al. 2004). Since the original 1976–1977 DSP
episodes in northeast Japan (Yasumoto et al. 1978, 1980),
hundreds of people worldwide have been poisoned following
consumption of contaminated bivalve mollusks. The se-
verity of each outbreak depends upon the Dinophysis
cell abundance that the bivalves are exposed to, as well
as the toxin level (i.e., quota) contained in those cells. Cell
densities as low as 100–200 cells L−1 may be enough to
cause DSP outbreaks (Yasumoto et al. 1985) if the cell
toxin quota is high.

Production and retention (i.e., accumulation) of toxins by
Dinophysis cells are regulated by a combination of genetic
and environmental factors (Cembella and John 2006). As a
result, there are large inter- and intra-specific variations in the
toxin profiles (e.g., Fux et al. 2011) and toxin cell quotas
(Reguera and Pizarro 2008) of strains from different locations.
Toxin quotas and profiles may even vary over a single light–
dark cycle in field Dinophysis populations (Pizarro et al.
2008; Fux et al. 2010), with the maximum toxin quota found
during the mid-dark period for D. acuta (Fux et al. 2010). In
addition, one order of magnitude variations in the cellular
toxin quota have been reported for natural D. acuta popula-
tions over the course of their growing season, with maximum
values found during their stationary phase (Pizarro et al.
2009), when cell division ceases due to growth-limiting
conditions.

Following the first successful cultivation of D. acuminata
in the laboratory by Park et al. (2006), other researchers have
been able to investigate toxin production in various
Dinophysis species under more controlled conditions
(Kamiyama and Suzuki 2009; Hackett et al. 2009;
Kamiyama et al. 2010; Tong et al. 2011; Smith et al. 2012;
Nielsen et al. 2012 for D. acuminata ; Nagai et al. 2011 for
D. acuminata and D. fortii ; Rodríguez et al. 2012 for
D. tripos ; Nielsen et al. 2013 for D. acuta ). As observed in
field studies, the toxin content in laboratory cultures was
consistently higher in the stationary growth phase than in the
exponential phase, which may be due to an imbalance be-
tween toxin production and cell division in the different
growth phases (Tong et al. 2011).

Despite a recent DSP episode associated with a D. cf.
acuminata bloom in southern Brazil that poisoned more than
150 people (Proença et al. 2007) and despite the shellfish
harvest bans that have been issued every year following
that outbreak, there is no information on the variability
of the toxin cell quota in Dinophysis spp. from that
area. The present study combines results from field
surveys and laboratory cultures to address this issue,
including a comparative investigation of the toxin contents
in both field-sampled and laboratory-cultivated cells of the

D. acuminata complex under either optimum (i.e., availability
of both light and prey) or growth-limiting conditions.

Methods

Field sampling

Sampling campaigns were performed from January 2011 to
May 2012 in Paranaguá Bay (PB), Guaratuba Bay (GB), and
Babitonga Bay (BB), the largest estuarine systems in the states
of Paraná and Santa Catarina, southern Brazil (Fig. 1).

At each sampling location (Table 1), water transparency
was assessed with a Secchi disk, and water temperature and
salinity were measured in situ at the surface and 0.5 m above
the bottom. Water samples were collected from both depths
with a Van Dorn bottle for dissolved inorganic nitrogen (DIN)
analysis on a spectrophotometer (Shimadzu UV-1601PC;
Japan). In addition, two 80–350-mL aliquots of seawater
sampled from each depth were gently passed through glass
microfiber filters (24 mm diameter, 1.2 μm particle retention;
Whatman GF/C) for toxin analysis of retained cells, as de-
scribed below, and 25–50-mL aliquots of Lugol-fixed samples
were settled on Utermöhl chambers for cell counting under a
microscope (Zeiss AxioVert.A1; Germany). The entire cham-
ber was inspected for the presence of Dinophysis spp. cells at
a detection limit of 20–40 cells L−1.

Upon the detection of high D. acuminata complex cell
densities in PB on January 4, 2011, exemplars of oysters
(Crassostrea brasiliana , Crassostrea rizophorae ) and
suspensivorous fish (Cetengraulis edentulis , Mugil sp.) were
obtained within 6–24 h from local fishing markets. Samples
from selected digestive tissues were removed for both toxicity
assessment by mouse bioassay and diarrheic toxin analysis by
liquid chromatography with mass spectrometry detection
(LC–MS/MS).

Cultures

A culture of the cryptophyte Teleaulax amphioxeia (GenBank
number AB364287), originally isolated from Inokushi Bay,
Japan (34°47′N, 131°53′E), in February 2007 (Nishitani et al.
2008), was generously donated by Dr. S. Nagai (NRIFS,
Japan) and maintained in the laboratory in f/2 medium
(Guillard 1975) at 22±1 °C, 30 PSU, 120 μmol photons
m−2 s−1, under a 12:12 h light–dark cycle. A strain of the
ciliate Mesodinium (Myronecta) rubrum was isolated from
GB, Brazil (25°51′30.8″N, 48°34′30.0″W), in early
September 2011 and maintained under the culture conditions
described above, with the periodic addition (every 3–5 days)
of T. amphioxeia cells at a 10:1 (prey/predator) ratio. Finally,
strains of the D. acuminata complex and D. caudata were
isolated in late September 2011 from PB (25°28′26.0″N,
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48°30′32.5″W) and GB, Brazil (25°50′14.8″N, 48°34′48.5″
W), respectively. Cultures of these dinoflagellates were
established in the laboratory under the same conditions, with
the periodic addition of M. rubrum cells at a 3:1
(prey/predator) ratio.

Growth and toxin production by cells belonging to the
D. acuminata complex were evaluated in the presence or the
absence of its prey, M. rubrum (fed and starved cultures,
respectively). In each case, cells of theD. acuminata complex
were placed in triplicate wells containing 4.5 mL of culture

Fig. 1 The study area in southern
Brazil, showing the locations of
the sampling sites in Paranaguá
Bay (P1–P3), Guaratuba Bay
(G1–G3), and Babitonga Bay (B)

J Appl Phycol (2014) 26:1727–1739 1729



medium at an initial density of 50 cells mL−1. Fed cultures
received 100 M. rubrum cells mL−1 every 3 days for 9 days,
and then every 4 days for the following 11 days. A third group
(control), composed of only M. rubrum cells at an initial
density of 100 cells mL−1, was also set up in triplicate and
received periodic additions of M. rubrum cells as described
above. Food addition was obtained by adding around 100 μL
(66–131 μL) ofM. rubrum concentrated culture (2,500–4,000
cells mL−1) to each sampling unit. This caused a periodic
dilution effect on the Dinophysis culture, which was mini-
mum considering the volume of culture added. Even so, the
calculated dilution rate was taken into account when calculat-
ing the Dinophysis growth rate.

From each sampling unit, 0.5 mL samples were periodical-
ly collected for D. acuminata complex and/orM. rubrum cell
counting on a Sedgewick-Rafter chamber. At the end of the
20-day trial, the remaining volume (1.5–2.5 mL per well) was
collected, and the cells were gently retained in glass microfi-
ber filters (24 mm diameter, 1.2 μm particle retention;
Whatman GF/C) for toxin analysis. In addition, toxin produc-
tion was investigated in a single 10-mL aliquot of a
M. rubrum-fed experimental culture of D. caudata , sampled
25 days after inoculation.

Toxin analysis

The filters containingDinophysis spp. cells from both cultures
and field samples were disrupted using a sonic dismembrator
(Cole Parmer CPX130; USA) for 1 min at 50 % duty cycle,

after the addition of 100 % methanol (1.2 mL per filter). The
extract was then re-filtered using syringe filters (13 mm di-
ameter, 0.2 μm particle retention; Waters Acrodisc) prior to
the LC analysis.

Samples of selected tissues from oysters or fish were ho-
mogenized using a Turrax homogenizer (Marconi MA-102;
Brazil) and were then separated into two aliquots. The first
one (15 g) was extracted in acetone–ether, evaporated at
40 °C, and re-suspended in 1%Tween solution for assessment
of toxicity via a mouse bioassay (Yasumoto et al. 1978). The
second aliquot (2 g) was suspended in 20 mL of 100 %
methanol (JT Baker; USA) and filtered using syringe filters
prior to injection into the LC system.

The liquid chromatography-tandem mass spectrometry
(LC-MS/MS) toxin analysis was carried out using an
Agilent 1200 series (USA) LC system coupled to a 3200AB
Q-TRAP triple quadrupole mass spectrometer (Applied
Biosystems; USA) equipped with a TurboSpray interface.
Chromatographic separations were performed on a C-18 col-
umn (50 mm×4.6 mm I.D., 1.8 μm; Phenomenex; USA)
using 10 % acetonitrile (A) and 90 % acetonitrile (B) as the
mobile phase in a binary system with a linear gradient elution
of 10–100 % B in 10-min runs at 35 °C and a 0.75 mL min−1

flow rate. Diarrheic toxins were detected using selected reac-
tion monitoring (SRM) with the ion source in negative mode.
The following SRM transitions were monitored:m/z 817.5→
255.1 and 817.5→113.0 for DTX-1; m/z 803.5→255.1, and
m/z 803.5→113.0 for OA and DTX-2. Okadaic acid concen-
trations were calculated from a calibration curve made of

Table 1 Geographic location and physicochemical characteristics of the water collected from different sampling sites and depths at Paranaguá Bay (P1–
P3), Guaratuba Bay (G1–G3), and Babitonga Bay (B), southern Brazil

Site Location Date Time Depth (m) Temp. (°C) Sal. Dissolved inorganic nitrogen (μM)

Ammonium Nitrate Nitrite

P1 25°30′27.9″N; 48°24′30.9″W Jan 5, 2011 12:05 0.5 30 24 3.557 4.467 0.780

12:10 14.0 29 28 8.963 2.915 0.434

P2 25°28′26.0″N; 48°30′32.5″W Jan 5, 2011 09:45 0.5 30 23 7.355 4.096 0.805

09:50 8.0 30 24 8.621 5.325 0.762

P3 25°30′06.5″N; 48°32′02.0″W Jan 5, 2011 11:25 0.5 30 23 11.068 5.740 0.970

11:30 9.0 29 26 9.573 5.277 1.105

G1 25°52′18.1″N; 48°35′22.4″W Aug 24, 2011 10:05 0.5 16 14 11.215 1.844 0.394

10:10 5.5 17 23 9.775 1.619 0.391

G2 25°50′14.8″N; 48°34′48.5″W Aug 24, 2011 11:50 0.5 16 19 9.128 1.816 0.308

11:55 2.0 17 27 10.540 2.085 0.404

G3 25°51′30.8″N; 48°34′30.0″W Sep 15, 2011 13:05 0.5 19 25 9.566 2.581 0.195

13:10 10.0 19 28 10.493 2.345 0.141

B 26°16′52.0″N; 48°40′38.3″W May 21, 2012 14:30 0.5 22 24 n.d. n.d. n.d.

14:35 2.0 22 25 n.d. n.d. n.d.

Samples were taken from the sub-surface or 0.5 m above the bottom

nd not determined
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serial dilutions (50–0.78 ng mL−1) of the reference standard
(National Research Council; Halifax, Canada) in deionized
water. The concentration of DTX-1 was estimated from the
OA calibration curve, after corrections to account for the
difference in molecular weights.

Results

Field samples

Samples of Dinophysis spp. for counting and diarrheic toxin
determination were obtained at a broad water temperature
range, varying from 16 °C in August (winter) to 30 °C in
January (summer). Salinity ranged from 14 to 28 psu, and the
values were consistently higher near the bottom than at the

surface at the same locations, indicative of water stratification,
especially in GB (Table 1). Conversely, there was no clear
relationship between the sampling depth and the concentration
of DIN, which ranged from 3.6 to 11.2 μM for ammonium,
1.6 to 5.7 μM for nitrate, and 0.1 to 1.1 μM for nitrite. The
ammonium concentrations were generally higher in PB,
whereas the nitrate and nitrite levels were higher in GB
(Table 1). The euphotic zone depth, as assessed by a Secchi
disk, was generally shallow, limited to the upper 3 m in BB,
3.6–4.8 m in GB, and 4.5–6.0 m in PB, while the total depths
varied from 8 to 14 m.

In PB, D. acuminata complex was the only group of
Dinophysis species observed, with cell densities ranging from
0.4–0.7×103 cells L−1 near the bottom to 2.5–19.5×103 cells
L−1 at the surface. In contrast to the cell density, the cellular
toxin contents were 6.6- to 11-fold higher near the bottom
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Fig. 2 D. acuminata complex
cell density, intracellular okadaic
acid (OA) quota, and total
particulate OA concentration in
the water at different sampling
sites and depths at Paranaguá Bay,
southern Brazil (January 5, 2011).
Error bars represent the standard
deviation obtained from different
sample aliquots (n=2) filtered
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cellular toxin determination

Table 2 Dinophysis spp. cell density and cellular toxin content (picograms per cell) for different sampling sites and depths at Paranaguá Bay (P1–P3),
Guaratuba Bay (G1–G3), and Babitonga Bay (B), southern Brazil

Site Depth Cell density (cells L−1) Toxin content (pg cell−1)

D. acuminata complex D. caudata D. tripos OA DTX-1

P1 sf 2,488 2.4 n.d.

bt 450 26.4 n.d.

P2 sf 19,467 3.5 n.d.

bt 667 22.7 n.d.

P3 sf 5,150 2.6 n.d.

bt 433 19.0 n.d.

G1 sf a 2,500 100 150 4.5–6.7b <d.l.–1.7b

G2 sf a 4,100 200 300 5.4 1.2

G3 sf a 5,000 2,500 5.8 <d.l.

B sf a 2,500 4.5–6.8b 0.6–0.7b

OA okadaic acid; DTX-1 dinophysistoxin-1; sf surface; bt bottom; dl detection limit; nd not determined
aNo sample available at the bottom
bRange obtained from different sample aliquots (n=2) filtered for cellular toxin determination

J Appl Phycol (2014) 26:1727–1739 1731



(19.0–26.4 pg OA cell−1) than at the surface (2.4–3.5 pg OA
cell−1) at the same locations (Fig. 2, Table 2). As a result, even
though only a few hundred cells were present near the bottom
at those sampling sites, the total particulate OA concentrations
were, in some cases, similar or higher than those at the
surface, where thousands of D. acuminata complex cells
were present (Fig. 2). No other toxic phytoplankton
species were found. Diatoms, primarily Skeletonema
costatum , Nitzschia spp., Odontel la spp., and
Pleurosigma spp., were dominant in all samples, with
other dinoflagellates such as Scripsiella trochoidea,
Prorocentrum minimum, and Ceratium furca being relatively
more abundant at the surface. M. rubrum , the ciliate that
Dinophysis spp. prey upon, was present at all sampling

locations and was also more abundant at the surface (up to
6.6×103 cells L−1).

In GB, the abundance of D. acuminata complex cells
at the surface was lower (2.5–5.0×103 cells L−1) than
those measured in PB, although D. caudata (0.1–2.5×
103 cells L−1) and/or D. tripos (0.2–0.3×103 cells L−1)
also co-occurred in all samples. For this location, the
toxin content was calculated for all Dinophysis cells
combined, and it ranged from 4.5 to 6.7 pg OA cell−1

(Table 2). In BB, both the abundance (2.5×103 cells L−1)
and the toxin content (4.5–6.8 pg OA cell−1) of cells belong-
ing to the D. acuminata complex were very similar to the
findings for GB, although no other toxic Dinophysis species
were found at BB.
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Fig. 3 LC-MS chromatograms at
m/z 803.5–255.1 of a
D. acuminata complex culture
containing 2.85 ng okadaic acid
(OA) mL−1; b an OA calibration
solution at 12.5 ng mL−1; and c a
field sample containing 133.3 ng
OA mL−1. The insert shows the
LC–MS chromatogram d at m/z
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(DTX–1). Conditions, 2.5 μm
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I.D.) at 35 °C; 0.75 mL min−1 of
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formic acid (gradient elution as
described in “Materials and
methods”)

Table 3 Filter-feeders sampled from Paranaguá Bay during a period of relatively high abundance of D. acuminata complex cells in the water column:
toxin burden (nanograms OA per gram) and acute toxic effect as assessed by mouse bioassay (MB)

Filter-feeder Tissue Date Toxin level (ng g-1) Toxicity

OA DTX-1 (MB)

C. edentulus (fish)a Guts+liver Jan. 5, 2011 44.7 <d.l. Negative

Mugil sp. (fish)b Guts+liver Jan. 5, 2011 n.d. n.d. Negative

Crassostrea spp. (oyster)c Digestive gland Jan. 5, 2011 17.8 <d.l. Negative

Crassostrea spp. (oyster)d Digestive gland Jan. 6, 2011 <d.l. – 14.7 <d.l. Negative

dl detection limit, nd not determined
a n=1 pool of 3 individuals
b n=1 individual
c n=1 pool of 12 individuals
d n=3 pools of 9–14 individuals
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In addition to OA, DTX-1 was also detected in
plankton samples from GB and BB, at levels ranging
from non-detectable to 1.7 pg cell−1 (Fig. 3, Table 2).
Unfortunately, the presence of DTX-1 could not be examined
in plankton samples fromPB due to analytical constraints (i.e.,
data loss).

In addition, OA, but not DTX-1, was simultaneously found
at moderate levels in the digestive glands of oysters (up to
17.8 ng g−1), as well as in the guts and livers of filter-feeding
fish (44.7 ng g−1) sampled from PB (Table 3). Extracts from
such samples, however, exhibited no acute toxic effect as
assessed by mouse bioassay.

a b cFig. 4 Cell density of
D. acuminata complex in a
starved or b M. rubrum-fed
cultures. The cell density of
M. rubrum is also shown for
cultures in the b presence or c
absence of D. acuminata
complex cells. Error bars=
standard deviation for different
cultures (n=3)

a b

c d e f

g h

Fig. 5 Photomicrographs of
cultivated cells: a–e
D. acuminata complex, f
M. rubrum, g , h D. caudata. b
End of the growth trial, showing
the high cell density attained. c , g
Cell division by binary fission. d
Tetrads formed by incomplete
sequential vegetative divisions. e ,
h Cells actively feeding after the
capture of M. rubrum (arrows),
which is shown in its natural form
in (f). Scale bar =50 μm
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Cultures

In the culture experiments, the initial D. acuminata complex
cell density (50±18 cells mL−1) in the presence of its prey,
M. rubrum, was similar (p >0.05) to that of the starved cul-
tures (43±14 cells mL−1). Similarly, the initialM. rubrum cell
densities were comparable in both the presence (88±10 cells
mL−1) and absence of D. acuminata complex cells (85±6
cells mL−1) (Fig. 4).

Over the course of the growth experiment, the
D. acuminata complex cell density increased only in the
presence of its prey, reaching a maximum of 357 cells mL−1

14 days after inoculation.D. acuminata complex cells divided
exponentially (μ=0.19 day−1) during the first 10 days of
culture, while the M. rubrum cell density remained low de-
spite periodic additions of 100M. rubrum cells mL−1

(Fig. 4b). In contrast, in the absence of its consumer, M.
rubrum attained a density of 329±80 cells mL−1 after 10 days
and a maximum density of 436±99 cells mL−1 14 days fol-
lowing culture inoculation (Fig. 4c).

Dividing D. acuminata complex cells (Fig. 5) were fre-
quently observed in theM. rubrum- fed cultures (up to 12% of
the cells after 10 days) but were rarely observed in starved
cultures. Additionally, actively feeding D. acuminata com-
plex cells were also found in the fed cultures, and the forma-
tion of tetrads (i.e., four parallel, dividing cells in the shape of
a Japanese fan) was sporadically observed in our maintenance
cultures of dinoflagellates assigned to the D. acuminata com-
plex (Fig. 5).

By the end of the growth trial (after 20 days), the OA
content of starved D. acuminata cells (18.0 pg cell−1) was
5.6-fold higher than that of M. rubrum-fed cultures (3.2 pg
cell−1). DTXs were not detected in the cultures, and the
presence of PTX-2 was not examined. Additionally, a culture
of D. caudata was preliminary established (maximum cell
density=375 cells mL−1) using M. rubrum as prey, but no
detectable levels of OA or DTXs were found. The presence of
PTXs was not examined for D. caudata as well.

Discussion

The present study is the first to document successful cultures
of Dinophysis spp.—D. caudata and D. acuminata com-
plex—from eastern South America. Previously, Fux et al.
(2011) had grown a strain of the D. acuminata complex
isolated from Chile, western South America, using an
Antarctic M. rubrum strain as the prey at 6 °C. In contrast,
we used a local M. rubrum isolate as the prey and tempera-
tures representative of field conditions (22±1 °C). Current
morphological and DNA sequencing data are not sufficient
to resolve the taxonomy of the “D. acuminata complex” for

both Chilean (Fux et al. 2011) and Brazilian (C Odebrecht,
pers. comm.) strains.

Our D. caudata strain (DCT-BR1) attained a maximum
density of 375 cells mL−1 after 25 days of incubation, whereas
our D. acuminata complex strain (DAC-BR1) yielded a max-
imum of 357±27 cells mL−1 after 14 days of incubation.
Maximum cell densities were generally lower than those
previously reported for D. acuminata , which ranged from
167 to 11,000 cells mL−1 (Park et al. 2006; Kim et al. 2008;
Kamiyama and Suzuki 2009; Riisgaard and Hansen 2009;
Kamiyama et al. 2010; Nagai et al. 2011; Nielsen et al.
2012), and for D. caudata (5,200 cells mL−1; Nishitani et al.
2008), most likely because of the lower amounts of
M. rubrum offered as prey during our experiments
(periodic additions of 0.5–2.0M. rubrum cells Dinophysis
cell−1) compared with those used at the beginning of the
culture incubations in other studies (e.g., up to ~60–70
M. rubrum cells Dinophysis cell−1) (Riisgaard and Hansen
2009; Nagai et al. 2011).

The exponential growth rates attained by our Brazilian
D. acuminata complex strain, ranging from 0.25 day−1 (0–
6 days) to 0.72 day−1 (0–3 day), are comparable to those
reported for strains from Denmark (up to 0.45 day−1) and
Japan (0.70–0.82 day−1) grown with a similar irradiance and
light–dark cycle (Riisgaard and Hansen 2009; Nagai et al.
2011) but lower than those obtained by Kim et al. (2008) and
Park et al. (2006) under continuous light (0.91–0.95 day−1). In
addition to continuous light, increased temperature
(Kamiyama et al. 2010) and increased prey availability (Kim
et al. 2008; Kamiyama and Suzuki 2009; Riisgaard and
Hansen 2009) also support higher D. acuminata growth rates
in culture. Therefore, D. acuminata may be classified as an
obligate mixotroph, requiring both prey and light for growth
and long-term survival (Kim et al. 2008).

During the maintenance of our D. acuminata complex
culture, we observed the formation of triads and tetrads (i.e.,
stacks of three or four dividing cells, respectively), which
appeared more frequently in the late stationary/decline growth
phase (Fig. 5d). Such malformations, which had never been
reported for cells belonging to this taxonomic complex but
were previously observed in cultures ofD. caudata (Nishitani
et al. 2008), D. fortii (Nagai et al. 2008), and D. infundibulus
(Nishitani et al. 2008), resemble a common feature observed
in aged cultures of the diatom Pseudo-nitzschia multiseries
(L.L. Mafra Jr. and S.S. Bates, pers. comm.) and may be
interpreted as abnormally incomplete successive cell divi-
sions. To our knowledge, there is no report of these “stacked”
cells in natural populations of Dinophysis spp.

In the present study, D. caudata cells did not contain
detectable amounts of diarrheic toxins after 25 days of incu-
bation. There is no report of toxin production by cultivated
D. caudata to date, but the toxin content in cells from field
samples ranged from non-detectable to 56.5 pg OA cell−1 and
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54 pg DTX-1 cell−1 (Fernandez et al. 2001; Marasigan et al.
2001). Additionally, D. caudata is considered the main caus-
ative agent of DSP outbreaks in Singapore (Holmes et al.
1999). The lack of toxin retention in D. caudata cells in the
present study may be related to the advanced age of our
culture, which had already entered the decline growth phase
by the time the sample was collected for toxin analysis. As
much as 80–90 % of the toxin produced byD. acuminata and
D. acuta cultures, for instance, may be excreted to the sur-
rounding medium in late stationary phase (Nagai et al. 2011;
Nielsen et al. 2013). Unfortunately, we were not able to
measure toxins in the dissolved fraction or over the entire
D. caudata growth cycle before we lost this culture. Thus,
the capacity of D. caudata from southern Brazil to produce
diarrheic toxins remains uncertain and will be the subject of
further investigations.

In contrast, the intracellular okadaic acid concentrations
reported herein for both natural populations (2.4–26.4 pg
cell−1) and a local isolate (3.2–18.0 pg cell−1) of the
D. acuminata complex are comparable to values reported
elsewhere, confirming D. acuminata complex as a major
threat to the fast-growing local shellfishery aquaculture indus-
try. Cells from southern Brazil attained OA contents similar to
or higher than those of isolates from northeast USA (0.01–
0.44 pg cell−1; Hackett et al. 2009; Tong et al. 2011; Smith
et al. 2012) and Japan (0.0-12.2 pg cell-1; Kamiyama and
Suzuki 2009; Nagai et al. 2011), as well as field populations
from the south coast of South Korea (0.4–0.9 pg cell−1; Kim
et al. 2010), northern France (1.6 pg cell−1; Lee 1989),
Sweden (0.1–16.6 pg cell−1; Johansson et al. 1996; Lindahl
et al. 2007), the west coast of South Africa (7.8 pg cell−1;
Pitcher et al. 2011), and Atlantic Canada (25.5 pg cel−1;
Cembella 1989). Other regions historically affected by
D. acuminata blooms have experienced even higher yet fairly
variable cellular OA levels, such as northwest Spain (1–37 pg
cell−1; Blanco et al. 1995), Denmark (0–40 pg cell−1;
Andersen et al. 1996), and southern France (0–158 pg cell−1;
Marcaillou et al. 2005).

The highest toxin contents measured from both cultures
and natural populations of the D. acuminata complex in this
study were associated with growth-limiting conditions. For
instance, D. acuminata complex cells sampled at depths be-
low the euphotic zone of all sampling sites in PB were 5.5- to
29-fold less abundant but 6.5- to 11-fold more toxic than those
collected at the surface. This result may suggest that
D. acuminata complex cells near the bottom of these stratified
water columns were experiencing much slower cell division
rates and therefore accumulating greater intracellular amounts
of toxin over time. Since the cellular toxin levels in the present
study were not significantly related to salinity (r2=0.26),
temperature (r2=0.13), or the DIN concentration (r2=0.01
−0.08), slower growth was most likely the combined result
of light limitation and lower food availability at the bottom

(max. 550M. rubrum cells L−1) compared with the illuminat-
ed surface (max. 6,630M. rubrum cells L−1). Cellular toxin
quotas in D. acuminata complex cells from PB were thus
inversely related toM. rubrum availability (r2=0.73), where-
as the cell densities of both organisms were directly related
(r2=0.95). Even though these paired data were only available
for a limited number of samples (n =6), the difference in
cellular toxin quotas between Dinophysis cells sampled at
the bottom and the surface was very pronounced and consis-
tent across different areas of PB.

A similar inverse relationship between cell density and
toxin content has already been described for co-occurring
D. acuminata andD. acuta populations in two Swedish fjords
(Lindahl et al. 2007). The authors found higher cell abun-
dances and lower toxin cell quotas at the pycnocline of the
most enclosed fjord relative to its DIN-depleted surface layer
and to the whole water column of the most turbulent fjord.
Lindahl et al. (2007) hypothesized that, given a supposed
allelopathic role of OA for non-DST-producing algal species
(Windust et al. 1996), the observed pattern could be related to
a putative chemical signal system that induces Dinophysis
density-dependent toxin production (i.e., fewer cells would
need to be more toxic to produce the same allelopathic effect
as more abundant populations). This mechanism remains to be
demonstrated.

Data from this and other recent culture studies may shed
light on this subject. Our starved D. acuminata complex
cultures had 5.6-fold higher cellular OA content than
M. rubrum -fed cells under the same conditions, and this
higher level appears to be at least partially related to the faster
cell division rates attained by the latter. Starved cells experi-
enced, on average, only 1.5 divisions over the entire incuba-
tion period, whereas M. rubrum-fed cells completed >3 suc-
cessive divisions over the same period, which suggests a
process of toxin dilution in the fast-growing cells. In fact,
such a simple explanatory mechanism is supported by the
finding that newly divided D. acuta cells, picked from field
samples, contained nearly half the toxin content of the cells
they originated from (Johansen 2008) and by the finding of an
increase in the toxin cell quota for both D. acuminata and
D. acuta cultures after starvation (Nielsen et al. 2012, 2013).
Therefore, the imbalance between toxin production and the
cell division rate, which changes over the growth cycle, may
be the main factor explaining the ~2- to 5-fold higher OA and
DTX-1 contents measured during the stationary growth phase,
relative to those detected during exponential growth (Table 4),
as calculated from batch cultures ofD. acuminata (Kamiyama
et al. 2010; Nagai et al. 2011; Tong et al. 2011; Nielsen et al.
2012), D. acuta (Nielsen et al. 2013), and D. fortii (Nagai
et al. 2011).

The uncoupling of cell density and toxin content described
herein will be ultimately reflected in the lack of a relationship
between the Dinophysis cell density and toxin accumulation
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by shellfish in aquaculture sites. Whereas the occurrence of
moderate- to high-density populations of Dinophysis spp. is
not necessarily linked to high toxin levels in co-occurring
bivalves (Dahl and Johannessen 2001), very low cell densities
(<500 cells L−1) may be sufficient to cause mollusk contam-
ination above the regulatory limit and may trigger DSP out-
breaks (Yasumoto et al. 1985), especially if moderate to high
amounts of OA and/or DTX (i.e., >1 pg OA eq. cell−1) are
accumulated in the cells of the causative Dinophysis species
(Reguera et al. 2012b). In contrast, DSP episodes are less
severe when PTX is the dominant or the sole toxin involved,
such as in western Japan (Suzuki and Mitsuya 2001), north-
east USA (Hackett et al. 2009), and Galicia, Spain (Pazos et al.
2010; Rodríguez et al. 2012).

Both the toxin content (2.4–26.4 pg OA cell−1) and the cell
density (430–19,500 cells L−1) measured for populations of
the D. acuminata complex in southern Brazil during the
present study represent serious health risks for shellfish con-
sumers. Nonetheless, the toxin levels measured concurrently
in oysters from Paranaguá Bay [0–17.8 ng g−1 of digestive
glands (DG)] were much lower than the regulatory limit for
human consumption (160 ng g−1 of edible tissues). Oysters,
however, are not the best indicator of DSP risk, as they may
accumulate up to two orders of magnitude lower OA levels
thanmussels (Vale and Sampayo 2002; Lindegarth et al. 2009;
Kim et al. 2010). For instance, mussels can accumulate OA
levels as high as 3,222 ng g−1 of edible tissues when exposed
to 400–10,000 D. acuminata cells L−1 (Reizopoulou et al.
2008), 3,670 ng g−1 of DG after 5 weeks of exposure to 650–

3,000D. acuminata cells L−1 (Lindegarth et al. 2007), or even
14,000 ng g−1 of DG when only smaller exposed individuals
are considered (Duinker et al. 2007). Mussels are not exten-
sively farmed in Paranaguá Bay, but the mangrove mussel
Mytella guyanensis is regularly harvested from natural beds
and consumed by the local population without regular toxin
assessment. Moreover, our LC-MS/MS procedure did not
include a hydrolysis step, which may have underestimated
the total toxin content in our bivalve samples. After ingestion
by shellfish, diarrheic toxins are rapidly converted into fatty-
acid esters, which are usually less toxic than the toxins orig-
inally produced by the dinoflagellates but may still account for
most of the overall toxicity in those organisms (reviewed in
Munday 2013). A proper investigation of toxin ester profiles
in Brazilian commonly farmed bivalves exposed to toxic
Dinophysis cells is currently in progress.

Following recent episodes of human intoxication, shellfish
harvest bans started to be issued during blooms of the
D. acuminata complex in the state of Santa Catarina, southern
Brazil (Proença et al. 2007). As a consequence, in 2012,
Brazilian authorities created a National Program on Mollusk
Safety, which will, as in other countries, use cell counts as an
alert to perform regulatory mouse bioassays and LC-MS/MS
analyses of different toxin groups. However, as observed in
this and other studies (e.g., Pizarro et al. 2008), there may exist
large intra-specific variations in toxin contents among
Dinophysis cells from a single geographic region, making
DSP outbreaks difficult to predict based on cell counts
(Marcaillou et al. 2005). Bivalve selective feeding (Mafra

Table 4 Intracellular content of lipophilic toxins (picograms per cell) in cultivated Dinophysis spp. strains in the exponential and/or stationary growth
phase, indicating a general increase in the latter growth phase as demonstrated by the mean stationary/exponential ratios for each toxin

Species Exponential phase Stationary phase Stat./expon. ratio

OA DTX-1 PTX-2 OA DTX-1 PTX-2 OA DTX-1 PTX-2 Ref.

D. acuminata 0.01–0.02 0.08 14–15 0.02–0.05 0.32 12–14 2.3 4.0 0.9 Tong et al. (2011)a

0.02 0.02 20 Hackett et al. 2009b

2.1–4.7 0.2–1.1 34–50 8.1–12 2.1–3.5 48–67 3.0 4.3 1.4 Nagai et al. 2011c

4.0–10 0.1–0.3 28–77 17–29 0.5–1.1 90–120 3.3 4.0 2.0 Kamiyama et al. 2010d

3.7–7.1 11–20 2.9 Nielsen et al. 2012e

<d.l. 2.5–4.8 15 Kamiyama and Suzuki 2009c

D. acuta 2.2–3.0 40–62 10–17 93–131 5.2 2.2 Nielsen et al. 2013f

D. fortii 1.2–1.5 <d.l.–0.3 62–114 2.0–8.6 0.1–0.4 88–162 3.9 1.7 1.4 Nagai et al. 2011c

D. tripos <d.l. <d.l. 179–232 Rodriguez et al. 2012b

dl detection limit, nd not determined
a Cells in the exponential phase at 284 μmol photon m−2 s−1 and the stationary phase at 65 μmol photon m−2 s−1

b Late exponential growth phase
c Stationary phase prior to M. rubrum re-addition (12–24 days)
d Data shown for cells incubated at 22 °C; a similar increase in toxin content at 14 and 18 °C was observed, but not at 10 °C
eData shown for cells acclimated to 15 μmol photons m−2 s−1 ; a similar increase in toxin content was observed at 130 μmol photons m−2 s−1

f Data shown for cells acclimated to 130 μmol photons m−2 s−1 ; a similar increase in toxin content was observed at 15 μmol photons m−2 s−1
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et al. 2010), aggregation of cells in thin layers (Pizarro et al.
2008), and the proportion of toxic cells in relation to the total
food available for filter-feeders (Jørgesen and Andersen 2007;
Reguera et al. 2012a) may also help explain the frequent
mismatches between cell abundance in the water column
and shellfish toxicity.

Okadaic acid was also detected at low levels (44 ng g−1) in
a pool of liver and digestive tract tissues from the filter-feeder
fish Cetengraulis edentulus in Paranaguá Bay. This result,
along with other rare reports of OA detection in marine
animals other than bivalves, including the polychaete
Sabella spallanzanii (0.9–37 ng g−1), ascidians (32–
340 ng g−1) (Reizopoulou et al. 2008), the crabs Carcinus
maenas and Polybius henslowi (17–322 ng OA eq. g−1) (Vale
and Sampayo 2002) and mussel-feeder flounders (222 ng g−1)
(Sipiä et al. 2000), demonstrates that bivalve mollusks may
not be the only vector for human intoxication by DSTs.
Furthermore, the possible presence of DST-esters in fish tis-
sues, which would aggravate the risks of DSP by fish con-
sumption, remains to be investigated.

Altogether, our results from field surveys and laboratory
cultures indicate that toxin retention by D. acuminata com-
plex cells may be substantially greater at growth-limiting
conditions. Growth limitation by either light or prey availabil-
ity resulted in less abundant but much more toxic
D. acuminata complex cells both in the field and in small-
scale cultures, which may have serious implications for cell
count-based monitoring programs in bivalve aquaculture
areas.
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