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Abstract To elucidate the changes in the proportions of
microcystin (MC)-producing Microcystis, non-MC-
producing Microcystis and Anabaena strains during
cyanobacteria blooms, we compared their fitness under
different initial biomass ratios. Culture experiments were
carried out with three cyanobacterial strains: single-celled
toxic Microcystis aeruginosa PCC7806 (Ma7806), single-
celled nontoxic Microcystis wesenbergii FACHB-929
(Mw929) and filamentous Anabaena PCC7120 (An7120).
Growth curves expressed as biovolume, Ma7806
microcystin-LR (MC-LR) content (detected with HPLC
and ELISA), and the culture medium dissolved total
nitrogen and dissolved total phosphorous (DTP) were
measured to monitor nutrient uptake. Results suggest
that the dominant strain in competition experiments
between Ma7806 and An7120 was mainly controlled by
the initial biomass ratio of the two strains, but there was
also evidence for allelopathic interactions, where MC-LR
produced by Ma7806 played an important role in the
competition process. However, Mw929 was always less
competitive when co-cultured with An7120 regardless
of initial biomass ratio. Culture medium DTP showed
significant differences between competition experiments

in all sets, suggesting that Mw929 could be more suited
to low phosphorus environments than Ma7806 and
An7120. Overall, the competitive ability of Ma7806 was
stronger than Mw929 when co-cultured with An7120 in
the case of excess nutrients and the results could well
unravel the seasonal succession process of cyanobacteria
blooms.
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Introduction

The increasing input of nutrients, mainly nitrogen (N) and
phosphorus (P), to water is leading to increased eutrophi-
cation in many regions across the globe (Cloern 2001). The
most obvious effect of eutrophication is its alteration of the
food web, resulting in high levels of phytoplankton biomass
that can lead to algal blooms (Anderson et al. 2002;
Smayda 2004). Occurrences of cyanobacteria blooms
around the world have increased in recent decades, and
under favorable conditions Microcystis is the most impor-
tant cyanobacterial genus responsible for water blooms
(Hudnell and Dortch 2008; Azevedo et al. 2002). Most
known species of Microcystis, such as Microcystis flos-
aquae, M. aeruginosa, M. ichthyoblabe, and M. viridis,
have been reported to produce a family of nearly 80
hepatotoxic peptides called microcystins (MCs) (Briand et
al. 2009). MCs are responsible for liver failure in wild
animals, livestock and aquatic life, and are a health hazard
for humans through the use of water for drinking and
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recreation (Hoeger et al. 2007). The release of chemicals
and toxins by plants, that affect their potential competitors
for resources, is known as allelopathy (Lampert and
Sommer 2007). Previous studies have found that allelo-
pathic compounds produced by phytoplankton are active in
succession events (Jüttner and Wu 2000; Vardi et al. 2002).
Also, allelopathic compounds produced by submerged
macrophytes might affect the succession of phytoplankton
(Gross et al. 2003, 2007). Tillmann (2003) and Granéli and
Hansen (2006) have pointed out that allelopathy and toxin
production are enhanced by stress factors, such as unbal-
anced N and P ratios at limiting concentrations. To
understand toxin variations and allelopathy in natural blooms,
most early investigations were focused on toxic cyanobacte-
rial species in the laboratory. However, other nontoxic species
ofMicrocystis, for example M. wesenbergii (Xu et al. 2008),
which also plays an important role in cyanobacterial
blooms succession, has received less attention despite being
distributed widely around the world including Asia (Son et
al. 2005), Europe (Jasprica et al. 2005), America (Oberholster
et al. 2006), and Oceania (Wood et al. 2005).

Filamentous cyanobacterial blooms (i.e., Anabaena
blooms) have been observed to occur simultaneously with,
or alternatively to, Microcystis blooms (Aktan et al. 2009;
Solis et al. 2009; Vesna et al. 2010). Furthermore, in
hypertrophic lakes or reservoirs, water temperature and
other abiotic factors interact to allow high phytoplankton
production (Robarts and Zohary 1992). Therefore, we
conducted competition experiments between two Micro-
cystis strains and Anabaena PCC7120 (An7120) in order to
unravel the seasonal succession process indirectly during
cyanobacteria blooms. These results will be beneficial not
only for water agencies but also for future prediction of
algal blooms.

Materials and methods

Cyanobacterial strains Microcycstis aeruginosa PCC 7806
(Ma7806) and Anabaena PCC 7120 (An7120) were
originally obtained from the Pasteur Culture Collection

of Cyanobacteria, France, and were kindly provided by
the Freshwater Algae Culture Collection of the Chinese
Academy of Sciences (FACHB-Collection). The nontoxic
strain Microcystis wesenbergii FACHB-929 (Mw929)
was isolated from Lake Dianchi in China and was also
obtained from the FACHB-Collection. Mean cell dimen-
sions of the three strains were measured using an ocular
micrometer at ×400 magnification (Hill and Knight
1987). Cell densities of cultures were converted to
biovolume (μm3 L−1) for each strain using the formula
for the geometric shape roughly appropriate for the taxon
(Hillebrand et al. 1999). In laboratory cultures, Ma7806
and Mw929 are single-celled and An7120 is filamentous
(Table 1).

The three strains were axenic and inoculated in BG11

liquid medium, under a 12L/12D cycle with a light intensity
of 30 μmol photons m−2 s−1 provided by cool white
fluorescent tubes at 25±1°C. Experiments were carried out
in 500-mL conical flasks containing 300 mL BG11 liquid
medium. All samples were run in triplicate and all flat-
bottomed bottles were shaken by hand three times per day
during the maintenance and experimental stages. Subsamples
were taken at predetermined intervals from day 1 during the
incubation period to determine cell numbers, examine
dissolved total phosphorous (DTP) and dissolved total
nitrogen (DTN) and extract MCs.

The initial biomass of each culture was determined from
the concentration of chlorophyll a, then the cell number
was counted and converted to biovolume. Two co-cultures
were prepared: Ma7806 and An7120; Mw929 and An7120
(Table 2). Each sample was run in triplicate and was
divided into subsamples for cell counting, for determination
of MC content and for determination of extracellular DTN
and DTP contents in the medium.

Measurement of cell number and biovolume

After staining with 1% acidified Lugol’s iodine solution,
the cyanobacterial cells were counted under a microscope
using a haemocytometer. The cells of An7120 and Mw929
were separated by sonication before counting. Cell counts

Table 1 Characteristics of the three strains used in this study

Characteristics Morphology Toxins N-fixation ability Cell diameter (μm) Origin

Microcystis aeruginosa PCC7806 Single-celled MC-LR − 3.0 PCC

Microcystis wesenbergii FACHB-929 Single-celled None − 6.2 Lake Dianchi, China

Anabaena PCC7120 Filamentous None + 3.2 PCC

PCC Pasteur Culture Collection of Cyanobacteria
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were ultimately converted to biovolume by multiplying cell
count by the estimated volume per cell.

Examination of DTN and DTP

Subsamples (10 mL) from the cultures were taken at
predetermined intervals. The samples were firstly placed
in Ultrasonic cleaning device (KQ 5200E) for 5 min, which
promoted cells sinking to the bottom of the tube, as both
Microcystis and Anabaena are known for the gas vesicles to
assist buoyancy. Then they were centrifuged at 10,000 rpm
for 12 min, and the supernatant was used to determine DTP
and DTN after persulfate oxidation to nitrate (D’Elia et al.
1977) and orthophosphate, respectively. The nitrate was
determined with a Szechrome NB reagent (Wynne and
Rhee 1986), and the orthophosphate was determined by the
phosphomolybdate method.

Microcystin extraction and analysis

Extraction of intracellular microcystin-LR (MC-LR) fol-
lowed the method developed by Harada et al. (1988).
Lyophilized cells were firstly sonicated and extracted
three times with 5% (v/v) acetic acid. The extract was
centrifuged at 8,000 rpm for 10 min and the supernatant
was then transferred to a C18 cartridge (Sep-Pak; Waters
Association). The C18 cartridge was activated with 10 mL
methanol and 20 mL Millipore water and then impurities
were eluted with 20% and 30% methanol separately prior to
eluting MC-LR with 75% methanol. Finally, the eluted
solutions were evaporated to dryness in a rotary vacuum
evaporator, and then re-dissolved with 1 mL 50% methanol
and stored at −20°C for high-performance liquid chromato-

graph (HPLC) analysis. Standard MC-LR was received as a
gift from Dr. Wei Chen, IHB, CAS (>95% purity) (Chen et
al. 2009) and MC-LR samples were analyzed by a
Shimadzu CLASS-LC10 HPLC with a reverse C18 column
(4.6 and 250 mm) in a run with 60% solution A (100%
methanol) and 40% solution B (0.05% aqueous trifluoro-
acetic acid) over 20 min and diode array detector at
238 nm. The results showed that retention time of the
MC-LR was 13.5 min.

Extracellular microcystin concentrations would be pos-
sibly below the detection limit of the high-performance
liquid chromatograph (2 ng L−1). Therefore, they were
determined using an enzyme-linked immunosorbent assay,
which was performed according to the protocol of the
microcystin plate kit (EnviroLogix, Inc.; Catalog no.
EP022). This method is sensitive for low levels of micro-
cystin (Pyo et al. 2005; Carmichael and An 1999). The
assays were run in 96-well plates containing 0.1 mU
enzyme (recombinant protein phosphatase 1A, catalytic
subunit, Roche Applied Science), 1.05 mg para-nitrophenyl
phosphate (Sigma) and 10 μL of sample or microcystin-LR
(Sigma Biochemical). Water samples (5 mL per sample)
were taken and stored at −20°C. In order to avoid false-
negative or false-positive effects, we firstly transferred the
supernatant to a C18 cartridge (Sep-Pak; Waters), eluting
impurities. And then the diluted MC-LR extracted from
water samples of 100 μL were added to test tubes pre-
coated with polyclonal antibodies followed by addition of
an enzyme-linked substrate. The antibodies were specific to
MC-LR at low concentrations. Activity of the bound
peroxidase was assayed as rate of hydrolysis of TMB
(3,30,5,5,-tetramethylbenzidene), stopped with 1N HCl,
and measured spectrophotometrically at 450 nm (absor-

Table 2 The initial biomass of the strains studied in competition experiments

Initial biomass ratios Ma7806/An7120 Mw929/An7120

Set aa Set ba Set ca Set aa Set ba Set ca

Chla/chla 1/9 1/1 9/1 1/9 1/1 9/1

Cell N/Cell Nb

(×107cells L−1)
5.1±0.4/35±1.1c 25±0.1/20±0.2 45±0.1/4±0.02 0.79±0.04/34.9±0.8 3.6±0.1/20±0.5 6±0.2/4±0.01

BioV/BioVd (×107

μm3 L−1)
73±5.9/609±20 353±1.4/346±5.0 636±1.5/69±0.45 89±0.4/432±21 399±6.5/215±6.2 671±26/69±0.3

a The initial chlorophyll a ratio of M. aeruginosa PCC7806 to Anabaena PCC7120 and M. wesenbergii to Anabaena PCC7120 was 1:9, 1:1 and 9:1,
respectively
b Cell number
c Each value in the table represents the mean of three measurements ±SD except for that in the Chla/chla row
d Biovolume
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bance peak) and 650 nm (turbidity blank) over 1 h. In the
results, all reported toxin concentrations are microcystin-
LR equivalents. And the detection limit was between 0.1
and 5 μg L−1.

In the results, all reported toxin concentrations are
microcystin-LR equivalents. Unknowns, standards, and
controls were all run in duplicate.

Statistics

Data are presented as mean±SD (standard deviation). All
statistical analyses were computed with one-way analysis of
variance (ANOVA) statistics using SPSS (Version 16.0),
except for DTP in medium, which was analyzed with the t
test for Mw929 co-culturing with An7120.

Results

Monocultures

All three strains flourished throughout the monoculture
experiments, although their specific growth rates changed
with time (Fig. 1). The growth rates of Ma7806, An7120,
andMw929 were 0.184, 0.285, and 0.117 day−1, respectively,
in the exponential phase. Changes in MC-LR content showed
a similar tendency to those of Ma7806 growth and reached a
maximum in the mid exponential growth phase, but
decreased in the late exponential growth phase (Fig. 1).

Changes in culture medium DTN and DTP were also
estimated (Fig. 2). No significant differences in DTN
concentrations were observed among the three strains
(ANOVA, p>0.05). However, a significant difference in
DTP between Mw929 and An7120 was observed (ANOVA,
p=0.046<0.05).

Co-cultures of Ma7806 and An7120

The dominant strain under competition mainly depends on
the initial inoculation biomass, that is, when Ma7806
dominated at the beginning, it continued to dominate until
the end (Fig. 3a) and similarly with An7120 (Fig. 3c).
However, when the initial inoculation amount of Ma7806
and An7120 was almost equal, both strains achieved similar
growth rates (0.107 and 0.113 day−1) for the first 15 days,
at which point An7120 started to grow faster than Ma7806
(Fig. 3b). However, both strains converged to similar
biovolume densities by the end of the experiment
(28 days). The maximum biovolume of An7120 in set
(a) was much larger than that during the monoculture
experiments while the growth of An7120 was seriously
suppressed in set (c).
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For MC-LR, the microcystin contents (fg cell−1) in sets
(a) and (b) were much higher than that in set (c) (Fig. 4).
The microcystin contents showed significant differences
between sets (a) and (c) (ANOVA, p<0.05) and between
sets (b) and (c) (ANOVA, p<0.01). Additionally, in set (b),
the microcystin contents were positively correlated with the
Ma7806 cell density, but were negatively correlated in set
(c). Moreover, the extracellular fraction of MC-LR in the
medium varied between different growth stages and growth
conditions (Fig. 5).

No significant differences in culture medium DTN or
DTP (p>0.05; F=0.173; df1=2; and df2=33) were found
throughout the competition experiments between Ma7806
and An7120 in sets (a–c) (Fig. 6).

Co-cultures of Mw929 and An7120

An7120 biovolume eventually exceeded Mw929 biovolume
for all three initial chlorophyll a ratios tested (Fig. 7). At

the same time, the DTN (ANOVA, p>0.05) showed almost
the same trends (Fig. 8) for all three sets, while DTP
showed significant differences between the three sets (t test,
p<0.05).

Discussion

In order to elucidate the changes in the proportions of MC-
producing Microcystis, non-MC-producing Microcystis and
Anabaena strains during cyanobacteria blooms, we com-
pared their fitness under different initial biomass ratios.
When Ma7806 and An7120 were cultured together, the
dominant strain was largely determined by the initial
biomass ratio between them. This result could further
be attributed to the difference in growth rates between
the two strains in the monoculture experiments, where
the strains had no competitors. Oberhaus et al. (2007)
carried out monoculture and competition experiments to

0 3 6 9 12 15 18 21 24 27 30 33 36 0 3 6 9 12 15 18 21 24 27 30 33 36 0 3 6 9 12 15 18 21 24 27 30 33 36

0

3000

6000

9000

12000

15000

18000 a
 B

io
vo

lu
m

e 
(x

10
7  µ

m
3  l-1

) Ma7806
An7120

Ma7806
An7120

Ma7806
An7120

0

2000

4000

6000

8000

10000

Ma
An

b

 Time (days)

0

2000

4000

6000

8000

10000
c

Fig. 3 Time course of biovolumes in competition experiments between Ma7806 and An7120. a–c The initial chlorophyll a ratios of Ma7806 to
An7120 were 1:9, 1:1, and 9:1, respectively

0

10

20

30

40

50

60

70

80

0 3 6 9 12 15 18 21 24 27 30 33 0 3 6 9 12 15 18 21 24 27 30 33

Time (days)

0

50

100

150

200

250

300

350

400

MC-LR

Cell density

0

5

10

15

20

25

30

0

100

200

300

400

500

600

700

800

C
el

l d
en

si
ty

 (
X

10
7 ce

lls
 l-1

)

MC-LR

Cell density

0
5

10
15
20
25
30
35
40
45
50

0 3 6 9 12 15 18 21 24 27 30

M
C

-L
R

 (
fg

 c
el

l-1
)

0

5

10

15

20

25

30

35

40

45MC-LR

Cell density

a b c

Fig. 4 Time course of cell density and MC-LR contents of Ma7806 in
competition experiments between Ma7806 and An7120 under different
initial ratios of chlorophyll a. a–c The initial chlorophyll a ratios of

Ma7806 to An7120 were 1:9, 1:1, and 9:1, respectively. Line, cell
density; column:, cellular MC-LR content

J Appl Phycol (2012) 24:69–78 73



compare the fitness of cyanobacterial strains Planktothrix
rubescens and P. agardhii, cultured under various different
conditions of temperature and light, and showed that there
are significant differences in the growth rates of P.
rubescens and P. agardhii in monoculture and competition
experiments.

Moreover, the MC-LR concentration of Ma7806 was
much higher in competition experiments than that inocu-
lated in monoculture experiments; in particular, the con-
centrations of MC-LR in sets (a) and (b) were much higher
than that in set (c), implying that the greater the competitive
pressure the higher the cellular MC-LR content in compe-
tition experiments. This phenomenon results from two
factors. The first can be assessed in terms of the costs and
benefits of producing MC. MC is biosynthesized via a
multi-enzyme complex requiring a high energy input,
implying a high cost for the cell. Briand et al. (2008)
suggested that, under cell growth-limiting conditions, the
benefits of producing MC would outweigh the costs. In the
monoculture experiment, Ma7806 had no competitor, so it
did not invest resources in MC production. Meanwhile,

Ma7806 did produce large amounts of MCs in order to
outweigh other strains in competition experiments. The
second factor is the possible allelopathic effect of Ma7806
on An7120 (Pflugmacher 2002; Schagerl et al. 2002;
Sedmak and Elersek 2005), particularly when Ma7806
and An7120 were inoculated by similar amounts. In this
case, their growth rates were initially similar (0.107 and
0.113 day−1, respectively), before An7120 became suddenly
dominant from day 18 to day 27. Conversely, after day 27
the continually increasing MC-LR concentration suggests
that the allelopathic effect was effective only if the
intracellular content of MC-LR was sufficient to be released
into the medium, when it would suppress the growth of
An7120 (Pflugmacher 2002; Schagerl et al. 2002; Sedmak
and Elersek 2005). In particular, MCs can function as
inhibitors of photosynthetic activity (Hu et al. 2004;
Sukenik et al. 2002). Therefore, to verify whether the
allelopathic effect exists, the physiological experiments
were analyzed (Fig. 9). The growth of An7120 was
promoted or restrained when the concentration of MC-LR
was below 0.1 μg L−1 or above 1 μg L−1, respectively.
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Therefore, the allelopathic effect occurred throughout the
competition experiments. The maximum extracellular con-
centration of MC-LR was 0.0875 μg L−1 in set (a), while
the maximum biomass of An7120 was much larger than
that in the monoculture experiment. In set (c), the
maximum extracellular concentration of MC-LR was
14.706 μg L−1 while the growth of An7120 was greatly
suppressed by MC-LR, consistent with the physiological
experiments. In natural water, the concentration of MC-LR
varies dynamically and plays an important role in diversi-
fied algae biovolume construction. Moreover, the percentage
of extracellular MC-LR in the medium ranged from 0.3% to
10.55% in set (a), from 13% to 23.47% in set (b) and from
0.244% to 63.7% in set (c), although Sedmak and Elersek
(2005) reported that the extracellular fraction of MC-LR in
the medium only accounts for approximately 1% the
intracellular fraction, which might result from the different
culture conditions. Above all, the results indicated that the

more the biomass proportion of M. aeruginosa, the lager the
concentration of MC-LR in medium. And hence, the
quantity of MC-LR released into the natural waters varies
during cyanobacteria blooms.

Additionally, neither DTN nor DTP showed significant
differences in any experimental sets, which might result
from the excess nutrients in the BG11 medium making
competition between strains for nutrients unnecessary.
Additionally, the initial total inoculated biomass was nearly
identical in the competition experiments (Table 2), and total
biovolume and cell size for each set were close so that the
relative surface areas of the two strains were similar. This
leads to similar rates of nutrient uptake, consistent with the
monoculture experiments.

In the Mw929 and An7120 mixed culture experiments,
Mw929 were eventually competitively suppressed by
An7120 for all tested inoculation ratios. This result is
mainly a function of two factors. The first is the subtle
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difference in growth rates between the two strains in the
monoculture experiments, which inevitably affects their
growth in the competition experiments. The second factor is
cell size: Mw929 cells are much larger than An7120 cells.
Mathematical theory predicts that the relative surface area
of Mw929 will be much smaller than that of An7120; hence
the latter will absorb nutrients more efficiently than the
former. Furthermore, the decreases of nitrogen resources
during the experiment will result in growth limitation of the
cells (Fig. 7). However, under conditions of nitrogen
deficiency, the nitrogen-fixing heterocysts will differentiate
from vegetative cells in An7120 (Kaneko et al. 2001), and
this characteristic will allow it to gain eventual dominance.
Overall, Mw929 appeared to be weaker during competition
with co-cultured An7120.

On the other hand, in Fig. 7, we could infer that the
larger the proportion of Mw929 the greater the DTP in the
medium when co-cultured with An7120, which indicates
that Mw929 should be well accustomed to phosphorous
deficiency conditions. Hence, the concentration of phos-
phorous could serve as a forecast of Mw929 blooms.
Phosphorus often limits Microcystis growth in the natural
aquatic environment. There are many reports of interactions
between Microcystis and phosphorus. However, these
reports focus mainly on the uptake of different forms of
phosphorus by Microcystis (Yang et al. 2005) or its
competitive utilization with other algae (Takeya et al.
2004) other than M. wesenbergii.

As we know, in most natural lakes in China, Microcystis
blooms usually occur from early summer to late autumn. To
a large extent, the phenomenon requires a suitable
temperature. Microcystis have been found to have an
optimal temperature for growth and photosynthesis at, or

above, 25°C (Takamura et al. 1985; Robarts and Zohary
1987; Reynolds 2006; Jöhnk et al. 2008; Paerl and
Huisman 2008). In natural waters, the temperature would
be below 25°C from spring to early summer and hence
Anabaena blooms could occur under favorable conditions;
when the temperature reaches above 25°C, Microcystis
species (i.e., M. aeruginosa and M. wesenbergii) would
begin to grow rapidly and then Microcystis blooms would
occur until late autumn; in late autumn, Anabaena blooms
would occur again due to low temperature. During Micro-
cystis blooms, the three strains always co-exist but their
biomass proportion varies considerably at different periods.
The biomass of M. aeruginosa is much larger than M.
wesenbergii in the early period of Microcystis blooms,
which our experiment results suggest is due to M.
aeruginosa having a stronger competitive ability than M.
wesenbergii under favorable conditions. Conversely, in the
late period of Microcystis blooms, when the concentration
of phosphorous in natural waters decreased markedly, the
process of Microcystis blooms as well as that our
experiment showed that M. wesenbergii was more tolerant
to low phosphorus than M. aeruginosa. At the same time,
the biomass of Anabaena varies considerably as well.
According to our results, allelopathic effects of MC-LR on
An7120 exist and the extracellular MC-LR concentration
varies with different biomass proportion. When the tem-
perature was below 25°C in spring, the biomass proportion
of M. aeruginosa was usually smaller than Anabaena and
the concentration of MC-LR released to natural waters
would be much lower leading to promoting the growth of
Anabaena. With increased temperature, the biomass
proportion of M. aeruginosa would increase and the
concentration of MC-LR in natural waters would also
increase thus restraining the growth rate of Anabaena so
that M. aeruginosa dominated for a long period. In the late
period of Microcystis blooms, M. wesenbergii would
dominate relatively for a short period until the temperature
decreases to about 25°C and then Anabaena would
dominate again. Overall, temperature, nutrients and micro-
cystin jointly drive the succession of cyanobacteria
blooms. Besides this, some other abiotic factors should
be studied further.

In conclusion, our laboratory experiments demonstrate
that the M. aeruginosa strain has a stronger competitive
ability than M. wesenbergii under favorable conditions
when co-cultured with An7120. The dominant strain in
competition experiments between Ma7806 and An7120
mainly depends on the initial biomass ratio between the
two strains. Differences in morphological forms and
allelopathic effects of MC-LR produced by M. aeruginosa
are considered to be the main factors controlling growth.
Finally, we found that M. wesenbergii was tolerant to low
phosphorus.
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